

Supplementary Material

DFT Protocol for EPR Prediction of Paramagnetic Cu(II) Complexes and Application to Protein Binding Sites

1. Supplementary Tables	S1
2. Supplementary Figures	S 8
3. Cartesian Coordinates	S10
4. References	S44

1. Supplementary Tables

Table S1. Values of A_x , A_y , A_z and g_z for the fourteen Cu(II) complexes examined in this study.

Complex	Ax ^{exptl 1}	Ay ^{exptl 1}	Az ^{exptl 1}	$g^{z^{exptl}}$	Ref.
[Cu(H₋₂P1)]-	11.0	14.0	202.5	2.211	[<u>1]</u>
[Cu(acac)2]	-27.1	-19.5	-190.8	2.117	[<u>2</u>]
[Cu(bipy)2(NCS)]+	-8.8	-8.8	-180.7	2.267	[<u>3]</u>
[Cu(en)2] ²⁺	22.0	22.0	205.0	2.204	2
[Cu(H-2GGG)]-	21.0	21.0	201.0	2.202	2
[Cu(H-2GGH)]-	22.0	22.0	206.8	2.173	2
[Cu(H2O)6] ²⁺	8.0	8.0	137.0	2.407	2
[Cu(mnt)2] ²⁻	41.2	41.2	166.3	2.086	[<u>4</u>]
[Cu(OH)4] ²⁻	28.0	28.0	186.0	2.261	[<u>5]</u>
[Cu(salen)]	30.7	30.7	203.7	2.212	[<u>6]</u>
[Cu(salicylaldehydeiminato)2]	21.0	21.0	185.0	2.2	[<u>Z</u>]
[Cu(salpn)]	15.7	15.7	175.7	2.261	[<u>8]</u>
[Cu(<i>S,S</i>)-mnpala)]	20.0	20.0	192.0	2.24	[<u>9]</u>
[Cu(ttcn)2] ²⁺	19.1	19.1	148.3	2.217	[<u>10]</u>

¹ Values given in 10⁻⁴ cm⁻¹. ² This work.

Table S2. Values of *A*_{iso}, *A*_x, *A*_y, *A*_z and *g*_z and percent deviation (PD) calculated at the level of theory B2PLYP/6-311g(d,p).

Complex	Aiso 1	A_{x} ¹	A_y 1	A_{z} 1	g_z	PD (A_z)	PD (g_z)
[Cu(H-2P1)] ⁴⁻	-7.5	-32.7	-103.3	113.5	1.935	-44.0	-12.5
[Cu(acac)2]	-86.4	-18.4	-18.7	-222.2	2.297	16.5	8.5
[Cu(bipy)2(NCS)]+	-53.6	12.8	15.7	-189.4	2.301	4.8	1.5
[Cu(en)2] ²⁺	-96.5	-29.1	-29.4	-230.9	2.249	12.6	2.0
[Cu(H-2GGG)]-	-102.7	-29.8	-34.5	-243.7	2.211	21.3	0.4
[Cu(H-2GGH)]-	-98.8	-25.2	-37.0	-234.1	2.220	13.2	2.2
[Cu(H ₂ O) ₆] ²⁺	4.7	-16.0	-82.9	113.1	2.408	-17.5	0.0
[Cu(mnt) ₂] ²⁻	-62.5	-2.7	-5.9	-178.8	2.238	7.5	7.3
[Cu(OH)4] ²⁻	-93.2	-25.4	-33.2	-221.0	2.311	18.8	2.2
[Cu(salen)]	-90.2	-19.3	-20.7	-230.7	2.251	13.3	1.8
[Cu(salicylaldehydeiminato)2]	-85.0	-12.7	-13.6	-228.7	2.244	23.6	2.0
[Cu(salpn)]	-79.7	-7.7	-13.7	-217.8	2.273	24.0	0.5
[Cu(S,S)-mnpala)]	-98.8	-30.2	-31.9	-234.4	2.259	22.1	0.8
[Cu(ttcn)2] ²⁺	-45.4	9.5	16.2	-161.9	2.275	9.2	2.6
					MAPD ²	17.4 (9.4)	3.1 (3.5)
					MPD ³	9.0	1.4

