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Abstract: In tomato (Lycopersicon esculentum L.), the effects of combined drought (D) and high
temperature (HT) stress during the flowering stage had not been studied in detail. Therefore,
this study was conducted with an objective of quantifying the effects of foliar spray of melatonin
under individual and combined drought and HT stress. At flowering stage, D stress was imposed
through withholding irrigation, while HT stress was imposed through exposing the plants to ambient
temperature (AT) along with an increase of +5 ◦C. Under D + HT, plants were first subjected to
drought followed by a + 5 ◦C increase in AT. The duration of individual or combined stress was
ten days. At 80% available soil moisture, 100 µM melatonin was sprayed on D, HT, or D + HT
treated plants. Among the stresses, D + HT stress increased the thylakoid membrane damage and
decreased the photosynthetic rate and fruit yield more than D or HT stress. Foliar spray of 100 µM
melatonin produced decreased thylakoid membrane damage [D: 31%, HT: 26%, and D + HT: 18%] and
increased antioxidant enzyme, viz., superoxide dismutase, catalase, peroxidase, ascorbate peroxidase,
and glutathione reductase, activity over stress-control plants. The photosynthetic rate [D: 24%, HT:
22%, and D + HT: 19%] and fruit yield [D: 32%, HT: 23%, and D + HT: 16%] were increased over
stress-control plants. Hence, it is evident that the increased photosynthetic rate and fruit yield in
D + HT and 100 µM melatonin-sprayed plants may be associated with an increased antioxidant
defense system. Melatonin as a novel biostimulator has a great potential in scavenging free radicals
through increased antioxidant activity, which shields the photosynthetic membrane from damage
and therefore helps in stress mitigation.

Keywords: melatonin; drought; high temperature; antioxidants; free radicals; photosynthesis; lipid
peroxidation; mitigation

1. Introduction

Climate variability is associated with releasing greenhouse gas emissions [1,2]. The
Intergovernmental Panel on Climate Change (IPCC) indicates that the increase in air
temperature from baseline should be less than 1.5 ◦C, and if it exceeds the threshold, it
will affect crop productivity [3]. Similar to high temperature (HT), drought (D) is also
an abiotic stress which is more frequent due to reduced precipitation and water vapor
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fluxes in the atmosphere, which affects crop productivity [4]. From 1970 to 2000, the
percentage of drought-affected area was doubled [5]. The global population is projected
to increase significantly by 2050, demanding increased crop production or productivity to
meet food security [6]. Hence, to meet the global food demand and sustain the crop yield
under a changing climate, developing a crop management solution to mitigate drought or
high-temperature stress is mandatory [7].

Drought inhibits photosynthesis [8], thus decreasing the assimilate partitioning and
lowering fruit yield [9]. Drought causes decreased stomatal conductance due to which
diffusion of CO2 also decreases, which in turn results in stomatal closure [10]. Addition-
ally, high-temperature stress denatures the photosynthetic pigments involved in the light
reaction and damages the thylakoid membrane responsible for producing NADPH2 and
ATP [11]. Under abiotic stress, increased malondialdehyde levels indicate oxidative damage
in plants. Therefore, plants rely on the enzymatic antioxidants, viz., superoxide dismutase
(SOD), catalase (CAT), peroxidase (POD), ascorbate peroxidase (APX), and glutathione
reductase (GR), to scavenge reactive oxygen species (ROS) produced under stress, thereby
protecting the membrane from damage [12].

Melatonin (N-acetyl-5-methoxytryptamine), an indoleamine compound, was dis-
covered in the pineal gland of animals [13] and has similarities with other tryptophan
derivatives [14]. Studies suggest that melatonin has various roles in the plant developmen-
tal process, namely, improved seed germination and seedling growth [15,16], photosystem
activity [17], antioxidant defense system [18], osmoregulation [19], rooting depth [20],
and fruit yield and quality [21,22]. In contrast, melatonin decreases the leaf senescence
process [23]. It is predicted that in the current and future climate, crop yield will be affected
by two or more abiotic stresses during their reproductive phase [24,25]. The effect of mela-
tonin on drought or high-temperature stress in tomato has been studied in detail [26,27].
However, the impacts of combined drought and high-temperature stress on plants have
not been quantified.

