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Abstract: Gamma-aminobutyric acid (GABA) is a non-protein amino acid known for its role in the
nervous system of animals. However, research has also revealed its presence and function in plants
recently. In plants, GABA is a signal molecule involved in multiple physiological processes, including
stress response, growth, and development. This review aims to present a thorough summary of the
current knowledge regarding the role of GABA in plants. We begin by discussing the biosynthesis
and transport of GABA in plants, followed by a detailed examination of its signaling mechanisms.
Additionally, we explore GABA's potential roles in various plant physiological processes, such as
abiotic stress response, and its potential application in horticultural plants. Finally, we highlight
current challenges and future directions for research in this area. Overall, this review offers a
comprehensive understanding of the significance of GABA in plants and its potential implications
for plant physiology and crop improvement.
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1. Introduction

Under current climate change scenarios, there is an imperative need for collaborative
research to develop crops that can withstand environmental challenges [1–3]. Environmen-
tal stresses, including heat, cold, salt, drought, and heavy metals, affect plant growth and
development negatively, leading to significant declines in yield and quality [4–7]. However,
studies have shown that GABA provides partial protection against abiotic stress in most
plants [8,9]. Additionally, it has been found that gamma-aminobutyric acid (GABA) can
improve plant growth and mitigate the adverse effects of stress by boosting antioxidant
defense mechanisms, thereby enhancing plant stress tolerance. Using exogenous GABA
enhances the activity of antioxidant enzymes and the glyoxalase system, crucial in detoxi-
fying methylglyoxal [10]. The objective of this review was to gather and present various
scientific studies that explore the function and mechanisms of GABA in horticultural plants
when exposed to multiple environmental stresses.
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GABA is a four-carbon molecule found in various organisms, including autotrophs
and heterotrophs [11]. The first evidence of GABA was discovered in potato tubers, and
it has since been found in plants, animals, and microbial organisms [12,13]. The GABA
shunt pathway is responsible for synthesizing GABA, a non-proteinogenic amino acid,
by the decarboxylation of glutamate and decarboxylation of glutamate with glutamate
decarboxylase. GABA can also be obtained from polyamines, such as spermidine and
putrescine, through the catalytic action of diamine oxidase and polyamine oxidase. The
catabolism of GABA directly leads to succinic semialdehyde, which, in turn, transforms
into succinate or hydroxybutyrate [14].

GABA is a natural active substance that plays a crucial role in various physiological
activities of plants, such as growth, development, signaling, and stress responses [15–17].
Exogenous supplementation with GABA has been shown to stimulate plant growth. More-
over, this is achieved by enhancing endogenous GABA, amino acids, and hormone levels
through upregulating crucial genes involved in phytohormones [18,19]. Studies have
demonstrated that GABA can provide greater stress resistance in plants by regulating the
expression of genes related to signaling, hormone biosynthesis, transcriptional regulation,
the production of reactive oxygen species, and polyamine metabolism [20]. Furthermore,
GABA plays a vital role in modulating the antioxidant system during plant growth and the
transcription of genes that encode antioxidant enzymes, thereby mitigating plant oxida-
tive damage [21]. The application of GABA is also significant in respiratory metabolism
and changes the activity of many enzymes from the tricarboxylic acid (TCA) cycle [22].
Moreover, some studies also reported changes in the chlorophyll synthesis process due to
exogenous GABA [23,24]. When exposed to salt stress, GABA can function as a non-toxic
osmolyte and remove ROS to increase stress tolerance [25]. GABA not only regulates the
osmotic balance in plants but has also been found to impact the accumulation of H2O2 and
the ascorbic acid–glutathione cycle; as a result, the tolerance of muskmelon seedlings to
saline–alkali stress is improved [26]. Another study reported that the exogenous GABA in-
hibits H2O2 production and controls H2O2-producing enzyme gene expression in Caragana
intermedia under salt stress [27].