Complex	Aiso ¹	A_{x} ¹	A_y 1	A_{z} 1	g_z	PD (Az)	PD (g_z)
[Cu(H ₋₂ P1)] ⁴⁻	-116.7	-80.7	-86.3	-183.0	2.078	-9.6	-6.0
[Cu(acac)2]	-80.6	-18.9	-19.2	-203.7	2.178	6.8	2.9
[Cu(bipy)2(NCS)]+	-47.3	9.0	16.7	-167.5	2.172	-7.3	-4.2
[Cu(en)2] ²⁺	-86.4	-25.4	-25.6	-208.3	2.142	1.6	-2.8
[Cu(H-2GGG)]-	-84.3	-20.3	-24.5	-208.1	2.124	3.5	-3.6
[Cu(H-2GGH)] ⁻	-74.8	-14.6	-31.7	-178.2	2.108	-13.8	-3.0
[Cu(H2O)6] ²⁺	-0.3	-27.4	-93.8	120.1	2.290	-12.3	-4.8
[Cu(mnt)2] ²⁻	-58.0	-13.6	-13.9	-146.7	2.113	-11.8	1.3
[Cu(OH)4] ²⁻	-86.9	-26.8	-28.1	-205.7	2.185	10.6	-3.4
[Cu(salen)]	-79.0	-15.6	-16.9	-204.4	2.148	0.4	-2.9
[Cu(salicylaldehydeiminato)2]	-73.0	-4.7	-10.8	-203.6	2.147	10.0	-2.4
[Cu(salpn)]	-71.9	-8.0	-11.8	-196.0	2.160	11.5	-4.5
[Cu(<i>S,S</i>)-mnpala)]	-89.7	-28.1	-30.4	-210.6	2.148	9.7	-4.1
[Cu(ttcn) ₂] ²⁺	-46.9	0.2	-1.9	-138.9	2.135	-6.3	-3.7
					MAPD ²	8.6 (4.2)	3.5 (1.1)
					MPD ³	-0.5	-2.9

Table S3. Values of A_{iso} , A_x , A_y , A_z and g_z and percent deviation (PD) calculated at the level of theory B3LYP/6-311g(d,p).

Table S4. Values of A_{iso} , A_x , A_y , A_z and g_z and percent deviation (PD) calculated at the level of theory B3P86/6-311g(d,p).

Complex	Aiso ¹	A_{x} ¹	A_y 1	A_{z} 1	g_z	PD (Az)	PD (g_z)
[Cu(H ₋₂ P1)] ⁴⁻	-123.0	-87.5	-93.5	-188.1	2.077	-7.1	-6.1
[Cu(acac)2]	-87.8	-26.8	-27.2	-209.4	2.179	9.8	2.9
[Cu(bipy)2(NCS)]+	-53.8	2.0	9.5	-172.9	2.174	-4.3	-4.1
[Cu(en)2] ²⁺	-93.9	-33.3	-33.5	-214.8	2.143	4.8	-2.8
[Cu(H-2GGG)] ⁻	-91.3	-27.7	-31.8	-214.3	2.124	6.6	-3.5
[Cu(H-2GGH)]-	-80.2	-20.2	-37.1	-183.2	2.109	-11.4	-3.0
[Cu(H2O)6] ²⁺	-7.5	-34.7	-99.0	111.2	2.294	-18.8	-4.7
[Cu(mnt)2] ²⁻	-63.8	-19.4	-19.9	-152.1	2.114	-8.5	1.3
[Cu(OH)4] ²⁻	-94.9	-35.1	-36.6	-213.1	2.188	14.6	-3.2
[Cu(salen)]	-86.1	-23.3	-24.6	-210.4	2.149	3.3	-2.8
[Cu(salicylaldehydeiminato)2]	-80.2	-12.9	-18.1	-209.7	2.148	13.3	-2.4
[Cu(salpn)]	-78.9	-15.5	-19.4	-201.8	2.161	14.9	-4.4
[Cu(S,S)-mnpala)]	-96.6	-35.5	-37.7	-216.5	2.150	12.7	-4.0
[Cu(ttcn)2] ²⁺	-51.6	-3.3	-8.1	-143.5	2.138	-3.2	-3.6
					MAPD ²	9.7 (4.7)	3.5 (1.1)
					MPD ³	1.9	-2.9

