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Abstract: Zinnia elegans Jacq. is an ornamental plant, widely used in landscaping. Heavy-metal
pollution in urban and rural areas is still increasing, which determines the actuality of studying plants’
reactions to pollutants. Zinnia was not sufficiently studied in this regard, so the aim of our research
was to identify morphophysiological changes in this species under excess copper concentration
in the soil. For this, we treated a growth substrate with 200 µM CuSO4 solution for 20 days. At
the end of the treatment, several morphological, biochemical, and molecular genetic traits were
evaluated: the root and the shoot size; the concentration of H2O2 and malondialdehyde (MDA),
as indicators of stress; the amount of the phenolic compounds and lignin; and the level of the
expression of genes, which encoded their biosynthesis. The Cu amount in the substrate and zinnia
organs was quantified using atomic-absorption spectroscopy; hydrogen peroxide, MDA, and phenolic
compounds were determined spectrophotometrically, while the amount of lignin was determined
according to Klason. Real-time PCR was used for estimation of the gene-transcription level. Lignin
in tissues was visualized by fluorescent microscopy. In experimental plants, Cu accumulation was
higher in the root than in the stem. This caused an increase in stress markers and a decrease in the root
and stem lengths. For the first time for zinnia, it was shown that for several genes—4-coumarate-CoA
ligase (4CL), cinnamoyl alcohol dehydrogenase (CAD), and class III peroxidase (PRX)—the level
of expression increased under copper treatment. The rise of the transcripts’ amount of these genes
was accompanied by a thickening and lignification of the cell walls in the metaxylem vessels. Thus,
the adaptation of zinnia to the excess Cu in the growth medium was associated with the metabolic
changes in the phenylpropanoid pathway. As a result, the lignification increased in the root, which
led to the accumulation of Cu in this organ and limited its translocation through the xylem to the
stem, which provided plant growth.

Keywords: zinnia; redox-active metal; cell-wall lignification; phenolics; phenylpropanoid metabolic-
pathway genes; landscaping of urban areas

1. Introduction

Pollution of garden and agricultural lands with heavy metals (HMs), in particular
copper, is a common problem. The widely used fungicides and phosphate fertilizers can
be sources of excess copper in garden farms [1,2]. The high amount of this element (up to
2000 mg kg−1) in the soil of certain regions can also be a consequence of the mining and
processing of copper ore, as well as natural soil-forming processes [1–3].

Copper is one of the trace elements essential for plant life and plant growth;
4–15 mg kg−1 of copper in dry matter is considered sufficient for the synthesis of chloro-
phylls, cytochromes, nitrogen, carbon metabolism, respiration, and photosynthesis [1,3–5].
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In its ion form, copper is a part of the electron-transport-chain proteins in chloroplasts
and mitochondria as well as copper-containing enzymes (Cu/Zn-superoxide dismutase,
laccase, etc.) [4,5]. Copper is a redox active metal; its excess in plant tissues leads to the
development of oxidative stress, which manifests itself in the growth of the reactive oxygen
species and products of lipid peroxidation [4–6]. Copper toxicity is also associated with
the ability to bind the SH-groups of proteins, disrupting their conformation and loss of
functions [6]. Phenotypically, copper stress limits the growth of the root and aboveground
plant organs, causing browning of the root and chlorosis [3–6].

Plants have several protective mechanisms against the impact of HMs and copper in
particular, for example, chelation, sequestration in cell walls and vacuoles, deposition in
root tissues, limitation of translocation to the shoot, and activation of the non-enzymatic
and enzymatic systems of antioxidant defense [3–6]. These reactions are well-studied;
however, the data on plant tolerance to copper excess in specific taxa and horticultural
crops are limited. Plants that accumulate heavy-metal ions in aboveground organs are
promising for phytoremediation [7]. Those that keep heavy-metal ions in their roots could
be used for reclamation or re-cultivation of the disturbed territories.