In summary, understanding the function of GABA in aiding horticultural plants to
withstand abiotic stress is critical for ensuring the sustainable production of high-quality
crops in an ever-challenging environment. This review provides an overview of the ex-
isting knowledge of and research advancements in GABA-triggered stress responses and
their potential applications in managing horticultural plants. However, it is imperative
to conduct further investigations into the underlying molecular mechanisms and signal-
ing pathways to enhance crop resilience, optimize agricultural methods, and ultimately
promote worldwide food security.

2. GABA Biosynthesis and Catabolism in Plants

Glutamate decarboxylase (GAD) catalyzes the synthesis of GABA from glutamate
(Figure 1). GAD expression is regulated by various factors, including stress, and is encoded
by multiple genes [28]. GABA can be catabolized by the enzyme GABA transaminase
(GABA-T) into succinic semialdehyde, which is further metabolized into succinate through
the activity of succinic semialdehyde dehydrogenase [29]. The tight regulation of GABA
metabolism is essential for maintaining appropriate GABA levels within cells. Several plant
species, such as Arabidopsis, tomatoes, grapevines, and apples, have shown increased
GABA levels under drought stress. The upregulation of GABA biosynthesis in response to
drought stress suggests that it may play a role in plant drought stress responses. GABA
metabolism also depends on its transport. The activity of GABA-T, the enzyme responsible
for GABA catabolism, is regulated by the intracellular GABA concentration. The transport
of GABA can affect its intracellular concentration and, therefore, the activity of GABA-
T [29]. Furthermore, the transport of GABA can affect the signaling pathways mediated by
GABA, consequently affecting both plant growth and stress responses [30].
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3. GABA Transport in Plants

GABA transporters play vital roles in the accumulation and metabolism of GABA in
cells. A family of membrane-bound transport proteins mediates GABA transport across cel-
lular membranes. GABA transporters are divided into two main classes based on substrate
specificity: high-affinity transporters (GATs) and low-affinity transporters (LATs) [32]. In
Arabidopsis thaliana, GAT1 and GAT2 are high-affinity GABA transporters, whereas LAT1 is
a low-affinity GABA transporter [33]. GABA transporters are expressed in various plant
tissues, including roots, leaves, and flowers. Furthermore, GABA is synthesized in the cy-
tosol, and its accumulation in the vacuole requires the activity of GABA transporters [14,33].
The subcellular localization of GABA transporters can affect the accumulation of GABA in
different organelles. For instance, the high-affinity GABA transporter GAT1 is localized
in the plasma membrane, and its activity is essential for GABA uptake in root cells under
stress conditions [34]. On the other hand, the low-affinity GABA transporter LAT1 is
localized in the tonoplast, responsible for GABA's sequestration into the vacuole [35].

4. Potential Role of GABA in Abiotic Stress Tolerance in Horticultural Plants

GABA has been studied under various abiotic stress conditions, including drought,
salinity, extreme temperatures, and heavy metals. This study examined the effects of GABA
and its response factors under different abiotic stress conditions. Based on the results
of studies conducted across diverse horticultural crops, Figure 2 and Table 1 show the
influence of GABA on abiotic stress responses.