Complex	Aiso 1	A_{x} ¹	A_y 1	A_{z} 1	g_z	PD (Az)	PD (g_z)
[Cu(H-2P1)]4-	-121.2	-85.5	-91.6	-186.5	2.078	-7.9	-6.0
[Cu(acac)2]	-85.7	-24.6	-25.0	-207.5	2.180	8.8	3.0
[Cu(bipy)2(NCS)]+	-52.2	3.6	11.4	-171.5	2.175	-5.1	-4.1
[Cu(en)2] ²⁺	-91.8	-31.1	-31.3	-213.1	2.144	3.9	-2.7
[Cu(H-2GGG)]-	-89.4	-25.8	-29.7	-212.8	2.125	5.9	-3.5
[Cu(H-2GGH)] ⁻	-78.5	-18.4	-35.2	-181.9	2.110	-12.0	-2.9
[Cu(H2O)6] ²⁺	-6.2	-33.4	-97.7	112.5	2.295	-17.9	-4.6
[Cu(mnt)2] ²⁻	-62.3	-17.6	-18.1	-151.2	2.115	-9.1	1.4
[Cu(OH)4] ²⁻	-92.8	-32.7	-34.4	-211.2	2.189	13.6	-3.2
[Cu(salen)]	-84.2	-21.2	-22.5	-208.8	2.150	2.5	-2.8
[Cu(salicylaldehydeiminato)2]	-78.4	-11.0	-16.1	-208.1	2.149	12.5	-2.3
[Cu(salpn)]	-77.0	-13.4	-17.3	-200.2	2.162	13.9	-4.4
[Cu(S,S)-mnpala)]	-94.5	-33.3	-35.5	-214.7	2.151	11.8	-4.0
[Cu(ttcn)2] ²⁺	-49.9	-1.4	-6.0	-142.4	2.140	-4.0	-3.5
					MAPD ²	9.4 (4.5)	3.4 (1.1)
					MPD ³	1.2	-2.8

Table S5. Values of *A*_{iso}, *A*_x, *A*_y, *A*_z and *g*_z and percent deviation (PD) calculated at the level of theory B3PW91/6-311g(d,p).

Table S6. Values of *A*_{iso}, *A*_x, *A*_y, *A*_z and *g*_z and percent deviation (PD) calculated at the level of theory BHandHLYP/6-311g(d,p).

Complex	Aiso 1	A_{x} ¹	A_y 1	A_{z} ¹	<i>g</i> ^z	PD (Az)	PD (g_z)
[Cu(H-2P1)]4-	-19.5	-44.5	100.3	-114.2	1.938	-43.6	-12.4
[Cu(acac)2]	-81.5	-13.5	-13.9	-217.1	2.288	13.8	8.1
[Cu(bipy)2(NCS)]+	-49.0	17.1	20.5	-184.4	2.291	2.1	1.1
[Cu(en)2] ²⁺	-91.5	-24.4	-24.7	-225.4	2.238	10.0	1.6
[Cu(H-2GGG)]-	-97.3	-25.1	-29.2	-237.5	2.202	18.2	0.0
[Cu(H-2GGH)]-	-94.5	-21.3	-33.8	-228.4	2.209	10.4	1.6
[Cu(H2O)6] ²⁺	10.1	-9.6	-78.1	118.1	2.405	-13.8	-0.1
[Cu(mnt)2] ²⁻	-60.9	-2.7	-5.6	-174.3	2.219	4.8	6.4
[Cu(OH)4] ²⁻	-88.8	-21.2	-28.5	-216.6	2.300	16.5	1.7
[Cu(salen)]	-84.9	-14.1	-15.6	-224.9	2.242	10.4	1.4
[Cu(salicylaldehydeiminato)2]	-79.3	-7.1	-8.2	-222.7	2.236	20.4	1.6
[Cu(salpn)]	-74.7	-2.9	-8.8	-212.5	2.264	20.9	0.1
[Cu(S,S)-mnpala)]	-93.9	-25.5	-27.3	-229.0	2.249	19.3	0.4
[Cu(ttcn)2] ²⁺	-44.1	9.9	16.4	-158.5	2.256	6.9	1.8
					MAPD ²	14.8 (9.8)	2.7 (3.5)
					MPD ³	6.9	1.0

