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Abstract: Accurate surface defect extraction of apples is critical for their quality inspection and
marketing purposes. Using multi-band images, this study proposes a detection method for apple
surface defects with a combination of machine vision and deep learning. Five single bands, 460, 522,
660, 762, and 842 nm, were selected within the visible and near-infrared. By using a near-infrared
industrial camera with optical filters, five single-band images of an apple could be obtained. To
achieve higher accuracy of defect extraction, an improved U-Net was designed based on the original
U-Net network structure. More specially, the partial original convolutions were replaced by dilated
convolutions with different dilated rates, and an attention mechanism was added. The loss function
was also redesigned during the training process. Then the traditional algorithm, the trained U-Net
and the trained improved U-Net were used to extract defects of apples in the test set. Following
that, the performances of the three methods were compared with that of the manual extraction. The
results show that the near-infrared band is better than the visible band for defects with insignificant
features. Additionally, the improved U-Net is better than the U-Net and the traditional algorithm
for small defects and defects with irregular edges. On the test set, for single-band images at 762 nm,
the improved U-Net had the best defect extraction with an mIoU (mean intersection over union) and
mF1-score of 91% and 95%, respectively.

Keywords: multi-band images; apple surface defect; defect extraction; U-Net

1. Introduction

Benefiting from their rich nutritious and sweet taste, apples have been one of the
most popular fruits. However, during the process of growing, picking, transporting, and
storing apples, defects and damages inevitably occur, which will affect their taste and price.
Therefore, the detection of surface defects on apples before picking and marketing is quite
important for the implementation of apple grading and automatic sorting. Fortunately,
there are usually differences in characteristics such as color and texture, between normal and
defective areas on the surface of fruits and vegetables. In recent years, many researchers
have achieved good results in defect detection of fruits and vegetables such as apples,
mangoes, tomatoes and carrots, based on machine vision [1–8]. Wang et al. designed
a region of interest extraction algorithm based on background separation, brightness
correction, and global threshold segmentation. It can extract the rot and bruise of the apple
under inhomogeneous light [9]. Zhang et al. used an area brightness adaptive correction
algorithm to correct the brightness for eight common navel orange surface defect images.
The eight defects included ulcer, thrips, moth, insect injury, black star, wind injury, anthrax,
and laceration. Then the single-threshold segmentation was used to extract surface defects
from the brightness-corrected navel orange images, and the overall defect recognition

Horticulturae 2022, 8, 666. https://doi.org/10.3390/horticulturae8070666 https://www.mdpi.com/journal/horticulturae

https://doi.org/10.3390/horticulturae8070666
https://doi.org/10.3390/horticulturae8070666
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/horticulturae
https://www.mdpi.com
https://orcid.org/0000-0001-7852-6721
https://orcid.org/0000-0003-1275-5171
https://orcid.org/0000-0001-7900-0422
https://doi.org/10.3390/horticulturae8070666
https://www.mdpi.com/journal/horticulturae
https://www.mdpi.com/article/10.3390/horticulturae8070666?type=check_update&version=2


Horticulturae 2022, 8, 666 2 of 16

rate reached 95.8% [10]. Dian et al. used a sliding comparison window segmentation
algorithm for surface defect segmentation of preprocessed orange images. The algorithm
can successfully segment various types of surface defects, such as insect damage, wind
scars, and thrips scars. The correct rate reached 97% on 1191 test images [11]. The above
algorithms preprocessed RGB images with background removal, median filtering, image
enhancement, brightness correction, and so on. Then the segmentation algorithms are
used to extract the defects from the pre-processed images. The extraction accuracy of some
defects with obvious features was improved, but the extraction effect was not satisfactory
for defects with insignificant features, small areas and irregular edges.