Tomato is one of the most popular and commercially grown vegetable crops and is
susceptible to drought or HT stress which could cause a yield loss of 70% [28]. In tomato,
the reproductive stage is more sensitive to drought or high-temperature stress because
it affects the pre- and post-fertilization processes, and carbohydrate translocation from
source to sink, thus, reducing fruit yield [29]. Previous research on tomato confirmed
that melatonin could increase antioxidant enzymes [30]. The antioxidant molecules are
used to mitigate the detrimental effects of abiotic stress through (i) decreasing thylakoid
membrane damage (F0/Fm ratio), (ii) increasing the photosynthetic activity due to less
damage in photosystem II (PSII), where the initial reaction of photosynthesis take place
in the thylakoid membrane, and (iii) decreasing chlorophyll degradation via protecting
the chlorophyll biosynthetic enzyme [31]. In contrast, antioxidants will reduce levels
of (i) malondialdehyde, (ii) free radicals, and (iii) electrolyte leakage [32,33]. The effect
of melatonin on crops is presented in Supplementary Table S1 [34–47]. Based on this,
we hypothesize that melatonin could increase the antioxidant defense system, resulting
in increased photosynthetic rate and yield. The main aim of this study is to exploit the
antioxidant potential of melatonin against drought, high-temperature, or combined drought
and high-temperature induced oxidative stress; its protective role in the photosynthetic
system; and its impact on membrane integrity.

2. Materials and Methods
2.1. Experimental Details

An experiment was conducted in a completely randomized block design with
two factors and four replications. The first factor was the type of stress with three lev-
els (drought, high temperature, and combined drought and high temperature), and the
second factor was the foliar spray of melatonin with four levels: (i) absolute control
(plants were grown in ambient temperature, maintained under 100% field capacity, and
received no spray), (ii) stress control (for drought stress, plants were maintained under
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drought stress and received no spray; for high-temperature stress, plants were maintained
under high-temperature stress and received no spray; and for combined drought and
high-temperature stress, plants were drought and high-temperature stressed and received
no spray), (iii) 80 µM melatonin, and (iv) 100 µM melatonin (Figure 1).
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in this experiment conducted in OTC and glass house for 10 days.

The seedlings of tomato hybrid ‘Shivam’ were grown in portrays containing
a vermicompost and coir pith. Based on uniform growth and good health, twenty-one-
day-old tomato seedlings were used for transplanting. This experiment was conducted
in the Glasshouse and Open Top Chamber (OTC) at the Department of Crop Physiology,
Tamil Nadu Agricultural University, Coimbatore, India, from March to June 2022. The
twenty-one-day-old seedlings were moved to large-sized plastic pots (46 cm in length
and 60 cm in diameter) containing a mixture of red soil, sand, and vermicompost in
a ratio of 3:1:1. In a pot, two plants were maintained, and the plants were watered on
alternate days. All the pots were maintained under open sunlit condition. Ten days after
transplanting, plants were supplied with a recommended dose of nutrients. During crop
growth and development, the required crop management practices were followed as per
the horticulture crop production guide [48].

2.2. Stress Imposition and Treatment Details

The plants were maintained under well-watered and ambient temperature conditions
until the flower initiation stage, which coincides with the last week of April. At 50% flowering
stage, plants were moved to the controlled environment facility for imposing Drought (D),
high-temperature (HT), or combined drought or high-temperature stress (D + HT) for
10 days. The duration of stress imposition for ten days depends on the reduction in soil
moisture content up to 60 to 70 percent under D and D + HT stress, while in case of HT stress,
it depends on reduction in relative humidity up to 40 percent. Well-watered and D-stressed
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plants were maintained under ambient conditions, whereas the high-temperature-stressed
plants were placed inside an Open Top Chamber (OTC) maintained at AT + 5 ◦C. In case
of D + HT stress, plants were first exposed to drought (20% soil moisture reduction) and
then subjected to AT + 5 ◦C. During the experimental period, the relative humidity ranged
between 47 and 75 percent. Meteorological data of OTC are shown in Figure 2A. In D and
D + HT stress experiments, soil moisture was regularly measured using a theta probe, the
moisture content was calculated based on a reduction from 100% field capacity, and the soil
moisture data are recorded and presented in Figure 2B. Melatonin (80 µM or 100 µM) was
sprayed at 80% field capacity, and observations were recorded at the end of D, or HT, or
D + HT stress. Plants exposed to HT stress were maintained at fully irrigated conditions
and on the fourth day of stress, the plants under D, HT, and D + HT stress were sprayed
with either 80 µM or 100 µM of melatonin.
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2.3. Preparation of Melatonin Solution

Melatonin chemical was purchased from Sigma-Aldrich Pvt. Ltd. India and stored
at −20 ◦C. Irrespective of varieties, a previous study reported the significant results of
0.1 mM melatonin among different concentrations [49]. However, a preliminary lab study
was performed on germination parameters using various concentrations of melatonin,
viz., 20 µM, 40 µM, 60 µM, 80 µM, 100 µM, and 120 µM, under the PEG-induced drought
and temperature-inductive response methodology. Based on the results obtained from
initial screening, 80 µM and 100 µM melatonin showed significant difference among
other treatments. Therefore, stock solution was prepared using the required quantity of
melatonin, dissolving in 99.9% ethanol, and made to final volume using distilled water. The
two final concentrations of melatonin (80 µM or 100 µM) were prepared via diluting the
stock solution, and 0.25 mL of surfactant (Tween 20) was added to the melatonin solution
to increase its absorption efficiency in leaves.

