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Abstract: Molecular marker-assisted gene pyramiding combined with backcrossing has been widely
applied for crop variety improvement. Molecular marker identification could be used in the early
stage of breeding to achieve the rapid and effective pyramiding of multiple genes. To create high-
quality germplasm for Chinese cabbage breeding, multi-gene pyramiding for self-compatibility,
multilocular, and clubroot resistance was performed through molecular marker-assisted selection.
The results showed that self-compatibility and multilocular traits were controlled by a pair of recessive
genes. Two flanking markers, sau_um190 and cun_246a, and marker Teo-1, based on the gene
sequence related to multilocular ovaries, were used for multilocular ovary trait selection. Two flanking
markers, SCF-6 and SC-12, and marker Sal-SLGI /PK1+PK4, based on the gene sequence, were used
for self-compatibility selection. Two flanking markers, TCR74 and TCR79, closely linked to clubroot
resistance gene CRb, were used as foreground selection markers. Based on Chinese cabbage genomic
information, 111 SSR markers covering 10 chromosomes were applied for background selection.
After multiple generations of selection, a multi-gene pyramided line from a BC4F2 population with
self-compatibility, multilocular ovaries, and clubroot resistance was obtained with a high genomic
background recovery rate. The improved pyramided line is expected to be utilized as a potential
material in further breeding programs.

Keywords: Brassica rapa; gene pyramiding; marker-assisted selection

1. Introduction

Chinese cabbage (Brassica rapa L. ssp. pekinensis), belonging to the Brassica subspecies
of the Brassicaceae family, is widely cultivated in China, Korea, and Japan. At present, most
of the common commercial cultivars on the market are first-generation hybrids. However,
owing to self-incompatibility, it is difficult to reproduce the parent lines, and the cost of
artificial seed production is high. The seed yield of Chinese cabbage is limited, which is
influenced by silique-related traits. Additionally, clubroot, as one of the main diseases of
cruciferous crops, has severely threatened the production of Chinese cabbage. Breeding
clubroot-resistant (CR) varieties is the most effective method for clubroot prevention
since physical and biological control methods have limited effects. Therefore, cultivar
pyramiding with multilocular silique, self-compatibility, and clubroot resistance would be
an ideal resource for Chinese cabbage breeding.

Cruciferous plants, such as Brassica cultivars included in the U’s triangle [1], are
mostly bilocular plants, including Brassica rapa (AA, 2n = 20), Brassica nigra (BB, 2n = 16),
Brassica oleracea (CC, 2n = 18), Brassica napus (AACC, 2n = 38), Brassica juncea (AABB,
2n = 36), and Brassica carinata (BBCC, 2n = 34). However, with the collection and sorting of
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germplasm resources, some silique variation types, such as multilocular rapeseed, have
been discovered. Among them, yellow sarson, an oil-type B. rapa, has the characteristics
of multiple ovaries. Its number of silique ventricles is four, and the seed number is
significantly higher than that of Chinese cabbage. Zhao et al. [2] used AFLP markers to
identify the developmental relationship of 161 materials from different B. rapa subspecies
and demonstrated that yellow sarson is an independent group that has a relatively distant
relationship with other subspecies. Other studies have shown that multilocular traits
can increase the yield of seeds, and the width of the silique is positively correlated with
thousand-seed weight [3]. Yadava et al. [4] found that the multilocular trait and wider
silique width of yellow sarson may be due to the Bra034340 gene mutation in Chinese
cabbage that is homologous to Arabidopsis CLAVATA3.

In the process of plant evolution, the self-incompatibility mechanism evolved [5].
Self-incompatibility is divided into sporophytic self-incompatibility (SSI) and gametophytic
self-incompatibility (GSI) [6]. Brassica plants have sporophytic self-incompatibility, which
is genetically controlled by an S-locus with multiple alleles called the S-haplotype [7,8].
There are three linked genes at the S-locus, namely S-locus glycoprotein (SLG), S-locus
receptor kinase (SRK) [9–11], and S-locus cysteine-rich protein (SCR) or the S-locus protein
11 (SP11) [12,13]. The stigma localized SRK interact with SP11/SCR in the S-locus of
Brassica plants to recognize self-pollen and cross-pollen. This interaction is based on the
specificity of the S haplotype; that is, only SRK and SP11/SCR of the same haplotype can
interact with each other, which causes self-incompatibility [14–16]. Owing to this feature,
Chinese cabbage seed production requires breaking buds and selfing, which wastes a lot
of manpower and increases the cost. Thus, the introduction of self-compatibility genes
into Chinese cabbage would be of great significance for self-fertilization breeding and
preservation of important germplasm resources.