Machine learning builds models based on large amounts of data and achieves the
desired results by training the models. These models are widely applied to tasks, such as
classification and regression. Machine learning can achieve segmentation by classifying
pixels in normal and defective regions. Therefore, to further improve the accuracy of defect
extraction, some machine learning methods have been applied to the field of fruit defect
extraction. Habib et al. used the k-mean clustering algorithm to segment defective regions
from the captured images and classified the segmented defects with an accuracy of 90% [12].
Kumari et al. used an improved k-mean clustering algorithm for the segmentation of mango
surface defects to improve the accuracy of segmentation [13]. Fan et al. used a CNN-based
model to classify the pixels of an image to segment apple surface defects [14].

With the development of hyperspectral imaging technology, machine vision is no
longer limited to visible wavelengths. A hyperspectral image is a three-dimensional block of
data that combines image information and spectral information. The wider band combined
with the image processing technology makes it good at extracting some minor surface
defects with unobvious features. Additionally, the spectral information can detect the
internal quality of the fruit. Therefore, hyperspectral imaging technology has great potential
for development in the field of fruit non-destructive detection. Yu et al. used hyperspectral
imaging technology to achieve rapid nondestructive detection and identification of external
defects in Nanguo pears [15]. Nader et al. detected internal and external defects of apples
due to pests based on hyperspectral images in the wavelength range of 900–1700 nm. Then
machine learning was used to build a high-precision classification model with an overall
accuracy of 97.4% in the validation set [16]. However, the huge amount of information
made the processing of hyperspectral images inefficient. Therefore, many researchers
chose different characteristic wavelengths for different purposes. Then they used feature
wavelengths images instead of full wavelengths images to detect the defects of fruits.
Zhang et al. selected two characteristic wavelengths, 680 and 715 nm, from all bands of
hyperspectral images. Following that, the second principal component image and the ratio
image based on two feature wavelengths were combined with the threshold segmentation
method to extract the orange surface defects [17]. Pham and Liou selected 14 characteristic
wavelength images from the hyperspectral images, and the support vector machine (SVM)
and artificial neural network (ANN) were used to classify the surface defects of dates with
an accuracy of about 95% [18]. Li et al. selected seven characteristic wavelengths from 500
to 1050 nm, and an improved watershed segmentation algorithm was used to segment
the orange surface decay defects based on these seven feature wavelength images [19].
These characteristic wavelength images could also be obtained using multispectral sensors.
Abdelsalam and Sayed obtained RGB-NIR images with seven different color components
using a multispectral image sensor. Additionally, the adaptive threshold segmentation
method was used to segment orange surface defects [20].

The combination of machine vision and image processing technology achieves the
non-destructive detection of fruit and vegetable quality. Compared with traditional manual
detection, the efficiency and accuracy are improved. However, the traditional machine
vision technology is limited to visible bands, and the accuracy of extraction is not satisfac-
tory for defects with unobvious features. Meanwhile, the traditional image segmentation
algorithm is simple to implement, but the accuracy of extraction is not good for defects
with small areas and irregular edges. The emergence of hyperspectral imaging technology
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expands the band of traditional machine vision. However, the disadvantages of this tech-
nology, such as expensive equipment, slow imaging speed and low processing efficiency
due to redundant data, make it impossible to be applied to the online detection of fruit
and vegetable quality. In this study, single-band images of specific wavelengths were
acquired by using a near-infrared industrial camera with optical filters. It could simulate
the single-band images obtained by selecting the feature band of hyperspectral images.
Compared with hyperspectral images which contain hundreds of bands, the problem of
redundant data was avoided by only obtaining feature bands images. At the same time,
the cost of the equipment was lower. According to the characteristic of the dataset, the
deep learning network was improved. The combination of muti-band images and modified
network improved the extraction accuracy of defects with unobvious features, small areas,
and irregular edges.