2.4. Sampling

The leaf samples were collected at the end of the stresses, and the collected leaf was
used for physiological and biochemical analysis in one of the two plants. The yield and
yield components were recorded in both plants, and the average was presented. Fresh
leaves were collected at the end of the stress and immediately dipped in liquid nitrogen,
grounded using liquid nitrogen, to assess biochemical parameters and enzyme activity.
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2.5. Physiological Attributes

The chlorophyll index was determined in the second distal leaflet of the second and
fourth leaf from the top using a chlorophyll meter (SPAD) (Minolta, Japan). The photo-
synthetic rate (Pn), stomatal conductance (gs), transpiration rate (E), and intercellular CO2
concentration (Ci) were measured in third leaf using a portable photosynthesis system
(LI-6400 XT; LI-COR Inc., Lincoln, NE, USA). The leaf chlorophyll fluorescence was mea-
sured in the third leaf using a chlorophyll fluorometer [50]. Upon dark adaptation of the
leaf using clips for 30 min, minimal fluorescence (F0), maximum fluorescence (Fm), and
variable fluorescence (Fv = Fm − F0) were measured. The ratio of minimum fluorescence
to maximum fluorescence (F0/Fm ratio) was calculated using the data taken. The F0/Fm
ratio is referred to as thylakoid membrane damage. These observations were taken from
10:00 am to 12:30 pm simultaneously from the fully expanded leaf below the apex.

2.6. Histochemical Detection of ROS

Hydrogen peroxide (H2O2) and superoxide anion (O2
−) generation rate was detected

histochemically, as mentioned in Lei et al. [51] using the 3,3-diaminobenzidine (DAB) and
nitro blue tetrazolium (NBT) staining method. Fresh leaves were dipped in 1 mg mL−1

DAB solution containing 50 mM sodium phosphate buffer (pH 3.8) and incubated for 5 h
in the dark, during which brown precipitates were formed, indicating H2O2 accumulation.
To detect superoxide anions, the leaves were immersed in 50 mM sodium phosphate buffer
(pH 7.5) containing 0.2% NBT. The formation of dark blue insoluble formazan detects O2

−

accumulation. The destaining was followed with ethanol, glacial acetic acid, and glycerol
in the ratio of 3:1:1, respectively, and the excess stain was removed via two to three washes
using distilled water. Samples were placed in 80% glycerol, and photographs were taken.

2.7. Analysis of Hydrogen Peroxide and Superoxide Anion Content

Hydrogen peroxide content (H2O2) was measured as per Velikova and Loreto’s
method [52] through measuring the absorbance at 390 nm and expressed in µmol per gram
of fresh weight. The superoxide anion (O2

−) was estimated as per the method of Doke [53].
0.5 g leaves was placed in the test tube containing 7 mL of 50 mM sodium azide and incu-
bated for 5 min in the dark. From this solution, 2 mL was taken and subjected to heating
at 85 ◦C for 15 min, then cooling on ice for 5 min. The data is expressed as an increase in
absorbance at 580 nm per gram of fresh weight.

2.8. Membrane Integrity

Malondialdehyde content was estimated using the thiobarbituric acid method, accord-
ing to Heath and Packer [54]. 500 mg of the leaf samples was taken and macerated with
0.1% TCA and centrifuged at 5000 rpm for 10 min, and the supernatant was collected, to
which 4 mL of 20% TCA containing 0.5% TBA was added and subjected to heating at 95 ◦C
for 30 min in a water bath followed by cooling and centrifugation. Finally, MDA content
was calculated via subtracting the absorbance at 532 nm and 600 nm and expressed as µmol
per gram. Leaf discs were made from the fresh leaf of drought or high-temperature stress
or the combined drought-and-high-temperature-stressed plant. The leaf was immersed
in distilled water and incubated for 24 h; then, the leakage was determined initially with
a conductivity meter (EC1). Then, these samples were heated at 100 ◦C for one hour, and
the electrical conductivity of the solution was recorded (EC2). The electrolyte leakage of
the sample was expressed as a percentage [55].