4.1. Application of GABA to Alleviate the Effects of Heat Stress

Global warming has increased significantly in recent times and may lead to substantial
economic losses in the future [36]. Heat stress has emerged worldwide as a significant
constraint on crop growth and yield. It adversely affects plant growth, mineral nutrient
content, and yield. Furthermore, plants may display various symptoms under heat stress,
such as oxidative damage, ultrastructural alterations, chlorophyll degradation, and pho-
toinhibition [37]. The regulatory function of GABA in heat tolerance in plants has been
investigated in numerous studies. It has been observed that GABA induces alterations in
the antioxidant defense system, metabolic homeostasis, and heat shock factor pathway,
ultimately enhancing heat tolerance [38,39].
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Recent research on plants suggests that the external application of GABA can protect
plant seedlings from heat stress by bolstering their antioxidant defense systems [40,41].
A study on creeping bentgrass foliage showed that GABA promoted heat tolerance by
regulating osmotic potential, metabolic homeostasis, and the tricarboxylic acid cycle [40].
Furthermore, the application of GABA has been linked to the upregulation of AER, ACS,
CA1, and CAD3, and GABA is involved in the biosynthesis of lignin and lipids, water
usage, photosynthesis, and antioxidant defense potential. These genes have been found to
improve HSF pathways and phenylpropanoid biosynthesis in perennial creeping bentgrass,
thereby enhancing its heat tolerance [42]. GABA is a highly effective method for increasing
the heat tolerance of creeping bentgrass by improving its heat tolerance with the application
of GABA. In addition, this is achieved by improving photosynthesis and water balance and
mitigating oxidative damage caused by high-temperature stress. Exogenous GABA has
been observed to increase the transcript levels of genes that encode heat shock proteins, heat
shock factor HSFs, and ascorbate peroxidase 3 under heat stress. Conversely, the inhibition
of GABA biosynthesis has been found to suppress the expression of these genes [43].
Another study reported that foliar treatment with GABA efficiently relieved the harmful
effects of heat stress in creeping bentgrass. A recent study has shown that GABA can
also significantly enhance the expression of heat-induced HSPs and HSFs, as well as the
abundance of HSP101, HSP70, and HSP90-1 in the leaves of creeping bentgrass [44].

Recent studies have reported that GABA can enhance heat tolerance by inducing
changes in proteomic profiles in creeping bentgrass. Likewise, GABA treatment has been
linked to an increased accumulation of sugars and amino acids, such as PFK5, FK2, BFRUCT,
RFS2, and ASN2. These changes in metabolism are critical for the energy supply and ox-
aloacetate pathways, which are involved in heat tolerance [45]. Another study indicated
that the administration of GABA under heat stress enhanced the endogenous levels of
GABA, glutamic acid, and threonine in creeping bentgrass. This mechanism governs the
regulation of the GABA shunt and oxaloacetate pathway, resulting in improved heat tol-
erance [46]. Similarly, the exogenous treatment of GABA application has been found to
significantly contribute to the accumulation of polyphenols, particularly catechins, upregu-
late genes related to flavonoid metabolism in tea seedlings under heat stress conditions,
and improve the antioxidant system [38]. Recent research on GABA has shown that GABA
enhances the adaptability of roots to heat stress by boosting their antioxidant capacity,
vitality, and osmotic adjustment. In addition, GABA regulates metabolites under heat
stress, enhancing antioxidant capacity, energy metabolism, cellular structures, and osmotic
balance in the roots [47]. These findings imply that the exogenous administration of GABA
can improve plant growth and survival in the face of heat stress by ameliorating antioxidant
capacity and lowering oxidative damage.
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4.2. Application of GABA to Alleviate the Effects of Cold Stress

Stress caused by low temperatures is a major impediment to plant growth and devel-
opment, eliciting a cascade of physiological, biochemical, and molecular changes [48,49].
The consequences of cold stress are manifold and detrimental, including leaf wilting, chloro-
phyll loss, hampered photosynthesis, impaired cell membrane fluidity, reduced enzyme
activity, metabolic disruption, and stunted growth [50]. Low temperatures also result in
the production of highly active and toxic reactive oxygen species (ROS), such as hydrogen
peroxide (H2O2), superoxide radicals (O2−), and hydroxyl radicals (OH−). The generation
of ROS is attributed to membrane-bound electron transport and multiple metabolic path-
ways. As a result of these ROS, plant membrane fluidity is reduced, and macromolecules
such as lipids, proteins, and nucleic acids are targeted, ultimately resulting in oxidative
damage [51]. Consequently, maintaining the integrity and stability of the cell membrane
structure is critical for a plant’s adequate growth and development [52].