2. Materials and Methods
2.1. Multi-Band Image Acquisition System

The multi-band image acquisition system consisted of a near-infrared industrial cam-
era (MER-530-20GM-P NIR, DAHENG Imaging, Beijing, China), a C-mount lens, optical fil-
ters (produced by Shanghai Zhaojiu Photoelectric Technology Company, Shanghai, China),
a ring light source with adjustable light intensity, apples, and a computer, as shown in
Figure 1. The wavelength of the camera was from 300 to 1100 nm, resulting in a spectrum
range of 800 nm. Five types of narrow-bandpass filters in the visible and near-infrared
range were selected by combining the characteristic wavelengths selected based on hyper-
spectral images and the actual purchase of filters [17–19]. The detailed parameters of the
optical filter are as follows. The central wavelength is the wavelength corresponding to
the peak transmittance in the passband range. The bandwidth is the length of the interval
within which the light is allowed to pass, and it also determines the sampling bandwidth
of the multi-band image acquisition system. The peak transmittance is the maximum
amount of light remaining after passing the optical filter. The OD is the transmittance
of the resistive band. The start-to-end range is an interval whose length is equal to the
sum of the passband and the resistive band. In this study, the specific parameters of the
optical filter are shown in Table 1. The apples were purchased from Nangang District,
Harbin, Heilongjiang Province, and the variety was Guoguang. By adding optical filters to
a near-infrared industrial camera, five single-band images could be captured for an apple.
Single-band images of the apple are shown in Figure 2.
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Table 1. Parameters of the filters.

Central Wavelength (nm) Bandwidth (nm) Peak Transmittance (%) OD Start-to-End Range (nm)

460 10 60 OD4 1 200–1200
522 10 80 OD5 2 200–800
660 12 65 OD4 200–1200
762 10 65 OD5 200–1200
842 10 70 OD5 200–1200

1 OD4 represents a transmittance of 0.01% in the resistive band. 2 OD5 represents a transmittance of 0.001% in the
resistive band.
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Figure 2. The apple single-band images. (a) 460 nm (b) 522 nm (c) 660 nm (d) 762 nm (e) 842 nm.

2.2. Dataset

The images of apples with defects were acquired through the multi-bands images
acquisition system and received their labels using the Labelme software. Some of the
images with their corresponding labels are shown in Figure 3. The dataset contains 110
apples divided into a train set and a test set in the ratio of 8:2. To make the model better
for generalization, data enhancement was performed on the train set images. In this study,
three data enhancement methods were used, which contained brightness enhancement, flip,
and angle rotation. More specifically, the brightness was enhanced 1.5 times, horizontal flip
and the angle rotated counterclockwise at 20 degrees. The enhanced results of a 460 nm
single-band image are shown in Figure 4.
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In this study, there are five labels for one apple. When using the Labelme software to
make labels for an apple, the five labels of an apple will be a little different. Therefore, the
following operations were made in this study. First of all, for the five labels of an apple, the
number of pixels in the defective area was counted, and the percentage of the whole image
was calculated. Comparing the five single-band images, it was found that the apple surface
defects were clearest, and the surface textural features were weakened at 762 nm. The label
of it was closest to the real situation. Finally, each apple was based on the percentage of
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pixels in the defective region of the single-band image at 762 nm. If the percentage of pixels
in the defective region of the remaining four bands increased or decreased by more than
5% of the benchmark, this apple was rejected as an abnormal sample.
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2.3. Methods of Defect Extraction

Defect extraction can be achieved by image segmentation algorithms. To effectively
extract the defective areas, pre-processing of the images is usually required before using
image segmentation algorithms to extract the defects [9–11]. The pre-processing operations
commonly include background removal, median filtering, image enhancement, brightness
correction, and so on. Therefore, the traditional algorithm extracts the fruit surface defects
by combining image pre-processing operations and image segmentation algorithms. In
this study, the pre-processing operations used included background removal, brightness
correction, and median filtering; then global threshold segmentation was used to extract
the defects [9]. The overall process of the traditional algorithm is shown in Figure 5 and
achieved by using Python 3.9 and OpenCV 4.5.1.

The image segmentation algorithms, such as threshold segmentation and watershed
segmentation, are simple to implement and have high segmentation accuracy for some
defects with obvious features and large areas. However, for small defects with insignificant
features, even if a series of image pre-processing operations are performed before segmen-
tation, the final defect extraction effect is still unsatisfactory. With the development of deep
learning, some models for semantic segmentation have also been widely used in the field
of fruit defect detection [21–23]. These models can automatically extract image features
and perform end-to-end classification learning. As a result, a higher accuracy of defect
extraction can be achieved.