2.9. Antioxidant Enzyme Activity

One gram of leaf sample was macerated with 50 mM phosphate buffer containing
(pH 7.0), 0.1 mM EDTA, 0.1 mM phenyl methane sulfonyl fluoride, 1% PVP (w/v), and
0.2% (v/v) Triton X-100 using pre-chilled pestle and mortar and centrifuged at 10,000 rpm
for 20 min at 4 ◦C. The supernatant was used to estimate the antioxidant enzyme activity
as described in Camejo et al. [56].
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The enzyme superoxide dismutase (SOD) was determined using the nitroblue tetra-
zolium (NBT) method described in Beauchamp and Fridovich [57]. The reaction mixture
(3 mL) contained 0.1 mL of enzyme extract, 1.5 mL of 50 mM phosphate buffer (pH 7.8),
0.1 mL of 2 mM EDTA, 0.2 mL of 9.9 mM L-methionine, 0.1 mL of 0.02% Triton X-100,
0.1 mL of 55 µM NBT, and 0.1 mL of 1 mM riboflavin. The absorbance of control and
blank was measured at 560 nm, and SOD activity was expressed as units per mg of protein.
One unit of SOD is the quantity of enzymes necessary to inhibit NBT by 50% at 25 ◦C.
According to Lowry et al. [58], the total protein was estimated using bovine serum albumin
as a standard. The reaction mixture (3 mL) contained 0.1 mL enzyme extract and 2.6 mL
of 50 mM potassium phosphate buffer (pH 7.0). 0.1 mL of 15 mM H2O2 was added, and
the absorbance was recorded at 240 nm for 2 min. Catalase (CAT) activity was assessed
based on the disappearance of H2O2 during the reaction initiation and calculated using
an extinction coefficient of 43.6 mM−1 cm−1 and expressed as enzyme units per mg of
proteins [59]. The peroxidase (POD) activity was measured according to the procedure of
Kumar and Khan [60]. A 0.1 mL enzyme extract was added to the reaction mixture (3 mL)
containing 1 mL of 100 mM phosphate buffer (pH 7.0), 0.5 mL of 10 mM pyrogallol, and
0.5 mL of 5 mM H2O2. Later, the solution was incubated for 5 min at 25 ◦C, and the reaction
was terminated through adding 0.5 mL of 2.5 N H2SO4. The absorbance was recorded at
420 nm for 3 min at 30 s intervals, and the activity was calculated using the extinction coef-
ficient of 12 mM−1 cm−1 and expressed in µmol of purpurogallin min−1 mg of protein−1.
According to Chen and Asada [61], ascorbate peroxidase (APX) activity was determined
using 1 mL of the reaction mixture comprised of 0.05 mL enzyme extract, 0.85 mL of 50 mM
phosphate buffer (pH 7.0), 0.05 mL of 0.1 mM ascorbate, and 0.05 mL of 0.3 mM H2O2, and
the measure of absorbance was recorded at 290 nm for 1 min. APX activity was calculated
using an extinction coefficient of 2.8 mM−1 cm−1 and expressed in units per mg of protein.
Glutathione reductase (GR) was quantified as per the procedure of Smith et al. [62]. The
enzyme activity was measured with 1 mL of reaction mixture containing enzyme extract,
100 mM potassium phosphate buffer (pH 7.0) containing 1 mM EDTA, 150 µM NADPH,
and 500 µM oxidized glutathione. The enzyme activity was measured at an absorbance of
340 nm and expressed as enzyme units per mg of protein.

2.10. Relative Tolerance Index (RTI)

The tolerance level of plants exposed to stress and foliar spray was indirectly calculated
using stomatal conductance [63]. The RTI was calculated using the formula:

RTI (%) =
Stomatal conductance of stressed plant

Stomatal conductance of unstressed plant
× 100

2.11. Yield

Fruit was harvested for seven pickings; the number of fruits harvested per picking
was counted, and the total was represented as the total fruits per plant. The weight of
tomato fruit at each harvest was recorded and expressed as fruit yield per plant.

2.12. Statistical Analysis

The experiment was laid out in a Factorial Completely Randomized Design (FCRD)
with four replications. The data were statistically analyzed using SPSS for windows, version
16.0. Chicago, SPSS Inc., USA, and the graphs of observed variables were obtained using
Graphpad prism software for windows, version 9.0.0. The results were presented as the
mean of four replications and standard error of means (SEM). Based on analysis of variance
(ANOVA), the least significant difference test (LSD5%) was used for means comparison.
The significance was denoted using small letters, given that the means with same letters
are not statistically significant at p = 0.05. The mean value of each trait is presented in
Supplementary Tables S2–S16.
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3. Results