Numerous studies have reported the beneficial effects of GABA treatment in alleviating
the adverse effects of cold stress on different crop species. Scientific evidence has shown that
GABA can alleviate chilling injury in tomato seedlings by modulating antioxidant enzyme
activity and scavenging reactive oxygen species (ROS) [53]. Furthermore, GABA has been
found to enhance the low-temperature tolerance of tea plants and modulate various physio-
biochemical processes under optimal conditions. These processes include the modulation
of antioxidant activity, elevated SPAD values, chlorophyll fluorescence transients, and
improved membrane stability [54]. Exogenous GABA treatment has also been beneficial
during the postharvest storage of various fruits, including zucchini, banana, and peaches. It
has been found that GABA can regulate weight loss, the chilling injury index, and cell death
in zucchini fruits stored at 4 ◦C while simultaneously maintaining a lower rate of electrolyte
leakage at these temperatures [55]. In addition, the pre-harvest application of spermine
and GABA has been found to effectively prevent chilling damage and delay senescence in
plants by increasing the proline content, boosting cellular antioxidant capacity, scavenging
ROS, and improving cell membrane integrity and fluidity [56].

According to a study conducted by Li et al. [57], treatment with GABA has been
shown to protect pear fruits against peel browning during extended storage periods at low
temperatures. This was evidenced by lower browning indices, decreased levels of ROS and
malondialdehyde, and increased antioxidant enzyme activity. Moreover, GABA application
increases GABA shunt activity, promotes glycine betaine accumulation, and increases ATP
production in cut flowers of Anthurium spp. [58]. In addition, Wang et al. [59] reported
that GABA treatment ameliorated membrane damage, elevated antioxidant capacity, and
reduced chilling injury in the banana peel. Furthermore, in peach fruit, GABA treatment
was found to reduce chilling injury and the weight loss rate and maintain firmness and
the total soluble solids content by suppressing the production of ROS and increasing the
activity and gene expression of methionine sulfoxide reductase A (MSRA), thioredoxin
reductase (TrxR), and methionine sulfoxide reductase B (MSRB). GABA application boosted
the NADPH/NADP ratio, increased G6PDH and 6GPDH gene expression, and increased
G6PDH activity. This suggests that GABA induces the MSR-TrxR system, reducing chilling
injury in peaches [60]. Together, these results indicate that GABA application can help
to mitigate chilling injury in horticultural plants by regulating various physiological,
biochemical, and molecular mechanisms.

4.3. Application of GABA to Alleviate the Effects of Salt Stress

Salinity has emerged as a major problem restricting the growth and development of
various plants [61,62]. According to a report published by the FAO (2016), salt stress has
caused damage to 45 million hectares of irrigated land worldwide or 19.5% of the total
irrigated area. Salt stress negatively affects various morphological, physiological, and
biochemical processes in plants, ultimately reducing their ability to absorb water, resulting
in cell damage from the buildup of ions, stunting leaf growth, lowering photo assimilates
available, and delaying germination [63,64]. Salt stress triggers an overproduction of
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reactive oxygen species (ROS), primarily in peroxisomes, chloroplasts, and mitochondria,
which can result in lipid peroxidation and damage to biomolecules [65]. Additionally,
Barbosa et al. [66] demonstrated that the administration of GABA during salt stress can
modify the activities of antioxidant enzymes involved in N metabolic pathways and affect
the signaling of the nitrate uptake system [67]. Studies confirm that GABA is a promising
natural chemical critical in enhancing plant resilience to abiotic stresses, including plant
salt stress tolerance.