Complex	Aiso 1	<i>Ax</i> ¹	A_y 1	A_{z} 1	g_z	PD (Az)	PD (g_z)
[Cu(H-2P1)]4-	-29.0	-58.2	77.3	-106.1	1.946	-47.6	-12.0
[Cu(acac)2]	-81.7	-16.2	-16.6	-212.2	2.196	11.2	3.7
[Cu(bipy)2(NCS)]+	-81.7	-16.2	-16.6	-212.2	2.193	17.4	-3.2
[Cu(en)2] ²⁺	-90.2	-26.7	-26.7	-217.1	2.156	5.9	-2.2
[Cu(H-2GGG)]-	-89.5	-22.4	-26.5	-219.6	2.135	9.2	-3.1
[Cu(H-2GGH)]-	-90.0	-22.1	-39.8	-208.1	2.127	0.6	-2.1
[Cu(H2O)6] ²⁺	0.7	-25.4	-94.1	121.6	2.305	-11.2	-4.2
[Cu(mnt)2] ²⁻	-69.9	-20.8	-21.8	-167.1	2.130	0.5	2.1
[Cu(OH)4] ²⁻	-89.5	-26.2	-28.4	-213.9	2.202	15.0	-2.6
[Cu(salen)]	-81.8	-14.9	-16.3	-214.1	2.163	5.1	-2.2
[Cu(salicylaldehydeiminato)2]	-75.1	-4.1	-9.5	-211.7	2.161	14.4	-1.8
[Cu(salpn)]	-74.5	-6.8	-11.1	-205.6	2.176	17.0	-3.7
[Cu(S,S)-mnpala)]	-92.9	-27.9	-30.1	-220.7	2.165	15.0	-3.4
[Cu(ttcn)2] ²⁺	-56.6	-3.7	-9.0	-157.2	2.155	6.0	-2.8
					MAPD ²	11.8 (11.5)	3.4 (2.5)
					MPD ³	4.2	-2.7

Table S7. Values of *A*_{iso}, *A*_x, *A*_y, *A*_z and *g*_z and percent deviation (PD) calculated at the level of theory CAM-B3LYP/6-311g(d,p).

Table S8. Values of A_{iso} , A_x , A_y , A_z and g_z and percent deviation (PD) calculated at the level of theory M06/6-311g(d,p).

Complex	Aiso ¹	A_{x} ¹	A_{y} 1	A_{z} ¹	g_z	PD (Az)	PD (g_z)
[Cu(H-2P1)]4-	-70.0	-37.2	-45.3	-127.3	2.090	-37.1	-5.5
[Cu(acac)2]	64.0	-16.0	102.9	105.1	2.351	-44.9	11.1
[Cu(bipy)2(NCS)]+	93.3	16.9	127.5	135.4	2.342	-25.1	3.3
[Cu(en)2] ²⁺	46.3	-47.3	92.9	93.2	2.253	-54.5	2.2
[Cu(H-2GGG)]-	38.5	-67.7	89.0	94.2	2.198	-53.1	-0.2
[Cu(H-2GGH)]-	21.8	59.0	-68.6	75.1	2.161	-63.7	-0.6
[Cu(H2O)6] ²⁺	342.2	248.4	371.5	406.6	3.069	196.8	27.5
[Cu(mnt)2] ²⁻	29.9	-43.3	64.8	68.4	2.162	-58.9	3.6
[Cu(OH)4] ²⁻	63.8	-7.6	98.2	100.6	2.379	-45.9	5.2
[Cu(salen)]	55.3	-41.5	101.9	105.5	2.265	-48.2	2.4
[Cu(salicylaldehydeiminato)2]	64.4	-39.4	114.5	118.1	2.261	-36.2	2.8
[Cu(salpn)]	67.2	-22.8	109.0	115.4	2.302	-34.3	1.8
[Cu(S,S)-mnpala)]	43.1	-46.3	86.0	89.4	2.270	-53.4	1.3
[Cu(ttcn)2] ²⁺	50.7	-19.4	81.9	89.6	2.206	-39.6	-0.5
					MAPD ²	57.0 (40.3)	4.6 (6.9)
					MPD ³	-28.4	3.9