The effect of stress, foliar spray, and the interaction of stress and foliar spray was sig-
nificant (p < 0.05) for the chlorophyll index (Figure 3A) and thylakoid membrane damage
(Figure 3B). Among the stresses, D + HT stress decreased the chlorophyll index by a greater
magnitude than D or HT stresses alone. Among the foliar sprays, a higher level of chloro-
phyll index was observed in 100 µM melatonin-treated plants than in other treatments.
Application of 100 µM melatonin to D (15%), HT (13%), and D + HT (10%) stressed plants
increased the chlorophyll index more than other treatment combinations. In contrast, the
thylakoid membrane damage was more remarkable in D + HT-stressed plants than D or
HT-stressed plants (Figure 3B). Foliar spray of 100 µM melatonin to D + HT-stressed plants
decreased the thylakoid membrane damage by 18%, which was lower than D + 100 µM
melatonin (31%), and HT + 100 µM melatonin (26%) sprayed plants (Figure 3B).
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Figure 3. Effect of stress (drought—D, high temperature—HT, and D + HT) and foliar spray (irrigated
control—AC, stress control—SC, 80 µM melatonin—80 µM Mel, and 100 µM melatonin—100 µM
Mel) on (A) chlorophyll index (SPAD units) and (B) thylakoid membrane damage (F0/Fm) in tomato
on 10th day of stress. The results were presented as mean of four replications and standard error of
means (SEM). Based on analysis of variance (ANOVA), the least significant difference test (LSD5%)
was used for means comparison. The significance was denoted by small letters, given that the means
with same letters are not statistically significant at p = 0.05.

The gas exchange parameters, viz., Pn (Figure 4A), E (Figure 4B), gs (Figure 4C),
and Ci (Figure 4D), were significantly (p < 0.05) influenced by stress, foliar spray, and
their interactions (Figure 4A–D). Among the stresses, a higher decrease in Pn, E, and gs
was recorded in D + HT-stressed plants than D or HT stress (Figure 4A–D). Among the
foliar sprays, 100 µM melatonin-treated plants showed an increased Pn, E, and gs and
decreased Ci compared to other foliar spray treatments (Figure 4A–D). A foliar spray of
100 µM melatonin on D-stressed plants yielded a higher increase in Pn (24%), E (14%), and
gs (32%) than HT + 100 µM melatonin and D + HT + 100 µM melatonin-sprayed plants
(Figure 4A–D).
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Figure 4. Effect of stress (drought—D, high temperature—HT, and D + HT) and foliar spray (irrigated
control—AC, stress control—SC, 80 µM melatonin—80 µM Mel, and 100 µM melatonin—100 µM Mel)
on (A) photosynthetic rate, (B) transpiration rate, (C) stomatal conductance, and (D) intercellular CO2

concentration in tomato on 10th day of stress. The results were presented as mean of four replications
and standard error of means (SEM). Based on analysis of variance (ANOVA), the least significant
difference test (LSD5%) was used for means comparison. The significance was denoted by small
letters, given that the means with same letters are not statistically significant at p = 0.05.

The effect of stress, foliar spray, and the interaction of stress and foliar spray was
significant (p < 0.05) for staining (Figure 5A,B) and hydrogen peroxide and superoxide
anion contents (Figure 6A,B). Among the stresses, D + HT-stressed plants had a higher free
radical content and staining than D or HT stress (Figures 5A,B and 6A,B). Among the foliar
sprays, decreased H2O2 and O2

− content and staining were observed in 100 µM melatonin-
treated plants than in other treatments (Figures 5A,B and 6A,B). Drought-stressed plants
sprayed with 100 µM melatonin had decreased free radical content and staining to a higher
level than HT + 100 µM melatonin and D + HT + 100 µM melatonin-sprayed plants
(Figures 5A,B and 6A,B).
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Figure 5. Effect of stress (drought—D, high temperature—HT, and D + HT) and foliar spray (irrigated
control—AC, stress control—SC, 80 µM melatonin—80 µM Mel, and 100 µM melatonin—100 µM
Mel) on (A) histochemical detection of hydrogen peroxide generation rate via DAB staining and
(B) histochemical detection of superoxide anion generation rate via NBT staining in tomato on
10th day of stress.
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Figure 6. Effect of stress (drought—D, high -temperature—HT, and D + HT) and foliar spray (irrigated
control—AC, stress control—SC, 80 µM mMelatonin—80 µM Mel, and 100 µM mMelatonin—100 µM
Mel) on (A) hydrogen peroxide content, and (B) superoxide anion content in tomato on 10th day of
stress. The results were presented as mean of four replications and standard error of means (SEM).
Based on analysis of variance (ANOVA), the least significant difference test (LSD5%) was used for
means comparison. The significance was denoted by small letters, given that the means with same
letters are not statistically significant at p = 0.05.
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The effect of stress, foliar spray, and the interaction of stress and foliar spray was
significant (p < 0.05) for malondialdehyde (MDA) content and electrolyte leakage (EL)
(Figure 7A,B). Among the stresses, D + HT-stressed plants showed increased MDA contents
and electrolyte leakage to a higher level than HT or D stresses (Figure 7A,B). Among
the foliar sprays, 100 µM melatonin-treated plants had decreased MDA content and elec-
trolyte leakage level than in other treatments (Figure 7A,B). A greater decrease in MDA
and electrolyte leakage was observed under D + 100 µM melatonin-sprayed plants than
HT + 100 µM melatonin and D + HT + 100 µM melatonin-sprayed plants (Figure 7A,B).
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Figure 7. Effect of stress (drought—D, high temperature—HT, and D + HT) and foliar spray (irrigated
control—AC, stress control—SC, 80 µM melatonin—80 µM Mel, and 100 µM melatonin—100 µM
Mel) on (A) malondialdehyde content and (B) electrolyte leakage in tomato on 10th day of stress.
The results were presented as mean of four replications and standard error of means (SEM). Based
on analysis of variance (ANOVA), the least significant difference test (LSD5%) was used for means
comparison. The significance was denoted by small letters, given that the means with same letters
are not statistically significant at p = 0.05.