Clubroot disease is an obligate parasitic soil-borne disease caused by Plasmodio-
phora brassicae Woron. It mainly harms cruciferous crops and is distributed in most countries
and regions around the world [17]. It is estimated that 3 to 4 million hectares of farmland
in China are threatened by this disease every year, causing 20–30% yield losses [18,19].
However, it is difficult to prevent and control the disease through physical and chemi-
cal methods [20,21] because the resting spores of P. brassicae can survive in the soil for
many years [22]. At present, breeding-resistant varieties are the most effective and eco-
nomical prevention methods. To date, several CR loci have been identified by genetic
mapping/quantitative trait locus (QTL) mapping in B. rapa using different resistance
resources, including Crr1, Crr2, Crr3, Crr4, CRa, CRb, CRc, CRd, CRk, PbBa3.1, PbBa3.2.
PbBa8.1, Rcr1, Rcr4, and Rcr9 [23–33]. These CR loci and their corresponding linkage mark-
ers enable the introgression of a single CR gene or pyramiding of multiple CR genes into
one variety through marker-assisted selection (MAS).

The marker-assisted pyramiding strategy that introgresses multiple QTL/genes for
one or multiple traits has been widely used in several crops such as soybean (multiple
Rpp genes for Asian soybean rust resistance) [34] and rice (Bph27 (t) and Bph3 for brown
planthopper resistance [35]; R genes for blast-resistance [36]). In Brassica crops, Shah
et al. [37] developed a new gene pyramided Brassica napus line by combining two club-
root resistant genes, CRb and PbBa8.1, which showed strong resistant to P. brassicae field
isolates. Matsumoto et al. [38] accumulated three clubroot resistant genes (CRa, CRk, and
CRc) through MAS in Chinese cabbage. Accumulation of multiple CR-QTL in B. oleracea
conferred broad-spectrum clubroot resistance against six P. brassicae isolates [39]. The above
reports were mostly based on the pyramiding of different genes for one trait. In common
wheat, eight genes for seven different traits were introgressed into one cultivar. The im-
proved pyramided lines exhibited resistance against three rusts and excellent quality [40].
However, at present, there are fewer reports on gene pyramiding in Chinese cabbage. In this
study, we pyramided genes for multilocular, self-compatibility, and clubroot resistance into
one material using MAS. The result provides new insights into the creation and breeding
of new Chinese cabbage resources.
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2. Materials and Methods
2.1. Plant Material

Two B. rapa inbred lines, namely, ‘CR BJN3-2’ and ‘KYS,’ were used in this study. CR
BJN3-2, a near-isogenic line of Chinese cabbage ‘BJN3-2,’ which is susceptible to clubroot
disease and carries the resistance allele CRb [28], was used as a recurrent parent [41]. It
was a bilocular and self-incompatible material. The donor, parental line KYS (B. rapa L. var.
yellow sarson), is an oil-type B. rapa with tetralocular ovaries, self-compatibility, yellow
seed coat, and clubroot susceptibility.

2.2. Marker Development, Validation, and Phenotype Genetic Analysis

Yadava et al. [4] identified a major QTL tet-o for tetralocular ovary for B. rapa and
predicted BrCLAVATA3 (Bra034340) as the candidate gene. Simple sequence repeats (SSRs)
were searched based on the BrCLAVATA3 gene sequence using SSRHunter 1.3, and two SSR
markers were designed for polymorphism screening between two parental lines (Table S1).
The PCR reaction and amplification conditions for genotyping with SSR markers has been
previously described by Li et al. [42] and Ge et al. [43].

For self-compatibility-related genes, we used multiplex PCR to screen co-dominant
marker combinations based on multiple reported primers designed based on SRK, SLG, and
SP11 genes and their genomic regions (Table S2). PCR amplification of genomic DNA using
a 20 µL reaction volume containing 3 µL of genomic DNA, 1 µL of each of the forward
and reverse primer, 10 µL of 10 × PCR buffer, and 5 µL of ddH2O to complete the reaction
volume. PCR products were detected using 2% agarose gel electrophoresis. Additionally,
four SSR and one InDel marker reported by Zhang et al. [44] were used for polymorphism
screening of the CRb gene. All polymorphic markers were then tested for linkage in the F2
population of CR BJN3-2 and KYS. Chi-square fitness was used to detect the separation of
phenotype and genotype.