For plants, growing in conditions contaminated by HMs, the root cell wall is the
first barrier preventing the penetration of ions into cells. It plays a key role in the absorp-
tion, immobilization, and translocation of heavy-metal ions [8,9]. The cell wall consists of
polysaccharides (cellulose, pectin, hemicellulose), phenolic compounds (lignin, suberin),
and proteins, the ratio of which may vary depending on the tissue type, ontogenetic state,
intensity, and duration of the stress factor [10,11]. Lignin defines the rigidity and hydropho-
bicity of cell walls, and it is also involved in the binding of copper ions by the carboxyl
and hydroxyl groups [9,10]. Increased lignification is suggested as a nonspecific reaction of
plants to the excess of HMs in the medium [8,9]. Lignin precursors, monolignols (coniferyl,
synapyl, p-coumaryl alcohols), are synthesized in the cytosol via the phenylpropanoid
pathway, then transported to the apoplast, where they are oxidized by class III peroxidases
(PRX, EC 1.11.1.7) and laccases (LAC, EC 1.10.3.2) with the formation of radicals. The
polymerization of lignin occurs according to the free-radical mechanism [12,13].

The first three reactions of the phenylpropanoid pathway are the sequential conversion
of phenylalanine to p-Coumaroyl-CoA [14,15]. Phenylalanine ammonium lyase (PAL, EC
4.3.1.24) deaminates phenylalanine to cinnamic acid. Then, cinnamate-4-hydroxylase (C4H,
EC 1.14.13.11) catalyzes the hydroxylation of cinnamic acid to p-coumaric acid. Moreover,
4-coumarate-CoA ligase (4CL, EC 6.2.1.12) catalyzes the formation of p-Coumaroyl-CoA,
which is a precursor of oxycinnamic alcohols, flavonoids, lignins, and isoflavonoids [14,15].
Further, cinnamoyl-CoA reductase (CCR, EC 1.2.1.44) synthesizes hydroxycinnamalde-
hydes from hydroxycinnamoyl-CoA, and then they are converted to cinnamyl alcohols
by cinnamoyl-alcohol dehydrogenase (CAD, EC 1.1.1.195), which are the precursors of
p-hydroxyphenyl (H)-, guaiacyl (G)-, and syringyl (S)-lignin monomers [14,15].

Zinnia elegans Jacq. is a model object for studying lignification as well as Arabidopsis
sp. and Populus sp. [14–16]. Zinnia is an annual, fast-growing plant with a long flowering
period (about 90 days). It is an ornamental, widely cultivated flower culture, used in
landscape design [17].

We suggest that under excess copper in the soil, zinnia like other plants will enhance
the lignification of the axial organs and, thereby, prevent the translocation of this element
from the root to the shoot, and allow the plant to form aboveground organs. The excess
deposition of lignin under copper stress could be associated with a modified expression
of the genes that are involved in phenylpropanoid metabolism and lignin synthesis. The
aim of our study was to identify the morphophysiological and biochemical changes in
zinnia plants, grown under conditions of excess copper in the substrate. For this purpose,
the anatomical and morphological characteristics of zinnia axial organs, the deposition of
lignin in cell walls, the level of stress markers, and some traits of the phenolics metabolism
in the control and experimental plants were evaluated.
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2. Materials and Methods
2.1. Plant-Growth Conditions

Zinnia (Zinnia elegans Jacq.) is an annual plant from the Asteraceae family, which
is often used for decoration of parks and gardens, but rarely studied in biochemical and
molecular genetic experiments.

Zinnia plants (cv. Rotkappchen) were cultivated on a pre-autoclaved substrate—a
mixture of soil (neutralized peat, pH 6.5, containing total nitrogen 1500 mg kg−1 per dry
weight (DW), phosphorus 2500 mg kg−1 per DW, and potassium 3000 mg kg−1 per DW)
and coco substrate (3:1, v/v) in 0.2 L vegetative vessels. An aqueous 200 µM CuSO4 solution
(30 mL) was added to the experimental plants every 5 days. Control plants were poured by
water. Plants were grown for 20 days under a 16 h (day):8 h (night) photoperiod; 23 ± 2 ◦C
temperature; and 65 ± 5% humidity.

The concentration of copper and the duration of the treatment were selected to avoid
acute toxicity and to assess the long-term response of plants to the stressor, according
to previous study—200 µM CuSO4 worsened seed germination and inhibited seedling
growth [18].