The antioxidant enzymes, viz., SOD (Figure 8A), CAT (Figure 8B), POD (Figure 8C),
APX (Figure 8D), and GR (Figure 8E), were significantly (p < 0.05) influenced by stress,
foliar spray, and the interaction of stress and foliar spray (Figure 8A–E). Among the
stresses, SOD, CAT, and POD activity was higher under D + HT stress than under D or HT
stress. In contrast, the same treatment showed less activity of APX and GR (Figure 8A–E).
Among the foliar sprays, increased SOD, CAT, and POD enzyme activity was recorded in
100 µM melatonin-treated plants compared to other foliar spray treatments (Figure 8A–C).
D + 100 µM melatonin-sprayed plants had an increased SOD (17%), CAT (24%), and
POD (27%) activity than HT + −100 µM melatonin-treated plants and D + HT +100 µM
melatonin-treated plants (Figure 8A–C). A similar trend was observed for APX and GR
enzyme activity (Figure 8D,E).
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bate peroxidase (APX), and (E) glutathione reductase (GR) enzyme activity in tomato on 10th day 
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Figure 8. Effect of stress (drought—D, high temperature—HT, and D + HT) and foliar spray (irrigated
control—AC, stress control—SC, 80 µM melatonin—80 µM Mel, and 100 µM melatonin—100 µM
Mel) on (A) superoxide dismutase (SOD), (B) catalase (CAT), (C) peroxidase (POD), (D) ascorbate
peroxidase (APX), and (E) glutathione reductase (GR) enzyme activity in tomato on 10th day of stress.
The results were presented as mean of four replications and standard error of means (SEM). Based
on analysis of variance (ANOVA), the least significant difference test (LSD5%) was used for means
comparison. The significance was denoted by small letters, given that the means with same letters
are not statistically significant at p = 0.05.
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The effect of stress, foliar spray, and the interaction of stress and foliar spray was
significant (p < 0.05) for the relative tolerance index and fruit yield (Table 1). Among the
stresses, a greater decrease in relative tolerance index was observed in D + HT-stressed
plants than for individual stresses (Table 1). Among the foliar sprays, a higher relative
tolerance index was observed in 100 µM melatonin-treated plants than for other foliar spray
treatments (Table 1). The HT + 100 µM melatonin-treated plants had an increased (86%)
relative tolerance index (Table 1) compared to the D + 100 µM melatonin (74%) and D + HT
and 100 µM melatonin (56%) groups.

Table 1. Effect of different stress and melatonin treatment on relative tolerance index and fruit yield
in tomato.

Parameters Treatments D HT D + HT

Relative
tolerance index (%)

Stress Control 55.7 ± 1.56 e 70.1 ± 2.16 cd 45.9 ± 2.69 f

80 µM melatonin 65.9 ± 2.61 d 79.4 ± 2.63 b 51.5 ± 1.57 ef

100 µM melatonin 73.6 ± 1.65 bc 85.9 ± 3.36 a 55.9 ± 2.49 e

Yield
(kg plant−1)

Absolute Control 3.84 ± 0.08 a 3.84 ± 0.08 a 3.84 ± 0.08 a

Stress Control 2.22 ± 0.06 d 1.65 ± 0.03 g 1.07 ± 0.04 i

80 µM melatonin 2.55 ± 0.02 c 1.82 ± 0.05 f 1.15 ± 0.03 i

100 µM melatonin 2.84 ± 0.05 b 2.04 ± 0.04 e 1.35 ± 0.03 h

The data represent the mean of four replications and the error bars represent SEM. The means with different
letters are significantly different at p = 0.05. The stress treatments represented as drought (D), high temperature
(HT), and combined drought and high temperature (D + HT); foliar treatments represented as irrigated control
(AC), stress control (SC), 80 µM melatonin (80 µM Mel), and 100 µM melatonin (100 µM Mel).