2.3. Crossing Program and MAS for Gene Pyramiding

To introduce the multilocular and self-compatibility genes carried by KYS into the
clubroot disease-resistant line CR BJN3-2, we designed a set of backcross breeding programs.
The two paternal lines were crossed to produce the F1 hybrid, which was then backcrossed
to produce BC4F1, using CR BJN3-2 as the recurrent parent, accompanied by MAS in
each generation. Subsequently, BC4F2 was generated by selfing the selected BC4F1 lines
(Figure 1). Finally, the new pyramided line (BC4F3) with high genetic background recovery
of the recurrent parent CR BJN3-2, high rate of tetralocular, self-compatibility, and clubroot
resistance was obtained.

The screening method for the BCnFn generation is detailed in Figure 1, which mainly
included the foreground marker selection of the target genes, background marker selection
of the genome, and phenotypic screening. The marker information used for target gene
foreground selection is shown in Table 1. For genetic background selection, SSR markers
developed previously [45,46] and distributed on 10 chromosomes of the Chinese cabbage
genome were used to determine polymorphisms. The polymorphic markers were used in
subsequent genomic background screening.

In BC1F1, low-density markers were used for background selection, and plants with
higher recovery rates were selected for backcrossing. In the BC3F1 generation, we increased
the background selection marker density to have a clearer understanding of the genetic
composition of the background and select individuals with a higher genomic background
recovery rate.
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Figure 1. Schematic illustration of marker-assisted gene pyramiding in this study. CR BJN3-2:
recurrent parent; KYS: donor parent; 552: selected BC4F1 plant; 552-39: selected pyramided line.
A: genotype of CR BJN3-2; B: genotype of KYS; H: heterozygous genotype.

Table 1. Molecular marker information for foreground selection of three targeted loci.

Gene Chromosomal
Location Markers Type of Marker Character

Bra034340 A4 sau_um190 Based on PCR Co-dominant
cun_146a Based on PCR Co-dominant

Teo-1 SSR Co-dominant
S-Locus A7 PK1+PK4/Sal-SLGI Based on PCR Co-dominant

SCF-6 SSR Co-dominant
SC-12 SSR Co-dominant

CRb A3 TCR74 SSR Co-dominant
TCR79 SSR Co-dominant

2.4. Phenotypic Characterization

P. brassicae pathotype 4, defined by Williams’ system [47] in a previous study [44],
was used to test clubroot resistance in the parental and pyramided lines. The isolate was
propagated in the susceptible Chinese cabbage lines as described by Piao et al. [28]. The
swollen infected roots, which were soaked in water, were blended into solution and then
filtrated with gauze. The filtrate was collected in a 50-mL centrifuge tube, dissolved in
sterile water, and finally stored in a refrigerator at 4 ◦C. Resting spores were adjusted to the
concentration of 107 spores/mL for inoculation by injecting the soil around thirty-day-old
plants. The disease resistance of the plants was investigated at 45 days after infection. If
the plant grew normally and there were no visible clubs in the main roots and fibrous roots,
it was recorded as disease resistant and scored as level 0. A few small swollen clubs on
the lateral roots indicated level 1. If the lateral roots or main root had larger clubs, it was
scored as level 2, and significant taproot swelling was classed as level 3.

The self-compatibility of plants was determined by the self-compatibility index (SCI),
which was evaluated as the ratio of the total number of seeds to the number of pods in
self-pollinated flowers. The self-incompatibility type was defined as SCI less than 1, and
the self-compatibility type was defined as SCI greater than 1.

The agronomic traits of Chinese cabbage during the harvest period, including plant
height, plant width, plant weight, number of outer leaves, leaf length, leaf width, petiole
length, petiole width, petiole color, head weight, head shape, head solidity, head length,
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head width, head color, stem length, and stem width, as described by Ge et al. [43], were
investigated in pyramided and recurrent parental lines. The t-test analysis was performed
between pyramided line and recurrent parental line at p ≤ 0.05 significant level.