2.2. Quantification of Copper

The substrate, dried to a constant weight, was ground thoroughly and sieved to
remove large fragments (more than 2 mm); the total amount of copper was determined
by digesting 0.25 g soil with HNO3:HClO4:HF (5:1:1, v/v/v) on a hot plate, followed by
filtration through a Whatman filter No. 42. The extraction of mobile forms of copper ions
was carried out by treating the soil sample with 4 mM Na2EDTA in a ratio of 1:25 (w/v)
(shaken at 150 rpm for 24 h, pH 4.5); then the extract was acidified with 1% HNO3 [19]. The
amount of copper ions in the substrate was expressed in mg copper kg−1. The analysis was
performed in 5 independent replicates.

To determine the copper amount in the zinnia organs (µg g−1 DW), 50 mg of dried to
constant-weight biomass (separately root and stem) was ashed in HNO3. All measurements
were done using atomic-emission spectroscopy (ICP-AES, iCAP 6500 Duo, Thermo Fisher,
Waltham, MA, USA). The analysis was performed in 5 independent replicates, and each
replicate was formed from 3 plants.

The bioconcentration factor (BCF) was calculated as the ratio of the Cu concentration in
the organ (µg g−1 DW) to the amount of available Cu in the substrate (µg g−1), performed in
relative units. The translocation factor (TF) was determined as the ratio of Cu concentration
in the stem (µg g−1 DW) to its concentration in the root (µg g−1 DW).

2.3. Biochemical Characteristics

The H2O2 concentration was assessed in a crude extract of root and stem tissues
(0.1 M Tris-HCl buffer, pH 7.8) using a method based on the oxidation of xylenol orange
chelates with iron (III) by peroxide, according to Bellincampi et al. [20], and expressed in
µmol of hydrogen peroxide g−1 fresh weight (FW). The intensity of lipid peroxidation was
estimated spectrophotometrically as the production of malondialdehyde (MDA) in the
reaction with thiobarbituric acid and expressed in µmol MDA g−1 FW [21].

Phenolic compounds were extracted by 70% ethanol, and their concentration was
determined using the Folin–Ciocalteu reagent and performed in µg g−1 FW in terms of
gallic acid [22]. The content of Klason lignin (KL) and acid-soluble lignin (ASL) were
determined in the dry ground roots or stems by the sulfuric acid method [23] and expressed
in percentages (%). The optical density of the samples was measured on a Tecan Infinite
M200 Pro spectrophotometer (Tecan Austria GmbH, Grödig, Austria). The analysis was
performed in 3 biological and 15 analytical replicates.

2.4. Quantitative Real-Time PCR (qRT-PCR) Analysis

Total RNA was isolated using Trizol (TransGen Biotech, Beijing, China) [24]. The
concentration and the quality of the isolated RNA was assessed spectrophotometrically
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using a NanoDrop ND-1000 instrument (ThermoScientific, Waltham, MA, USA). In total,
100 ng of total RNA was used for each sample with Oligo(dT)23VN and Random Hexamer
primers to obtain the first strand of c-DNA, in accordance with the instructions of the
manufacturer (HiScriptII 1st standard cDNA synthesis kit, Vasyme, Nanjing, China). Gene
expression was assessed by qRT-PCR in a qTOWER 2.0 96-well optical amplifier (Ana-
lytikjena, Jena, Germany) using TransStrat® Tip Green qPCR SuperMix (TransGenBiotech,
Beijing, China, Cat#AQ141).

The forward and reverse primers for the reaction were selected using the Blast Primer
designee online program (www.ncbi.nlm.nih.gov/tools/primer-blast, accessed on 1 May
2022). Gene-specific primers are performed in Table 1. Amplification was carried out
under standard conditions (1 cycle: 30 s at 94 ◦C; 40 cycles: 5 s at 94 ◦C, 15 s at 60 ◦C, and
10 s at 72 ◦C; 5 s at 60 ◦C). The relative expression level was calculated using the 2−∆∆Ct

method [25]. The data were normalized to the gene encoding the 18S rRNA. The analysis
was performed in 3 biological and 3 analytical replicates.

Table 1. Forward and reverse primers for qRT-PCR.