The U-Net, proposed in 2015, is an FCN-based convolutional neural network for
medical image segmentation [24,25]. The dataset used for medical image segmentation has
the characteristics of a small number and small area to be segmented. The dataset used in
this study has similar characteristics, therefore, the U-Net was chosen to extract the surface
defects of apples. The structure of the U-Net is shown in Figure 6.

The image segmentation algorithms, such as threshold segmentation and watershed
segmentation, are simple to implement and have high segmentation accuracy for some
defects with obvious features and large areas. However, for small defects with insignificant
features, even if a series of image pre-processing operations are performed before segmen-
tation, the final defect extraction effect is still unsatisfactory. With the development of deep
learning, some models for semantic segmentation have also been widely used in the field
of fruit defect detection [21–23]. These models can automatically extract image features
and perform end-to-end classification learning. As a result, a higher accuracy of defect
extraction can be achieved.

The U-Net, proposed in 2015, is an FCN-based convolutional neural network for
medical image segmentation [24,25]. The dataset used for medical image segmentation has
the characteristics of a small number and small area to be segmented. The dataset used in
this study has similar characteristics, therefore, the U-Net was chosen to extract the surface
defects of apples. The structure of the U-Net is shown in Figure 6.



Horticulturae 2022, 8, 666 6 of 16Horticulturae 2022, 8, x FOR PEER REVIEW 6 of 17 
 

 

Hole filling

Background 
separation template

Original single-band 
image

Otsu threshold 
segmentation

Single-band image with 
background removed

Apple image 
acquisition

Brightness 
correction

Median filtering

Global threshold 
segmentation

Morphological 
operation

Defective 
areas

Start

End

Background 
removal

Multiply

 
Figure 5. Flow chart of the traditional algorithm. 

The image segmentation algorithms, such as threshold segmentation and watershed 
segmentation, are simple to implement and have high segmentation accuracy for some 
defects with obvious features and large areas. However, for small defects with 
insignificant features, even if a series of image pre-processing operations are performed 
before segmentation, the final defect extraction effect is still unsatisfactory. With the 
development of deep learning, some models for semantic segmentation have also been 
widely used in the field of fruit defect detection [21–23]. These models can automatically 
extract image features and perform end-to-end classification learning. As a result, a higher 
accuracy of defect extraction can be achieved. 

The U-Net, proposed in 2015, is an FCN-based convolutional neural network for 
medical image segmentation [24,25]. The dataset used for medical image segmentation 
has the characteristics of a small number and small area to be segmented. The dataset used 
in this study has similar characteristics, therefore, the U-Net was chosen to extract the 
surface defects of apples. The structure of the U-Net is shown in Figure 6. 

Figure 5. Flow chart of the traditional algorithm.
Horticulturae 2022, 8, x FOR PEER REVIEW 7 of 17 
 

 

3 x 3. Conv, ReLU
2 x 2. Max Pool

2 x 2. Up-Conv

Copy and crop

1 x 1. Conv

1 64 64

128 128

256 256

512 512

1024

1024 512

512 256

  256  128

128 64 64 1

 
Figure 6. Structure of the U-Net. 

The U-Net network structure is divided into a down-sampling feature extraction part 
and an up-sampling prediction part. The combination of these two parts forms a U-shaped 
network structure. The down-sampling feature extraction path follows the typical 
structure of a convolutional neural network. It contains multiple double convolution 
layers and multiple pooling layers. More specifically, two 3 × 3 convolutions are 
repeatedly applied, and each convolution is followed by a rectified linear unit (ReLU). 
Then a 2 × 2 max pooling operation is used for down-sampling. The number of feature 
channels will be doubled during down-sampling by the U-Net. The up-sampling 
prediction path includes multiple copy and crop, multiple double convolution layers, and 
multiple up-convolution layers. Two 3 × 3 convolutions are the same as the down-
sampling feature extraction path. Additionally, the 2 × 2 up-convolution is used to halve 
the number of feature channels. In the last layer, a 1 × 1 convolution is used to map each 
64-component feature vector to the desired number of classes. 