3. Results
3.1. Marker Development and Genetic Analysis for Multilocular and Self-Compatibility Traits

Two SSR markers, Teo-1 and Teo-2, based on the candidate gene BrCLAVATA3 for
multilocular, were designed (Table S1). Both markers showed polymorphism between
CR BJN3-2 and KYS. Teo-1 with more motif repeats was selected as a linked marker for
further analysis.

Among eight pairs of marker combinations designed for self-compatibility, as shown
in Table S2, PCR bands were amplified only in KYS using PK1+PK4 and in CR BJN3-2
using Sal-SRKI and Sal-SLGI. PCR products were not detected using PS3+PS21, Sal-SLGII,
Sal-SRKII, and SP11II between the two parents (Figure S1). To develop a codominant
marker for self-compatibility, we conducted multiplex PCR by combining the PK1+PK4
primer with Sal-SRKI and Sal-SLGI. As shown in Figure 2, the PK1+PK4/Sal-SLGI primer
combination could be used as a co-dominant marker to identify self-compatibility.
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Figure 2. Multiplex PCR showing polymorphism of two pairs of primer combinations (PK1+PK4/Sal-
SLGI; PK1+PK4/Sal-SRKI) between two parents (CR BJN3-2 and KYS). M: The DNA ladder 2000.

To perform genetic analysis and verify the molecular markers for locular and self-
compatibility phenotypes, the F1 population was generated by reciprocal crossing of CR
BJN3-2 and KYS, and the F2 population was constructed by selfing the F1 generation. The F1
generations showed bilocular and self-incompatibility, which indicated that the inheritance
of multilocular and self-compatibility traits was not affected by a reciprocal cross. Both
multilocular and self-incompatibility traits had no cytoplasmic effect and were genetically
controlled by recessive nuclear genes.

Furthermore, a total of 204 F2 individual plant phenotypes were investigated. Ventric-
ular traits were segregated among the F2 population. Of the individuals, 164 had bilocular
ovaries and 40 had multilocular ovary (trilocular and tetralocular). The separation ratio of
bilocular to multilocular was 3:1 according to the chi-square test (χ2 = 2.8824), indicating
that the ventricular traits are genetic traits controlled by a pair of genes. Moreover, the
genotype of the F2 population using the Teo-1 marker was consistent with the ventricular
phenotype (Figure 3), which could be used as a linkage marker for further MAS.
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Figure 3. Genotype of partial individuals of F2 population for locular number (up) and self-
compatibility (down). P1: CR BJN3-2; P2: KYS; 1-12: F2 individual plant number.

In addition, among 204 F2 plants, 149 individual plants showed self-incompatibility and
55 individuals showed self-compatibility. The ratio of self-compatible to self-incompatible
plants was close to 1:3 by the chi-square fitness test (χ2 = 0.3203), indicating that self-
compatibility is controlled by a pair of genes. The genotype of 204 F2 plants detected
by the newly developed marker PK1+PK4/Sal-SLGI was also identical to this phenotype
(Figure 3).

3.2. Polymorphic Marker Screening for Foreground Selection

For clubroot resistance, five CRb gene linked markers developed by Zhang et al. [44]
were used for polymorphism detection, as shown in Table S1. TCR74 and TCR79, which
were closely linked with CRb, showed polymorphism between two parental lines, which
were selected as foreground markers. For self-compatibility, 12 SSR markers were devel-
oped in the chromosome region of SI-related genes SRK, SLG, and SP11 (Table S1). Among
them, SCF-6 and SC-12 showed polymorphism between CR BJN3-2 and KYS. Thus, SCF-6,
SC-12, and gene-based PK1+PK4/Sal-SLGI (Figure 2) were used as foreground selection
markers, co-segregating with self-compatibility. Two flanking SSR markers of BrCLAVATA3,
sau_um190, and cun_146a, showing polymorphism between CR BJN3-2, KYS, and Teo-1,
were used as selection markers for the multilocular trait.

All markers used in this study were co-dominant markers that could clearly distinguish
heterozygous and homozygous plants. Detailed information for these markers is shown
in Table 1.