The study conducted by Wu et al. [68] demonstrated that exogenous GABA application
improves the tomato seedlings' capacity to withstand salt stress. This action is also strongly
related to a decreased Na+ transport from roots to leaves, an increased amino acid content,
and the augmentation of antioxidant metabolism. In addition, when cucumber roots were
exposed to salt stress, the administration of 5 mmol L−1 GABA dramatically reduced the
accumulation of sodium ions. This suggests that applying exogenous GABA affects the
absorption and inhibition of mineral elements in cucumber seedlings under NaCl stress.
Previous studies have also found that GABA accumulation rapidly increases in tomato
and tea plants when anabolic metabolism is activated by salt stress induction [69]. GABA
reduces salt damage during white clover seed germination by increasing starch catabolism,
utilizing sugar and amino acids for growth maintenance, increasing Na+/K+ transportation
for osmotic adjustment, and enhancing antioxidant defense potential under salt stress [70].
Exogenous GABA inhibits H2O2 generation and reduces oxidative damage in salt-stressed
Caragana intermedia roots by regulating the expression of key genes involved in H2O2 and
peroxidase production [27].

Exogenous treatment with GABA has been shown to positively impact muskmelon
seedlings under saline–alkaline stress by improving the structure and functions of Photo-
system II [71]. Furthermore, GABA has been found to mitigate Ca(NO3)2-induced damage
in muskmelon seedlings by enhancing NO3

−-N absorption and assimilation while boosting
endogenous GABA levels, suggesting its potential role as a temporary nitrogen repository
in protecting plants from salt stress [72]. Exogenous GABA treatment at a concentration
of 0.5 mM can also mitigate alkaline stress in apple seedlings by promoting growth and
scavenging ROS activities, improving photosynthetic properties and total chlorophyll
levels [73]. Furthermore, GABA has been found to enhance NO levels in muskmelon
under salinity–alkalinity stress by boosting NR and NOS activities, which may help to
regulate the Na+/K+ balance, enhance antioxidation, maintain the stability and integrity
of cell membranes, and ultimately improve muskmelon tolerance to salinity–alkalinity
stress [74]. Additionally, GABA application can effectively reduce the salt damage index
and increase the resistance of plants to NaCl stress. The diverse expression of MuGABA-T
in Arabidopsis and its overexpression in hairy mulberry roots decreased GABA levels in
transgenic plants and increased their sensitivity to salt stress, indicating the importance of
GABA in alleviating the negative effects of salt stress [75]. The exogenous application of
GABA and GSH increases the salt tolerance of C. annuum by enhancing antioxidant defense
systems, ATPase enzymes, and CaXTH stress-related genes [76]. Given the increasing threat
of soil salinity to global food security, it is crucial to explore innovative approaches, such as
GABA supplementation, to enhance the resilience of crops to saline conditions.

4.4. Application of GABA to Alleviate the Effects of Drought Stress

Drought stress is a critical environmental factor that impedes the growth and devel-
opment of various crops, including fruits and vegetables [6,77,78]. Long-term drought
causes a decline in the relative water content and various metabolic and photosynthetic
abnormalities [79,80]. The protective effect of GABA against drought stress in plants is
attributed to its ability to increase osmolytes and leaf turgor and regulate antioxidants to
reduce oxidative damage. Increasing GABA production in guard cells reduces stomatal
opening and transpiration, and regulating the release of tonoplast-localized anion trans-
porters improves water use efficiency and drought tolerance [10,81]. The drought stress
tolerance of various plant species, such as apples [82], tomatoes [83], and grapevines [84],
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can be improved by applying exogenous GABA, as demonstrated in previous studies. The
optimal dosage and application method of GABA for achieving maximum drought stress
tolerance may differ depending on the plant species and environmental conditions.