2.4.Improved U-Net 
In the down-sampling feature extraction path, the original U-Net uses multiple 

ordinary convolutional layers in succession to extract image features. However, the 
sensory field of ordinary convolutional kernels is small, so it cannot acquire rich 
contextual information. In the up-sampling prediction path, the shallow feature map is 
directly stitched with the deep feature map through skip and connection. The feature 
maps are obtained by down-sampling and up-sampling. However, this study mainly 
extracted the surface defects of apples, some of which are characterized by inconspicuous 
features and small areas. When the U-Net is used to segment such defects, there are 
unexpected cases, such as unsegmentable, mis-segmented, and incomplete segmentation. 
To solve such problems and improve the accuracy of segmentation, this study attempted 
to make some improvements to the original U-Net network structure. Some ordinary 
convolutions were replaced by dilated convolutions with different dilated rates [26,27]. 
Besides, the attention module was added to the up-sampling prediction path [28–30]. 

2.4.1. Dilated Convolution 

Figure 6. Structure of the U-Net.

2.4. Improved U-Net

In the down-sampling feature extraction path, the original U-Net uses multiple ordi-
nary convolutional layers in succession to extract image features. However, the sensory
field of ordinary convolutional kernels is small, so it cannot acquire rich contextual infor-
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mation. In the up-sampling prediction path, the shallow feature map is directly stitched
with the deep feature map through skip and connection. The feature maps are obtained
by down-sampling and up-sampling. However, this study mainly extracted the surface
defects of apples, some of which are characterized by inconspicuous features and small
areas. When the U-Net is used to segment such defects, there are unexpected cases, such as
unsegmentable, mis-segmented, and incomplete segmentation. To solve such problems and
improve the accuracy of segmentation, this study attempted to make some improvements
to the original U-Net network structure. Some ordinary convolutions were replaced by
dilated convolutions with different dilated rates [26,27]. Besides, the attention module was
added to the up-sampling prediction path [28–30].

2.4.1. Dilated Convolution

Dilated convolution was proposed in 2016 [31]. It is widely used in semantic seg-
mentation and target detection. Without changing the size of the convolutional kernel
and increasing the computational complexity, dilated convolution can expand the recep-
tive field of the convolutional kernel to capture more contextual information. Therefore,
the dilated convolution can extract more abstract features to obtain higher accuracy of
defect segmentation. The basic dilated convolution is shown in Figure 7a, the size of the
convolutional kernel is 3 × 3, and the dilated rate is 1.
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Supposing that the dilated rate is r, the size of the convolutional kernel is N, and the
receptive field Rk can be as shown in Equation (1):

Rk = N + (N − 1)(r− 1) (1)

In this study, 3 × 3 convolutions with dilated rates r of 1, 2, 4, and 6 were used, and
their receptive fields Rk were 3, 5, 9, and 13, respectively. The dilated convolution with the
dilated rate r = 2 is shown in Figure 7b.

2.4.2. Attention Gate

In the case of limited computational power, the attention mechanism can be an effec-
tive solution to the problem of information overload. It has a significant ability to focus on
feature information [32]. The attention mechanism selects the correct feature information
and feeds it into the subsequent neural network for computation. Therefore, it can be ap-
plied in semantic segmentation to effectively improve the accuracy of image segmentation.
To improve the generalized ability of the network and reduce the pseudo-segmentation
phenomenon, attention gates were added to the up-sampling prediction paths on the U-Net,
and batch normalization was applied to the whole network. The structure of the attention
gate used in this study is shown in Figure 8.
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Figure 8. The structure diagram of the Attention Gate.