Complex	Aiso 1	A_{x} ¹	A_y 1	A_{z} 1	g_z	PD (Az)	PD (g_z)
[Cu(H-2P1)]4-	-136.3	-101.0	-106.4	-201.4	2.079	-0.5	-6.0
[Cu(acac)2]	-90.4	-27.5	-28.0	-215.7	2.198	13.1	3.8
[Cu(bipy)2(NCS)]+	-56.8	2.1	8.6	-181.1	2.196	0.2	-3.1
[Cu(en)2] ²⁺	-96.4	-34.2	-34.3	-220.6	2.159	7.6	-2.0
[Cu(H-2GGG)]-	-95.5	-30.3	-33.7	-222.4	2.137	10.7	-2.9
[Cu(H-2GGH)]-	-87.4	-23.9	-40.5	-197.8	2.124	-4.3	-2.2
[Cu(H2O)6] ²⁺	-8.3	-35.0	-99.2	109.3	2.314	-20.2	-3.9
[Cu(mnt)2] ²⁻	-66.3	-18.9	-20.0	-160.0	2.131	-3.8	2.1
[Cu(OH)4] ²⁻	-97.7	-36.0	-38.6	-218.5	2.207	17.5	-2.4
[Cu(salen)]	-89.2	-24.4	-25.8	-217.5	2.165	6.8	-2.1
[Cu(salicylaldehydeiminato)2]	-83.5	-14.9	-19.1	-216.4	2.163	17.0	-1.7
[Cu(salpn)]	-81.6	-16.0	-20.4	-208.5	2.179	18.7	-3.6
[Cu(S,S)-mnpala)]	-99.7	-36.8	-38.8	-223.4	2.167	16.4	-3.3
[Cu(ttcn) ₂] ²⁺	-53.0	-2.0	-7.0	-150.0	2.158	1.2	-2.7
					MAPD ²	9.5 (7.1)	2.9 (1.1)
					MPD ³	5.7	-2.1

Table S9. Values of A_{iso} , A_x , A_y , A_z and g_z and percent deviation (PD) calculated at the level of theory PBE0/6-311g(d,p).

Table S10. Values of A_{iso} , A_x , A_y , A_z and g_z and percent deviation (PD) calculated at the level of theory TPSSh/6-311g(d,p).

Complex	Aiso 1	A_{x} ¹	A_y 1	A_{z} 1	g^z	PD (A_z)	PD (g_z)
[Cu(H-2P1)]4-	-96.1	-56.5	-67.2	-164.7	2.070	-18.7	-6.4
[Cu(acac)2]	-75.3	-14.3	-14.4	-197.3	2.140	3.4	1.1
[Cu(bipy)2(NCS)]+	-79.0	-17.8	-18.0	-201.3	2.134	11.4	-5.9
[Cu(en)2] ²⁺	-73.8	-10.9	-15.1	-195.3	2.115	-4.7	-4.1
[Cu(H-2GGG)]-	-59.1	-2.1	-19.0	-156.2	2.101	-22.3	-4.6
[Cu(H-2GGH)]-	-8.7	-42.3	-109.1	125.1	2.087	-39.5	-3.9
[Cu(H2O)6] ²⁺	-48.9	-4.4	-4.4	-137.9	2.216	0.6	-7.9
[Cu(mnt)2] ²⁻	-80.9	-20.3	-21.6	-200.7	2.095	20.7	0.4
[Cu(OH)4] ²⁻	-65.0	-2.3	-5.3	-187.5	2.147	0.8	-5.0
[Cu(salen)]	-71.4	-9.2	-10.1	-194.8	2.118	-4.4	-4.2
[Cu(salicylaldehydeiminato)2]	-41.1	14.5	21.7	-159.6	2.118	-13.7	-3.7
[Cu(salpn)]	-66.7	1.2	-6.0	-195.4	2.126	11.2	-6.0
[Cu(S,S)-mnpala)]	-65.0	-2.3	-5.3	-187.5	2.118	-2.3	-5.4
[Cu(ttcn) ₂] ²⁺	-36.2	8.4	13.2	-130.2	2.116	-12.2	-4.6
					MAPD ²	13.7 (12.6)	4.5 (1.9)
					MPD ³	-5.0	-4.3