Upregulating the expression of genes related to the ‘Biosynthesis of secondary metabo-
lites’, ‘Carbon fixation in a photosynthetic organism’, ‘Glutathione metabolism’, and ‘MAPK
signaling pathway’ might be a mechanism by which GABA enhances plant drought re-
sistance, as revealed by transcriptomics analysis. These findings indicate that applying
exogenous GABA can enhance drought tolerance and improve apple fruit quality [13].
In addition, GABA application has been found to enhance the water use efficiency and
nitrogen use efficiencies of various crops, including lettuce [85], strawberry [86], white
clover [87], and black cumin [88]. Using the exogenous application of GABA into white
clover plants improved drought tolerance by increasing the endogenous GABA content,
polyamines, and proline metabolism through upregulating the GABA shunt, polyamines,
and proline metabolism [89]. In addition to its effect on osmoregulation (e.g., soluble
sugars and proline content), increased levels of GABA also contribute to an enhanced
chlorophyll content and antioxidant enzyme activity in black cumin plants in response
to water-deficit-induced stresses [88]. Overall, recent studies have suggested that GABA
has significant potential as a target for improving drought stress tolerance in horticultural
crops. However, further research is needed to optimize GABA application methods and
dosages to maximize crop efficacy.

4.5. Application of GABA to Alleviate the Effects of Heavy Metal Stress

Heavy metal pollution is a frequent outcome of natural and human activities such as ur-
banization, rapid industrialization, and mining, leading to disruptions in eco-environmental
sustainability and a decrease in global plant productivity [90]. In recent decades, soil con-
tamination by heavy metals (Zn, Ni, Fe, Cr, Co, Pb, Cd, Hg, and As) resulting from
agricultural activities has raised serious concerns regarding their potential threat to human
health through direct intake and bioaccumulation in the food chain, as well as their impact
on ecological systems [91]. In addition, the excessive accumulation of heavy metals in plant
tissues can interfere with crop productivity by impairing several biochemical, physiological,
and morphological functions [92]. GABA is a promising natural compound that is environ-
mentally friendly and mass-producible, making it highly applicable in various areas [93].
Numerous studies have reported the potential of GABA in detoxifying heavy metals in
plants [94–97]. For instance, exogenous GABA treatment in Malus huphehensis activates
the GABA shunt, leading to a significant increase in the content of malate, citric acid, and
sucrose, as well as the activity of several enzymes. This contributes to mitigating biomass
decreases, root growth inhibition, and oxidative stress caused by alkaline stress [73]. Fur-
thermore, exogenous GABA application effectively alleviates Cd toxicity in apple seedlings,
lowering the Cd content and decreasing the expression of Cd uptake and transport-related
genes [23]. These findings highlight the potential of GABA to mitigate the adverse effects
of heavy metal pollution and promote plant growth in horticultural crops.

4.6. Some Other Stresses

Numerous studies have reported diverse effects of GABA supplementation on plants'
physiological, biochemical, and molecular responses under various abiotic stresses (Table 1,
Figure 3). Exogenous GABA modulates polyamine biosynthesis and degradation in melon
roots under root-zone hypoxia stress [98]. GABA treatment in Prunus species enhances
the photosynthetic rate, stomatal conductance, and total chlorophyll content, induces the
transcriptional activities of GAD2 and GAD4 in roots, and affects leaf H2O2 levels and
endogenous GABA, Glu, and alanine contents in a genotype- and organ-specific manner,
thus mitigating the adverse effects of oxygen deficiency on roots [99]. In addition, GABA-
induced salinity–alkalinity tolerance is associated with elevated H2O2 levels acting as a
signal molecule, whereas AsA and GSH act as antioxidants to maintain membrane integrity,
which is essential for ordered chlorophyll biosynthesis. In response to salinity–alkalinity
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stress, the excessive accumulation of chlorophyll and its precursors, a consequence of
excessive chlorophyll oxidation, is mitigated by exogenous GABA pretreatment [26].
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Table 1. GABA is a potential target for improving the abiotic stress tolerance of horticultural crops.

Crop Stress Reported Effect References

Tomato and Brinjal Heavy metal stress
The combination of GABA and nitric oxide (NO) can

mitigate the toxicity of heavy metals and increase
the stress tolerance in tomato and brinjal seedlings.