Gene,
GenBank

Access No.
Forward Primer Sequence (5′ → 3′) Reverse Primer Sequence

(5′ → 3′)

PAL
FM879196 GTCACCAGGCGAAGAGTTTG CGGAACACCATCCCATCCTT

C4H
FM880082 GAACTTTGAGCTGTTGCCGC TGAAAAACCCACAAACAACAATCC

4CL
AU294519 ACGTCACCTTCCGTTACACC CGTCAGCGATTATCGACGGT

CCR
FM881365 CCTCGGCTTCTGGTCGATAC TGTATGGCTTTGCTCGTGGT

CAD
FM881026 CCGTAAACCATCCTCTTGCG CAAGCTTCCTCCCCACAATC

PRX
AB023959 TCGCAGCTTCAATGGTCAAAC TCTCTTCTTCTTTCATACTTCCCTT

LAC
AU286008 AATAAGGACGGGTTGGGCTG AGGGTAAGGGATACCACGCT

18S rRNA
AB089282 ATGTGGTAGCCGTTTCTCAGG TGCCCGTTGCTGCGAT

2.5. Biometric and Anatomical Analysis

At the end of experiment, 30 plants from each variant were used for the determination
of biometric characteristics. The length of the shoot and root were measured for each
plant. Then, the samples were oven-dried at 85 ◦C for 48 h, and the dry weight (DW)
was determined.

Plant axial organs (the root in the mature zone, the hypocotyl, and the first internode
above the cotyledons) were fixed in a mixture of ethyl alcohol and acetic acid (3:1, v/v) [26]
for the investigation of their anatomy. The fixation time was 48 h at 4 ◦C. Then, the plant
material was washed and stored in 96% ethanol. Cross sections of the axial organs were
made by hand using a razor and placed in glycerin. The transverse sections were visualized
on a wide-field microscope Leica DM5500 (“Leica Microsystem”, Wetzlar, Germany). Aut-
ofluorescence of lignin was detected with a standard GFP filter. The diameter of the root
and stem, the thickness of the cortex and stele, and the cross-sectional area and cell-wall
thickness of the metaxylem vessels were measured in cross-sectional photographs using
SIMAGIS® Meso-Plant™ software for Windows XP. The number of measurements was
50 for each characteristic.

www.ncbi.nlm.nih.gov/tools/primer-blast
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2.6. Statistical Analysis

The experiment was repeated three times. The data are presented as the arithmetic
mean and the standard error. Statistical data processing was carried out in the STATIS-
TICA 13 program for Windows 10 using Student’s t-test (p < 0.05), Mann–Whitney U-test
(p < 0.05), and Spearman’s r-test to calculate correlations (p < 0.01).

3. Results
3.1. Copper Amount

The amount of the available forms of copper in the substrate was estimated as 0.56%
of its total amount, in the case of treatment with 200 µM CuSO4 (Table 2). The total copper
amount increased by 21.6 times compared to the untreated substrate.

Table 2. Copper amount in substrate and zinnia organs; BCF and TF on the 20th day of growth.

Treatment
Copper Amount,

µg g−1 Dry Substrate
Copper Amount,

µg g−1 DW BCF
TF

Available Total Root Stem Root Stem

Control (water) n.d. 7.75 ± 0.65 9.80 ± 0.52 11.36 ± 0.70 n.d. n.d. 1.16 ± 0.07
200 µM CuSO4 1.12 ± 0.17 * 1 167.63 ± 1.87 * 26.32 ± 1.32 * 12.04 ± 0.69 23.5 ± 1.2 * 10.75 ± 0.65 * 0.46 ± 0.02 *

1 Result is presented as mean ± standard error (n = 5); n.d.—the copper amount below detection limit. Asterisks
represent significant differences (p < 0.05, U-test).

The strong accumulation of copper in the root and its weak redistribution into the
shoot were detected under the treatment with 200 µM CuSO4 (Table 2). In the roots of the
experimental plants, the copper amount increased by 168% in comparison with the control,
but in the stems it did not change. The BCF for copper was higher in the root than in the
stem (Table 2).

In untreated plants, the TF for copper was greater than one, i.e., the plants absorbed it
from the substrate and translocated it from the root to the shoot as an essential element.
In the case of the copper excess in the substrate, the TF was less than one, which proves
the barrier role of the root system in the long-distance transport and allows for classifying
zinnia as a copper-excluder plant (Table 2).