By giving an l-th layer feature map xl, the region of interest is selected from a feature
map by using the gated signal vector gi for each pixel i. Additionally, α is the attention
factor, ranging from 0 to 1. It is used to suppress useless feature information. As shown in
Equation (2), the output of the attention gate xout is the dot product of the feature map xl
and the attention factor α.

xout = xl · α (2)

The attention factor α is shown in Equation (3):

α = σ2

(
ϕT
(

σ1

(
WT

x xl + WT
g g + bg

))
+ bϕ

)
(3)

where T is the transpose; σ1 is the ReLU function, σ1(r) = max (0, r); σ2 is the sigmoid
function, σ2(r) = 1/(1 + e−r); Wx, Wg, and ϕ are linear transformations, achieved by
1 × 1 × 1 convolution of the input signal; and bg and bϕ are biases.

2.4.3. U-Net Combining Dilated Convolutions and Attention Gates

The down-sampling feature extraction path consists of eight 3 × 3 convolutional
layers and four maximum pooling layers with a step size of 2. At the deeper convolutional
layers, a dilated convolution with a larger dilated rate is used. The up-sampling prediction
path consists of eight 3 × 3 convolutional layers and four 2 × 2 up-convolutions. The
dilated convolutions with different dilated rates are used in different convolutional layers
again. Four attention gates are added, and through skip and connection, the output of the
attention gate is stitched with the deep feature maps obtained by up-sampling. Finally, the
final segmentation map is obtained by a 1 × 1 convolutional operation. The structure of
the improved U-Net is shown in Figure 9.

2.5. Loss Function

The training process is the backpropagation of loss values which are calculated by the
loss function. Then the parameters of the network are continuously updated. After several
rounds of training, the loss value keeps decreasing, the loss curve tends to converge, and
the model achieves the best results. Therefore, the final achieved effect of the model varies
with the choice of different loss functions. According to the characteristics of the region to
be segmented in this study, the loss function was redesigned when training the improved
U-Net. The loss function is a compound loss function, consisting of a weighted binary
cross-entropy loss function and a boundary loss function.

Cross-entropy loss is a region-based loss function. It evaluates the predictions for each
pixel’s category and then averages the losses over all pixels. Thus, the cross-entropy loss
function learns equally for each pixel in the image. If the distribution of each class in the
image is unbalanced, this may lead to the dominance of the class with a high number of
pixels during the process of the training model. The model will primarily learn the features
of the class with a large number of pixels, and the trained model will be more biased to
predict each pixel of the images as that class.
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2.5.1. Weighted Binary Cross-Entropy Loss

The number of pixels in the defective region and the number of pixels in the non-
defective region are counted for all apple images in the train set. The ratio is 1:32 on
average, with a positive and negative sample imbalance problem. Therefore, a weighted
binary cross-entropy loss function was used. It weights the positive samples and makes the
model focus on learning the features of the defective regions during the training process.
The weighted cross-entropy loss function is shown in Equations (4) and (5):

LR = −wn,c(pc · yn,c · log σ(xn,c) + (1− yn,c) · log(1− σ(xn,c))) (4)

pc =
Nneg

Npos
(5)

where, xn,c is the output of the network; yn,c is the true value; σ is the sigmoid function, σ =
1/(1 + e−r); Nneg is the number of pixels in non-defective areas; and Npos is the number of
pixels in defective areas.

2.5.2. Boundary Loss

To improve the accuracy of edge segmentation, a boundary-based loss function was
introduced [33]. The boundary loss function uses the imbalance integral on the boundary
between regions. It can be measured by Dist (∂G, ∂S). Dist (∂G, ∂S) is used to measure the
distance between the true boundary ∂G and the predicted boundary of the network ∂S. Dist
(∂G, ∂S) is shown in Figure 10 and Equation (6):

Dist(∂G, ∂S) =
∫

∂G

‖y∂S(p)− p‖
2
dp (6)
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where ∂G is the real boundary; ∂S is the predicted boundary of the network; p is the point
on ∂G; y∂S(p) is the intersection between the point p and the boundary ∂S in the vertical
direction; and ‖·‖ is the L2 paradigm.
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Figure 10. Schematic of the boundary integral of Dist (∂G, ∂S).