[100]

Apple Drought stress Improved apple quality under drought stress,
modulation of endogenous GABA and polyamines. [101]

Grapevine Water stress
GABA accumulates at high levels in grapevine

tendrils and promotes tendril coiling independently
of jasmonates.

[84]

Piper GABA

GABA priming reduced lipid peroxidation and
improved the activity of antioxidant enzymes,

photosynthesis, and mitochondrial function during
osmotic stress.

[102]

Cucumber Iron-deficient
GABA application in iron-deficient cucumber plants
increased iron-uptake-related gene expression and
auxin content via an auxin-dependent mechanism.

[103]

Lettuce Salinity stress

Improved germination and plant growth, increased
photosynthetic efficiency, enhanced activities of CAT,
APX, and SOD enzymes, and controlled hydrogen

peroxide levels under salinity stress.

[85]

Strawberry Salinity stress

Improved the physiological and molecular response
of strawberry plants to salinity stress by reducing

ROS levels, increasing antioxidant enzyme activity,
and upregulating the expression of

stress-responsive genes.

[86]
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Table 1. Cont.

Crop Stress Reported Effect References

Citrus Water stress

Exogenous GABA treatment of citrus plants led to
increased endogenous GABA levels, enhanced
respiration, and upregulation of phytohormone
biosynthesis genes, indicating that GABA works

harmoniously with phytohormones to reduce
plant stress.

[19]

Creeping bentgrass Heat stress

GABA can potentially enhance heat tolerance by
regulating various physiological processes and

metabolic pathways. These include boosting
antioxidant metabolism, preventing leaf senescence,
maintaining a balance between photosynthesis and
transpiration, and improving osmotic adjustment.

GABA also accumulates amino acids, carbohydrates,
organic acids, and alcohol.

[40]

Creeping bentgrass Heat stress

GABA's improved heat tolerance was linked to the
biosynthesis of phenylpropanoids and the

enhancement of HSF pathways. Additionally, the
upregulation of genes such as CAD3, ACS, AER, and

CA1, which are involved in lignin and lipid
biosynthesis, photosynthesis, water use, and
antioxidant defense, further contributed to

this effect.

[42]

Creeping bentgrass Heat stress

The exogenous application of GABA increased
endogenous GABA content, effectively mitigating
plant heat damage. The leaves displayed higher
relative water content, improved photosynthesis,

and cell membrane stability.

[43]

Creeping bentgrass Heat stress
The application of GABA alleviated the damage and
loss of chlorophyll caused by heat stress in creeping

bentgrass by enhancing its antioxidant capacity.
[44]

Creeping bentgrass Heat stress

The performance of creeping bentgrass under heat
stress was improved by foliar application of GABA,
proline, or N, which was found to regulate amino

acid metabolism.

[46]

Tea Heat stress
Under heat-stress conditions, GABA is instrumental

in tea plants' polyphenol accumulation and
antioxidant system upregulation.

[38]

Creeping bentgrass Heat stress

GABA has effectively mitigated the reduction in
overall antioxidant capacity caused by heat stress

and enhanced various antioxidant enzyme functions,
root vigor, and osmoregulation capabilities in

root systems.

[47]

Tomato Chilling stress

GABA administration safeguards tomato seedlings
against cold stress by boosting the activity of specific

antioxidant enzymes and lowering MDA levels,
which helps to preserve membrane stability.

[53]

Tea Cold stress

GABA successfully enhanced the resilience of tea
plants to low temperatures and maintained the

optimal functioning of numerous physiological and
biochemical processes. Increased SPAD

measurements, chlorophyll fluorescence dynamics,
membrane stability, and the regulation of

antioxidant activities evidence this.

[54]
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Table 1. Cont.

Crop Stress Reported Effect References

Gerbera cut flowers Low temperature

Applying appropriate concentrations of GABA and
SPER pre-harvest can enhance the quality and

longevity of gerbera-cut flowers while reducing
cold-related damage to a minimum using

GABA treatment.