3.2. Concentration of Hydrogen Peroxide and MDA Products

The levels of lipid peroxidation (LPO) and hydrogen-peroxide concentration were
determined as the stress markers. In the case of substrate treatment by the copper solution,
the development of oxidative stress reached 120% compared to the control in the root and
150% in the stem (Table 3). There was a 5.4-fold increase in the H2O2 concentration in
the roots of treated plants and a 2.1-fold decrease in the stems, compared to untreated
plants (Table 3).

Table 3. The concentration of hydrogen peroxide and MDA in zinnia organs on the 20th day
of growth.

Treatment
H2O2, µmol g−1 FW MDA, µmol g−1 FW

Root Stem Root Stem

Control (water) 29.5 ± 3.6 1 120.5 ± 9.1 0.56 ± 0.03 0.31 ± 0.02
200 µM CuSO4 159.61 ± 5.88 * 61.50 ± 3.8 * 0.67 ± 0.02 * 0.48 ± 0.02 *

1 Result is presented as mean ± standard error (n = 15). Asterisks represent significant differences (p < 0.05, U-test)
from control.

3.3. Concentration of Phenolics and Lignin

A strong decrease (37.3%) in the phenolics amount was observed in the roots and in
the stems (19.6%), in the case of the soil treatment with 200 µM CuSO4, compared to the
control (Table 4).
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Table 4. The concentration of phenolic compounds and lignin (KL, ASL, and total lignin) in zinnia
organs on the 20th day of growth.

Treatment
Phenolics, mg g−1 FW KL, % ASL, % Total Lignin, %

Root Stem Root Stem Root Stem Root Stem

Control
(water) 0.43 ± 0.01 1 0.61 ± 0.03 9.29 ± 0.08 8.02 ± 0.44 4.90 ± 0.23 6.43 ± 0.11 14.19 ± 0.31 14.19 ± 0.31
200 µM
CuSO4

0.27 ± 0.01 * 0.50 ± 0.01 * 12.27 ± 0.20 * 10.58 ± 0.56 * 4.35 ± 0.42 4.47 ± 0.42 * 16.62 ± 0.76 * 15.05 ± 0.98

1 Result is presented as mean ± standard error (n = 15). Asterisks represent significant differences (p < 0.05, U-test)
from control.

A statistically significant increase in the KL quantity (Table 4) was found in the zinnia
organs, which contributed to the increase in the total lignin amount. Both in the root and
the stem, the KL content under the copper treatment increased, respectively, by 32.1% and
31.8% (Table 4).

The amount of ASL in the root of treated plants was the same as in the control
group of plants (Table 4). In the stem it significantly decreased by 30.5% compared to the
control (Table 4).

3.4. Expression of the Genes of Phenylpropanoid Metabolic Pathway and Lignin Biosynthesis

Under CuSO4 treatment, the relative number of transcripts of PAL and CCR genes decreased
in the root, and the expression of the C4H, 4CL, and CAD genes increased (Figure 1a).

The relative quantity of transcripts of the C4H and CCR gene in the stem did not differ
significantly both in the control and experimental plants, but transcripts of the PAL, 4CL,
and CAD increased in number compared to the untreated plants (Figure 1b).

The expression level of the genes involved in lignin biosynthesis has changed under
stress conditions. The relative number of transcripts of PRX gene increased by 1.8 times in
the root, and by 2.5 times in the stem, compared to the control. The expression level of the
LAC gene tended to decrease in both organs.
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3.5. Anatomical and Morphological Characteristics of Zinnia Plants

The shoot growth of zinnia plants delayed under the excess copper in the medium
(Figure 2a). The length of the main root decreased by 17.2% (Figure 2c), and the root
transection area increased by 31.0% (Table 5) compared to the control. The stem of treated
plants was shorter by 12.7% compared to the control (Figure 2c), and the hypocotyl and
stem diameter decreased by 8.6% and 22.9%, respectively (Table 5). The proportion of
the cortex in the transection area increased in the root, while in the hypocotyl and stem
it changed insignificantly compared to the control (Figure 2b). In response to copper
stress, the thickness of the metaxylem vessels cell walls increased by 7.2% in the mature
zone of the root compared to the control (Table 5). In the hypocotyl and internodes, this
characteristic did not change. The cross-sectional area of the metaxylem vessels decreased
by 12.2% in the root, 18.6% in the hypocotyl, and 28.9% in the stem compared to the control
(Table 5, Figure 3).