Among the stresses, compared to HT and D + HT stress, D-stressed plants had in-
creased fruit yield (Table 1). Among the foliar sprays, 100 µM melatonin-treated plants
showed increased fruit yield compared to other foliar spray treatments (Table 1). The plants
treated with D + 100 µM melatonin had an increased fruit yield (32%) compared to plants
treated with HT + 100 µM melatonin (23%) and D + HT + 100 µM melatonin (16%) (Table 1).

4. Discussion

Abiotic stress, viz., drought or high temperature, affects the productivity of horticul-
tural crops to a greater extent ranging from 50% to 70% [64]. The effect of drought (D)
or high temperature (HT) either individually or in combination triggers ROS production
that impairs the photosynthetic membrane and thylakoid membrane due to imbalanced
antioxidant activity that results in increased levels of lipid peroxidation and ion leakage [65].
As an antioxidant booster, exogenous melatonin is used in the current study to decrease the
stress-induced oxidative damage [66]. Similarly, previous findings on tomatoes revealed
that exogenous melatonin (100 µM) has a prominent effect on mitigating ROS-induced
oxidative damage [67,68]. In addition, many investigators have reported that the individual
effects of D or HT stress can be mitigated via exogenous melatonin application in maize [17],
soyabean [18], tomato [20], and strawberry [21], but little information is available on the
effect of melatonin under combined drought or HT stress.

The chlorophyll index measures the chlorophyll content and is directly associated
with photosynthetic efficiency [69]. This study suggested that D, HT, or D + HT stress
decreased the chlorophyll index, and it could be associated with thylakoid membrane
damage or decreased 5-aminolevulinate dehydratase enzyme activity. Our research results
were similar to the findings of Din et al. [70]. Moreover, D + HT stress-treated plants
showed a more decreased chlorophyll index, which evidenced that the effects of combined
stress are predominant over individual D or HT stress [71,72]. However, the findings of our
study resulted that the exogenous melatonin spray under D or HT stress, individually or in
combination, increased the chlorophyll index over the stress-control group, which could be
associated with reduced activity of chlorophyll degradation enzymes. These results agree
with Yang et al. [15].
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The decreased Pn under abiotic stress could be due to damage in the site of light reac-
tion situated in the thylakoid membrane and carbon metabolism [73]. Drought decreased
Pn is mediated by a turgor-loss-induced stomatal closure mechanism, which resulted in
a decrease in gs [74]. In contrast, decreased Pn under HT stress occurs due to biochem-
ical changes of photosynthetic enzymes [75]. Similarly, the process of photosynthesis is
examined in the present study, which results in decreased stomatal conductance and photo-
synthetic rate and increased intercellular CO2 concentration and transpiration rate under D,
HT, or D + HT stress. Our results were corroborated by the reports of Benavides et al. [63].
However, melatonin spray under D-stressed plants increased the gs and Pn rate more than
in stress-control plants, proving that melatonin could acclimate the tomato plants to with-
stand the stress. Similar findings of Altaf et al. [20] reported that melatonin pretreatment
in tomato restored the gas exchange parameters through reducing the negative effects of
stress. The results of this study also imply that melatonin could regulate the balanced
flow of electrons in PSII, which prevents chlorophyll pigment degradation and decreases
thylakoid membrane damage (F0/Fm), which could upregulate the PSII photochemistry
and therefore enhance photosynthesis. Similarly, the results of Arena et al. [76] follow the
same trend.

Free radical production is significantly higher under D or HT stress; in particular, in-
creased ROS production was found to have more adverse effects under combined stress [77].
Our present study revealed that the ROS content was enhanced under D, HT, or D + HT
stress, which could result in oxidative damage. Among the individual stresses, plants
exposed to HT stress showed increased membrane damage, indicating that HT is more
deleterious than D stress. The severity of oxidative damage caused by H2O2 and O2

− was
assessed via histochemical staining, and the result indicated that D + HT stress showed
a tremendous increase in ROS production. The results of our study agree with the report
of Hussain et al. [78] on maize. In contrast, the foliar spray of melatonin decreased ROS
production more than the stress-control. Decreased ROS production would reduce the
levels of MDA content and electrolyte leakage that improve membrane integrity. The
results were supported by Fahad et al. [79]. Also, few results convinced that increased
membrane integrity under stress could be due to increased antioxidants enzymes activity
in peach [80], and pepper [81,82].