3.3. Polymorphic Markers Screening for Background Selection of the Whole Genome

Among 1140 genomic SSR markers [45,46], 319 pairs showed polymorphism between
two parents, and the polymorphism ratio was28.0%. For background selection of each
generation, 111 pairs of markers were chosen. The numbers of these 111 background
selection markers distributed on 10 B. rapa chromosomes were 10, 9, 11, 12, 11, 11, 12, 10,
13, and 12, respectively. The average interval of these markers was 2.25 Mb, and the total
physical distance covered was 249.27 Mb (Table S3). The distribution of these markers on
the 10 chromosomes is shown in Figure 4.
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3.4. Marker-Assisted Pyramiding of Multilocular, Self-Compatibility, and CRb Genes

Using the co-segregation markers for multilocular, self-compatibility, and CRb genes,
foreground selection was exercised in each generation of backcross hybrids from BC1F1
to BC4F1 (Figure 1). Among 100 BC1F1, 9 plants that carried all 3 loci in heterozygous
condition were selected to perform background genomic screening in low marker density
(37 SSR markers). Four plants with an average of 51% genomic recovery were used to
raise BC2F1. Ten plants among 276 BC2F1, which were “positive” in three loci, were used
for background selection using 21 markers that were not recovered in recurrent parental
genotypes. Four plants with an average genomic recovery of 74.12% were backcrossed to
generate the BC3F1 progeny. In the BC3F1 generation, 10 of the 300 plants were found to be
heterozygous for three targeted loci. A high marker density background assay revealed
that the genomic recovery of these 10 plants ranged from 78.10 to 86.67%, and these plants
were backcrossed to produce BC4F1. In BC4F1, we found that 10 of 154 plants were triple
heterozygous, and their background recovery ranged from 88.18 to 94.55% (Figure 5).
Four well-growing plants with high recovery were then self-pollinated to generate the
BC4F2 population. Ten homozygous BC4F2 plants for three target loci were propagated
for BC4F3. One best line with 95% recovery, namely, ‘552-39,’ was finally selected for the
phenotypic assay.
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Figure 5. Genomic background recovery rate of ten BC4F1 individual plants (D4–D98). Black bar
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3.5. Phenotypic Evaluation of a Pyramided Line

The clubroot-resistant parent CR BJN3-2, possessing the CRb gene, exhibited high
resistance to P. brassicae pathotype 4, and the negative control, BJN3-2, was susceptible.
The pyramided line 552-39 showed high resistance with a low disease incidence rate and
disease index value (Figure 6, Table 2).
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Table 2. Phenotypic investigation of clubroot resistance.

Material Level 0 Level 1 Level 2 Level 3 Disease
INCIDENCE (%)

Disease
Index (DI)

CR BJN3-2 30 3 6 5 31.8 23.5
BJN3-2 50 100 100
552-39 48 2 4 4

Note: The table shows the number of plants at different levels of clubroot disease.
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Ten homozygous pyramided plants were evaluated for multi-ventricular and self-
compatibility traits after two weeks of selfing. The 10 individuals were all multilocular, as
shown in Figure 7. The SCI for these 10 plants was greater than 1, which was expressed as
self-compatibility (Table 3).
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Table 3. Self-compatibility index (SCI) of the pyramided line 552-39 and two parental lines (CR
BJN3-2 and KYS).

Material SCI

CR BJN3-2 0.48 ± 0.02
KYS 1.37 ± 0.29

552-39 1.15 ± 0.18

Moreover, 50 improved pyramided plants of the 552-39 line were grown in the open
field together with recurrent parent CR BJN3-2. Agronomy-related traits were investigated
in their heading stage. The results showed that the pyramided line was not significantly
different from the recurrent parent in terms of heading-related and yield traits (Table 4).

Table 4. Agronomic trait evaluation of recurrent parent and pyramided line.

Agronomic Traits 552-39 CR BJN3-2

Plant height (cm) 35.3 ± 0.58 34.5 ± 4.95
Plant width (cm) 49.0 ± 7.00 48.0 ± 0.00
Plant weight (kg) 2.23 ± 0.29 2.17 ± 0.15

Number of outer leaves 25.7 ± 3.06 19.5 ± 2.12
Leaf length (cm) 32.0 ± 1.73 34.0 ± 2.12
Leaf width (cm) 19.8 ± 2.75 21.0 ± 0.00
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Table 4. Cont.