Table 5. Anatomy characteristics of zinnia organs on the 20th day of growth.

Treatment

Cross-Sectional Diameter of
Organ, mm Metaxylem Cell-Wall Thickness, µm Cross-Sectional Area of Metaxylem Vessels, µm2

Root Hypocotyl
Stem
(1st

Internode)
Root Hypocotyl

Stem
(1st

Internode)
Root Hypocotyl

Stem
(1st

Internode)

Control
(water) 1.74 ± 0.06 1 2.44 ± 0.05 2.57 ± 0.08 2.90 ± 0.06 2.62 ± 0.05 2.94 ± 0.08 51.34 ± 1.43 42.19 ± 2.17 42.97 ± 1.59
200 µM
CuSO4

2.24 ± 0.06 * 2.23 ± 0.05 * 1.98 ± 0.13 * 3.11 ± 0.06 * 2.60 ± 0.06 2.90 ± 0.07 45.06 ± 1.88 * 34.35 ± 1.41 * 30.55 ± 0.59 *

1 Result is presented as mean ± standard error (n = 50). Asterisks represent significant differences (p < 0.05, t-test)
from control.
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4. Discussion

Copper as both an essential element and a heavy metal revealed a complicated action
on plants. In our study, the treatment of the growth substrate with 200 µM CuSO4 led to an
increase in the available copper forms and its total amount. Since copper is a redox active
metal, it induced oxidative stress through Fenton and Haber–Weiss reactions [2,3], which
manifested in an increase in the levels of LPO and hydrogen peroxide (Table S1), more
significant in the roots of zinnia than in the shoots, which was also shown in other species,
for example, Helianthus annuus L. [5], Salvinia auriculata Aubl. [27], Oryza sativa L. [28],
etc. The development of stress is also evidenced by the suppression of zinnia growth,
which is a typical response to copper stress [5,27,29,30]. At the same time, leaf chlorosis
did not appear in our experiment, as was shown in [2,5,6], which was probably due to a
slight increase in the copper concentration in the shoots. The roots contacted directly with
copper ions in the substrate; therefore, the toxic effects of HMs were more pronounced
in them than in the above-ground organs. The root accumulated a greater amount of
copper compared to the stem, thereby performing a barrier function. The same results were
obtained on Arabidopsis thaliana L. and Oreganum vulgare L., treated with copper [29,30]. The
translocation factor for copper was less than one, which makes it possible to attribute zinnia
to copper excluders. The reason for the limitation of copper translocation from the root to
the shoot could be increased root lignification. The deposition of lignin into the cell walls
could be considered as a protective mechanism, which was enhanced by the production
of hydrogen peroxide under excess copper in plant tissues [8,9]. Increased lignification of
cell walls is a nonspecific plant response to HMs. Cu stimulated lignin biosynthesis in the
roots of many plants: A. thaliana [29], Raphanus sativus L. [31], Glycine max L. [32], Panax
ginseng C.A. Meyer [4], etc. Some authors also noted the higher level of lignification in the
roots of plant varieties sensitive to copper. It is known that lignin amount and composition
can change under different kinds of stress. In our experiment, both in the root and in the
stem the amount of KL increased, while ASL did not change in the root, it decreased in the
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stem in experimental plants compared to the control. KL is based on H-, S-, and G-units of
lignin, while S-units predominate in ASL [33], so our results demonstrate the qualitative
changes in lignin under copper stress.