The above boundary integral can be transformed into a region integral as shown in
Figure 11, and Equations (7) and (8):

Dist(∂G, ∂S) ≈ 2 ·
∫

∆S

DG(q)dq (7)

DG(q) = ‖q− z∂G(q)‖ (8)

where ∆S is the region between ∂G and ∂S, and DG(q) is a distance map with respect to the
boundary ∂G, it measures the distance between a point q in the region ∆S and the nearest
point z∂G(q) on the boundary ∂G.
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The final boundary loss function can be shown in Equations (9)–(11):

LB(q) =
∫
γ

φG(q)Sθ(q)dq (9)

φG(q) =
{
−DG(q) q ∈ G
DG(q) otherwise

(10)

Sθ(q) = s(q)− g(q) =
{
−1 q ∈ G
1 otherwise

(11)

where γ represents the region between the true boundary ∂G and the predicted boundary
of the network ∂S.
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2.5.3. Compound Loss Function

The final loss function is determined as a compound loss function when training the
improved U-Net, as shown in Equation (12).

Loss = αLR + (1− α)LB (12)

The initial value of α is 1; the composite loss function is dominated by a weighted
binary cross-entropy loss function. In the early stage of training, the network can locate
the location of the defect and segment the approximate outline of the defect. As training
progresses, α decreases gradually, and the composite loss function is dominated by a
boundary loss function. In the middle and late stages of training, the network starts to focus
on the segmentation of defective edges. The accuracy of segment defects with irregular
edges is improved by training the model with different loss functions at different periods.

2.6. Evaluation Indicators

To verify the accuracy of the segmentation, in the test set, based on the binary confusion
matrix, the intersection over union (IoU) and F1-score were used to evaluate the traditional
algorithm, the U-Net, and the improved U-Net [23].

The IoU is generally used to measure the similarity of two matrices. It equals the ratio
of the intersection and the concurrent set of the predicted results and true results. The
F1-score is the harmonic mean of Precision and Recall. The IoU and F1-score are shown in
Equations (13)–(16):

IoU =
TP

TP + FP + FN
(13)

Precision =
TP

TP + FP
(14)

Recall =
TP

TP + FN
(15)

F1− score =
2 · Precesion · Recall
Precision + Recall

(16)

where TP means that the true class of the sample is 1 and the prediction of the model is
1, FN means that the true class of the sample is 1 and the prediction of the model is 0, FP
means that the true class of the sample is 0 and the prediction of the model is 1, and TN
means that the true class of the sample is 0 and the prediction of the model is 0.

3. Results and Discussion
3.1. Analysis of Training Process

The original U-Net and the improved U-Net were trained on the training set after the
data enhancement. An adaptive momentum estimation algorithm was used for parameter
optimization. The number of training rounds was 100, the batch size was 8, the initial
learning rate was 0.0001, and the decay rate was set to 0.9. The size of input images for
the network was 200 × 200 pixels. The U-Net and the improved U-Net were built by
using Python 3.9 based on PyTorch 1.10.1. The loss function curves of the U-Net and the
improved U-Net are shown in Figure 12.

The original U-Net was trained by using a binary cross-entropy loss function. The
corresponding red line is shown in Figure 12. The loss curve decreased rapidly in the
first 1000 training sessions and converged quickly to 0.1. The overall trend of the curve
was stable.

The improved U-Net was trained by using a compound loss function including a
weighted binary cross-entropy loss function and a boundary loss function. The correspond-
ing blue line is shown in Figure 12. The loss curve decreased rapidly in the first 4000
training sessions and converged quickly to 0.05. Different loss functions played a major
role in different periods of training, which made the loss curve fluctuate.
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Figure 12. Loss curves of the U-Net and the improved U-Net.

3.2. Analysis of Defect Extraction

The traditional algorithm shown in Figure 5, the trained U-Net, and the trained
improved U-Net were used to extract defects of apples in the test set, and the results of
manual extraction were used as a comparison. The specific extraction results are shown in
Figures 13 and 14.