The antioxidant enzymes, viz., superoxide dismutase, catalase, peroxidase, ascorbate
peroxidase, and glutathione reductase, were increased under individual and combined D
or HT stress [83,84]. The results of this study indicate that under HT and D + HT stress, the
activity of antioxidant enzymes, viz., SOD, CAT, and POD, was found to be increased, while
APX and GR activity was found to be insufficient to scavenge free radicals. Our results
are similar to Ayidin et al. [85] and Duan et al. [86] for tomato. Therefore, foliar spray of
melatonin (100 µM) supplementation increased the SOD, CAT, and POD activity compared
to stress-control plants. This trend is similar to the findings of Zandalinas et al. [87],
suggesting that activation of antioxidant enzymes might be the reason for decreased
membrane damage in citrus. In addition, APX removes H2O2 similar to CAT and POD,
which cope to withstand combined drought and high-temperature stress [88]. In our study,
APX and GR activity showed higher increases in D + 100 µM melatonin than HT + 100 µM
melatonin and D + HT + 100 µM melatonin-treated plants. Although melatonin spray is
effective under all stress, D + 100 µM predominantly mitigates the negative effects through
increasing the antioxidant enzymes over increased ROS production, thereby maintaining
redox homeostasis [89]. The results were comparable to Huang et al. [73] for maize and
Raja et al. [90] for tomato, as melatonin keeps the equilibrium between ROS generation and
antioxidant enzyme activity under stress.

To determine whether melatonin’s foliar application could help mitigate stress, we cal-
culated the relative tolerance index (RTI) based on the stomatal conductance in stressed and
unstressed plants [63]. Plants normally depend on transpiration, a cooling mechanism, to
escape drought and high-temperature stress [91]. In such conditions, responses of stomatal
opening and closing under D or HT that depend on gs were studied in detail [92,93]. Our
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results showed an increased RTI (70%) under HT stress compared to D (56%) and D + HT
stress (46%). The trend of RTI is similar to gs. However, the RTIs of D + 100µM melatonin,
HT + 100µM melatonin, and D + HT + 100µM melatonin-sprayed plants were 74%, 86%,
and 56%, respectively. The above finding proves that foliar application of melatonin can
be the best crop management strategy to increase crop stress tolerance [7]. In addition,
abiotic stress, viz., D or HT, adversely affects crop productivity in horticultural crops [94]
and, therefore, intensive efforts were taken to improve stress tolerance to meet global food
demand [95]. In recent years, melatonin-related studies also reported on the detrimental
effects of D, HT, or D + HT stress on crop yield for lentil [96], moringa [97], and tomato [34].
Our study showed that foliar application of melatonin under all stresses increased the fruit
yield, and this could be due to sustained photosynthesis under stressful environments
through efficient activation of the antioxidant defense system.

5. Conclusions

In summary, D, HT, or D + HT stress can increase the production of ROS, which could
increase membrane damage due to poor antioxidant activity. Among the stresses, D + HT
stress is more detrimental than HT and D stress alone. The foliar spray of 100 µM melatonin
under all stress decreased the ROS more than stress-control, proving its antioxidant po-
tential, resulting in lower thylakoid membrane damage and increased photosynthetic rate
and fruit yield in tomato. Therefore, exogenous melatonin application effectively mitigates
the negative effects of D, HT, or D + HT stress through increasing the antioxidant activity
which protects the photosynthetic system from oxidative damage. The current study on
melatonin will help the researchers to understand how plants cope to withstand D, HT,
or D + HT stress. Since a few years, melatonin is gaining interest among the researchers,
although topics related to mitigation of combined stresses were recently under progress.
There is a lack of ideas on how melatonin functions effectively in plant systems and how
its mechanisms related to foliar uptake and translocation overcome stress Amidst difficul-
ties, the pathways involved in melatonin biosynthesis and its associated genes, melatonin
signaling and its regulation, and crosstalk with other hormones under abiotic stress need
to be explored in future. Future research may also aim to focus on unexplored parts of the
anisotropic or isotropic stomatal behavior and its mechanisms under stress to understand
the photosynthetic process in depth, which could also be an effective strategy to improve
crop productivity.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/horticulturae9060673/s1, Table S1: Role of melatonin in drought
and high-temperature stress on crop yield; Tables S2–S16: Mean and ANOVA for physiological and
yield traits.
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Abbreviations

D Drought
HT High-temperature
D + HT Combined drought and high-temperature
AT Ambient temperature
SOD Superoxide dismutase
CAT Catalase
POD Peroxidase
APX Ascorbic peroxidase
GR Glutathione reductase
ROS Reactive oxygen species
PSII Photosystem II
OTC Open top chamber
PEG Polyethylene glycol
SPAD Soil plant analysis development
Pn Photosynthetic rate
E Transpiration rate
gs Stomatal conductance
Ci Intercellular CO2 concentration
H2O2 Hydrogen peroxide
O2
− Superoxide anion

NBT Nitroblue tetrazolium
DAB 3,3- diaminobenzidine
TCA Trichloroacetic acid
TBA Thiobarbituric acid
EC Electrical conductivity
EL Electrolyte leakage
PVP Poly vinyl pyrrolidone
EDTA Ethylene diamine tetraacetic acid
RTI Relative tolerance index
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