Phenolic compounds are known as the precursors of lignin biosynthesis and as antiox-
idants, which may be involved in the quenching of reactive oxygen species (ROS) [27,34].
In our study, the increase in the copper amount in the zinnia root was accompanied by a
decrease in the amount of phenolics (Table S1), that could be explained by their use for
lignin synthesis and ROS deactivation [27,35], which led to a decrease in their detectable
amount. The drop of phenolics was shown in response to both short-term treatment with
0.01–10 mM copper ions [27] in S. auriculata and two-week treatment in Lycopersicon escu-
lentum L., in the case of with 10 ppm, 20 ppm, and 50 ppm of Cu [34]. The changes in lignin
were the result of a complex and time-coordinated regulation of the phenylpropanoid-
pathway enzymes. We have found changes in 4CL and CAD transcription in the root as well
as in 4CL, CAD, and PAL in the stem, in treated plants compared to the control. Therefore,
the 4CL gene is responsible for the synthesis of G-units [36] and KL (Table S1). Our data on
the increase in KL content in zinnia root in response to copper stress are likely due to this
fact. An increase in the number of transcripts of the 4CL, CAD, and PAL genes was also
shown in response to Al stress in Oryza sativa L. [37] and in Gossypium hirsutum L. under
Cd stress [38].

At the final stages of lignin formation, its composition and amount depend on the
activity of the III class peroxidases and laccases. It was shown that under both normal and
stress conditions, lignin biosynthesis was stimulated by an increase in the activity of class
III peroxidases, which use hydrogen peroxide as an electron acceptor and phenolics as a
substrate [11–13]. In A. thaliana, the level of AtPRX62 gene transcripts in roots increased
under the treatment with Cd2+ [39]. The induction of PRX7 and PRX8 gene expression
was observed in the roots of Hordeum vulgare L., in response to 1 mM Cu2+. The excess
transcription of these genes led to the inhibition of growth [40]. The POD gene, encoding
anionic peroxidase, which is involved in lignification, increased in Paeonia ostii T. Hong
and J.X. Zhang plants, cultivated with high Cu2+ concentrations [41]. In our study, the
enhanced expression of the zinnia PRX gene under copper stress was also shown. It was
shown that promoters of many genes contain cis-regulatory elements, which are associated
with transcription factors, the work of which is modified by the H2O2 generated during the
stress caused by HMs [42,43].

When plants are exposed to metal stress, the biosynthesis of phenylpropanoids and
lignin is activated, resulting in thickening of the cell walls [9,44]. In zinnia root, we also
found an increase in the cell walls’ thickness in the metaxylem vessels under copper stress;
in the stem, it did not change. The thickening of cell walls and their lignification could
provide the deposition of copper ions in the apoplast, limiting its translocation to the
shoot [29,40].

Cell walls and root diameter both increased, and the root length decreased in the exper-
imental zinnia plants treated with copper. The same effects were shown in A. thaliana [29]
and O. vulgare [30]. The root cortex also thickened under stress. In maize treated with Cd,
the same changes were shown [45]. The increase in cortical cell sizes led to the deposition
of heavy-metal ions in vacuoles, limiting their entry into the stele [44,45]. Stress from
HMs affected water uptake from the soil and, in turn, reduced the root water content [46].
Increased lignification can also limit the apoplast transport of water and minerals and cause
their loading into the symplast [10,11,46]. Probably, the violation of mineral nutrition [47],
the water regime [46], and the development of oxidative stress led to disorders in the
development of vascular tissues in the zinnia stem, therefore, the number of xylem vessels
in the vascular bundle decreased compared to the untreated plants. As a result, the radial
growth of the hypocotyl and zinnia stem was limited.
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5. Conclusions

Like most cultivated plants, zinnia could survive under excess of heavy metals, copper
in particular, in the soil. One of the mechanisms that provide its tolerance to the moderate
CuSO4 concentration is the increased lignification of axial organs. For the first time for
zinnia, it was shown that this process is associated with the enhanced expression of several
phenylpropanoid metabolic-pathway genes (4CL, CAD) and the PRX gene that participates
in lignin biosynthesis. Another mechanism of zinnia adaptation to excess copper is the
increase in the transcript amount of PAL, 4CL, and CAD genes that provide biosynthesis of
phenolics, involved in the quenching of the reactive oxygen species in stress conditions.
These changes allow zinnia to tolerate moderate copper stress.

Zinnia is an ornamental plant, characterized by rapid growth and abundant flowering.
This species could be recommended for the reclamation of contamination by copper urban
and industrial areas. The use of flowering plants will also increase the aesthetic value of
the disturbed territories.

Supplementary Materials: The following supporting information is available online at https://
www.mdpi.com/article/10.3390/horticulturae8060558/s1. Table S1: Spearman’s rank correlation
coefficients between copper amount, biochemical traits, and relative gene expression.
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