At 460 and 660 nm, the characteristics of the defective areas on the apple surface were
similar to those of the normal areas. At 522 nm, the textural characteristics of the apple
surface were similar to the defective characteristics. At 762 and 842 nm in the near-infrared
band, the defects became clear and the textural features of the apple were weakened.
Therefore, when the defects of the five single-band images were extracted by using the
same algorithm, the single-band image at 762 nm performed best.
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Under the same band, when the traditional algorithms were used to extract defects,
there were incomplete segmentation and mis-segmentation. The U-Net extracts image
features through multiple convolutional layers, then by learning from a large number
of samples, higher accuracy is achieved. Compared with the traditional algorithm, this
situation was improved. However, due to the imbalance between the positive sample
and the negative sample, when the U-Net was used to extract such defect, incomplete
segmentation and mis-segmentation still existed. By using dilated convolution, adding
attention gates to the original U-Net, and during the training process, using the weighted
binary cross-entropy loss function, the improved U-Net paid more attention to the defective
area. Compared with the traditional algorithm and the original U-Net, the improved U-Net
could extract more complete defects.

For defects with small areas and irregular edges, incomplete segmentation occurred by
using the traditional algorithms. Additionally, the U-Net only segmented the outline of the
defects, and the segmentation of the defective edges was still rough. In this study, during
the training process, the improved U-Net used a boundary loss function that made the
network start paying attention to the segmentation of defective edges. Therefore, compared
with the traditional algorithm and the original U-Net, the improved U-Net was more
detailed for the segmentation of the defective edges.

3.3. Analysis of Indicators

The mIoU and mF1-score of the traditional algorithm, the U-Net, and the improved
U-Net on the test set are shown in Tables 2 and 3, respectively.

Table 2. mIoU of the traditional algorithm, U-Net, and improved U-Net.

460 nm 522 nm 660 nm 762 nm 842 nm Average

Traditional Algorithm 0.62 0.66 0.68 0.73 0.70 0.68
U-Net 0.72 0.74 0.78 0.82 0.79 0.77

The Improved U-Net 0.81 0.83 0.85 0.91 0.87 0.85
Average 0.72 0.74 0.77 0.82 0.79 None

Table 3. mF1-score of the traditional algorithm, U-Net, and improved U-Net.

460 nm 522 nm 660 nm 762 nm 842 nm Average

Traditional Algorithm 0.74 0.78 0.81 0.84 0.81 0.80
U-Net 0.83 0.86 0.87 0.89 0.88 0.87

The Improved U-Net 0.88 0.90 0.91 0.95 0.92 0.91
Average 0.82 0.85 0.86 0.89 0.87 None

When segmenting apple surface defects by using the same algorithm, the mIoU and
the mF1-score in the visible range are lower than those in the near-infrared range. More
specially, at 460 nm, the mIoU and mF1-score are the lowest, with averages of 0.72 and 0.82.
At 762 nm, the mIoU and mF1-score are the highest, with averages of 0.82 and 0.89.

Under the same band, the mIoU and mF1-score of the U-Net are higher than those of
the traditional algorithm. Based on the U-Net, the indicators of the improved U-Net are
further improved. Therefore, the traditional algorithm has the lowest mIoU and mF1-score
with averages of 0.68 and 0.80. The improved U-Net has the highest mIoU and mF1-score
with averages of 0.85 and 0.91.

Combining band and segmentation algorithms, the highest mIoU and mF1-score are
obtained at 762 nm by using the improved U-Net, 0.91 and 0.95, respectively.

4. Conclusions

For defects with unobvious features, small areas, and irregular edges, defect extraction
was not effective by using the traditional algorithm in the visible range. There were
incomplete segmentation, mis-segmentation, and so on. In this study, with the help of
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multi-band images and a modified convolutional neural network, when such defects were
extracted, the accuracy was increased. The experimental results show that in the visible
range, the traditional algorithm performed worst at 460 nm with an mIoU of 0.62 and an
mF1-score of 0.74; in the near-infrared range, the improved U-Net performed best at 762 nm
with an mIoU of 0.91 and an mF1-score of 0.95.
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