Agronomic Traits 552-39 CR BJN3-2

Petiole length (cm) 18.5 ± 1.00 17.8 ± 1.06
Petiole width (cm) 5.3 ± 0.58 5.5 ± 0.71

Petiole color Green Green
Head weight (kg) 1.16 ± 0.17 1.09 ± 0.08

Head shape Folded Folded
Head solidity Compaction Compaction

Head length (cm) 27.7 ± 2.84 23.9 ± 0.21
Head width (cm) 12.8 ± 2.47 10.7 ± 0.35

Head color Pale Yellow Pale Yellow
Stem length (cm) 2.83 ± 1.26 3.25 ± 0.35
Stem width (cm) 2.30 ± 0.75 2.90 ± 0.14

Significance level at p ≤ 0.05.

4. Discussion

The large number of gene/QTL mapping studies for diverse crops has provided an
abundance of molecular markers associated with traits [48]. The use of MAS combined
with the backcross strategy allows the introgression of multiple target genes into one elite
cultivar or line, which enhances the precision and efficiency of the breeding program.

Self-compatibility in B. rapa crops is a characteristic with a complex genetic mecha-
nism [49]. To improve this trait, conventional breeding is difficult and time-consuming. In
our study, a co-dominant marker combination Sal-SLGI/PK1+PK4 based on well-known
self-compatibility genes was developed and verified in the F2 population. It also showed a
better foreground selection efficiency in the pyramiding process.

Genetic analysis using segregation populations of CR BJN3-2 and KYS demonstrated
that the bilocular silique phenotype was dominant over the tetralocular phenotype, which
was coincident with previous studies [3,4]. We found that both trilocular and tetralocular
types appeared on a single plant in F2 individuals and backcross progeny, even though
their genotypes were the same as KYS detected by linkage marker Teo-1. Xu et al. [50]
reported that two independent recessive genes controlled the trait of a trilocular silique.
We predicted that other loci/genes probably control a trilocular silique or interact with the
major QTL tet-o for a multilocular silique in B. rapa. Therefore, we finally selected 552-39,
which had the highest tetralocular ratio, as the best pyramided line.

The recurrent parent CR BJN3-2, harboring the CRb gene, is resistant to P. brassica
pathotype 4 [29,44]. Phenotypic investigation showed that the pyramided line had strong
clubroot resistance, indicating the successful MAS strategy. Owing to the isolate-specific
association between CR genes and P. brassicae, multiple CR gene pyramiding challenged
us for resistant breeding. Shah et al. [37] combined CRb and PbBa8.1 genes and developed
a pyramided homozygous inbred line of B. napus that was resistant to various P. brassicae
isolates. In rice, many studies have focused on developing disease-resistant lines that
introgress multiple resistance genes [51,52]. Several studies found that pyramiding three
or more bacterial blight (BB) resistance genes exhibited higher resistance than the lines
with one or two genes [53,54]. The developed pyramided line, 553-39, could be used
as a recurrent parent for further gene pyramiding of other CR genes. Multiple CR gene
pyramiding would facilitate not only the creation of resistance resources but also CR gene
interaction studies in the future.

The percentages of recurrent parent genomes referring to %RPG in the backcross
population reflect the degree of recovery of the genetic material of a single plant to the
recurrent parent [55]. Many studies have shown that increasing the genomic distance
between background markers could improve the efficiency of foreground selection, thereby
reducing the population size required, but the reduction of marker density increased the
length of donor fragments, which was prone to linkage drag. Therefore, it is not possible to
rely solely on molecular markers for selection; foreground marker selection combined with
phenotype identification was necessary to achieve the desired goal.
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In our study, the background selection marker of the previous generation, which was
restored to the recurrent parent genotype, was not used in the next generation. Before
the BC2F1 generation, the average genetic background recovery rate of each generation
was significantly lower than the expected value of the genetic background recovery rate.
Although the BC4F1 generation recovered, it still did not meet the expected value. This
result was also found in previous gene pyramiding studies in other crops [54,56]. The
reduction in the recovery rate of the recurrent parent’s genomic background was influenced
by the backcross population size, linkage drag, number of background selection markers,
and purity of the recurrent parents [40,48].

In conclusion, we introgressed multilocular and self-compatibility trait in the back-
ground of CR BJN3-2, which carries the CRb gene to improve seed yield and clubroot
resistance. The improved pyramided line recovered the agro-morphological phenotype of
recurrent parents and could be released as a potential resource for Chinese cabbage breeding.

Supplementary Materials: The following supporting information can be downloaded at: https:
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