[56]

Pear Low temperature

Fruit exposed to GABA experienced slower
browning, reduced browning indices, and lower
levels of reactive oxygen and malondialdehyde

content. Additionally, GABA-treated fruit exhibited
increased activity of peroxidase, superoxide
dismutase, alternative oxidase, and catalase

enzymes, as well as elevated gene expression related
to these enzymes.

[57]

Anthurium cut flowers Chilling stress

A reduction in H2O2 accumulation was observed in
anthurium cut flowers subjected to GABA treatment.

This was due to increased activity in antioxidant
enzymes such as superoxide dismutase (SOD),

catalase (CAT), ascorbate peroxidase (APX), and
glutathione reductase (GR).

[58]

Banana Chilling stress

GABA administration significantly contributes to
mitigating cold-related damage in banana fruit by

promoting proline accumulation and reinforcing the
antioxidant defense system.

[59]

Peach Chilling stress

GABA application helped to reduce the increase in
chilling injury (CI) index and weight loss rate while
also slowing the deterioration of firmness and total

soluble solids content in peaches subjected to
cold conditions.

[60]

White Clover Salt stress
The priming of white clover seeds using the right

concentration of GABA can effectively mitigate salt's
adverse effects on seed germination.

[70]

Muskmelon Salinity–alkalinity stress

GABA could be essential in safeguarding the
structure and functionality of chloroplasts and

Photosystem II (PSII) from the harmful impact of
combined salt and alkaline stress.

[71]

Muskmelon Salinity–alkalinity stress

GABA application safeguarded muskmelon
seedlings against the effects of combined salt and

alkaline stress by boosting the activity of antioxidant
enzymes and decreasing malondialdehyde levels.

[72]

Apple Alkaline stress

Compared to the untreated control, external GABA
application notably enhanced biomass, root
development, and reactive oxygen species

neutralization activities in apple seedlings exposed
to alkaline stress.

[73]

Mulberry Salt stress

Applying GABA externally to transgenic plants led
to a considerable increase in antioxidant enzyme

activities and reduced active oxygen-related damage
under conditions of NaCl stress.

[75]
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Table 1. Cont.

Crop Stress Reported Effect References

Apple Drought stress

A total of 0.5 mM GABA proved to be most
successful in alleviating drought stress. As a result,
GABA decreased superoxide anions and hydrogen

peroxide buildup in leaf tissues during drought
conditions while increasing POD, SOD, and CAT
activity and the amount of GABA in leaf tissues.

[82]

Black cumin Drought stress
Administering GABA can enhance the growth and
productivity of black cumin even when exposed to

water deficit stress conditions.
[88]

White Clover Drought stress

Boosting endogenous GABA levels through the
external application of GABA may enhance white
clover's drought tolerance by positively regulating
the GABA-shunt pathway and polyamines (PAs)

and proline (Pro) metabolism.

[89]

Apple Cadmium stress

Administering external GABA led to a marked
reduction in net Cd2+ fluxes within apple roots and
effectively lowered Cd content in roots subjected to

Cd stress.

[23]

5. Conclusions

The protective role of GABA in stress tolerance in horticultural plants has been ex-
tensively studied in recent years, and the findings have been promising. Studies have
demonstrated that the exogenous application of GABA improves the tolerance of horticul-
tural plants to various abiotic stress factors, such as drought, high salinity, and extreme
temperatures. These findings suggest that GABA could be a valuable tool in improving
crop yields and quality in horticultural plants. In conclusion, the research on GABA in
horticultural plants has advanced significantly in recent years. However, further research is
needed to fully understand the molecular mechanisms underlying the protective effects of
GABA in stress tolerance and to develop practical applications for horticulture. This review
article provides a comprehensive resource for researchers and practitioners in horticulture
and crop improvement, highlighting the current state of knowledge and future directions
for research in this area.
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