Complex	Aiso 1	A_{x} ¹	A_y 1	A_{z} 1	g_z	PD (Az)	PD (g_z)
[Cu(H-2P1)]4-	-6.3	-37.3	-84.4	102.7	1.954	-49.3	-11.6
[Cu(acac)2]	-95.9	-31.0	-31.5	-225.2	2.206	18.0	4.2
[Cu(bipy)2(NCS)]+	-71.9	-5.5	-8.6	-201.7	2.204	11.6	-2.8
[Cu(en)2] ²⁺	-105.9	-42.9	-43.0	-231.7	2.164	13.0	-1.8
[Cu(H-2GGG)]-	-106.0	-39.1	-43.5	-235.4	2.139	17.1	-2.8
[Cu(H-2GGH)] ⁻	-107.7	-39.2	-56.8	-227.2	2.134	9.9	-1.8
[Cu(H2O)6] ²⁺	-14.7	-37.0	99.6	-106.8	2.325	-22.0	-3.4
[Cu(mnt) ₂] ²⁻	-84.9	-34.0	-35.8	-185.0	2.143	11.2	2.7
[Cu(OH)4] ²⁻	-102.7	-40.1	-42.2	-225.9	2.213	21.4	-2.1
[Cu(salen)]	-98.7	-32.4	-33.8	-230.0	2.170	12.9	-1.9
[Cu(salicylaldehydeiminato)2]	-92.6	-22.5	-27.4	-227.9	2.167	23.2	-1.5
[Cu(salpn)]	-91.3	-24.2	-28.5	-221.3	2.185	25.9	-3.4
[Cu(S,S)-mnpala)]	-108.0	-43.5	-45.7	-234.8	2.173	22.3	-3.0
[Cu(ttcn) ₂] ²⁺	-73.9	-20.0	-25.3	-176.5	2.170	19.0	-2.1
					MAPD ²	19.1 (9.9)	3.1(2.5)
					MPD ³	9.6	-2.2

Table S11. Values of A_{iso} , A_x , A_y , A_z and g_z and percent deviation (PD) calculated at the level of theory ω -B97-xD/6-311g(d,p).

Table S12. Values of *A*_{iso}, *A*_x, *A*_y, *A*_z and *g*_z and percent deviation (PD) calculated at the level of theory MPW1PW91/6-311g(d,p).

Complex	Aiso 1	A_{x} ¹	A_y 1	A_{z} 1	g_z	PD (A_z)	PD (g_z)
[Cu(H-2P1)]4-	2	2	2	2	2	2	2
[Cu(acac)2]	-65.7	-13.4	-13.9	-169.9	2.125	-10.9	0.4
[Cu(bipy)2(NCS)]+	-36.5	9.3	15.6	-134.4	2.112	-25.6	-6.8
[Cu(en)2] ²⁺	-70.2	-15.4	-15.6	-179.7	2.101	-12.3	-4.7
[Cu(H-2GGG)]-	-62.3	-5.7	-12.5	-168.7	2.088	-16.1	-5.2
[Cu(H ₋₂ GGH)] ⁻	-44.7	2.9	-12.9	-124.0	2.071	-40.0	-4.7
[Cu(H2O)6] ²⁺	2	2	2	2	2	2	2
[Cu(mnt)2] ²⁻	-43.8	-5.8	-6.4	-119.1	2.077	-28.4	-0.4
[Cu(OH)4] ²⁻	-66.3	-10.7	-17.3	-171.0	2.134	-8.1	-5.6
[Cu(salen)]	-63.5	-9.4	-10.7	-170.4	2.102	-16.3	-5.0
[Cu(salicylaldehydeiminato)2]	-59.4	1.9	-7.7	-172.5	2.103	-6.8	-4.4
[Cu(salpn)]	-58.1	-4.2	-6.2	-163.7	2.109	-6.8	-6.7
[Cu(S,S)-mnpala)]	-68.4	-15.0	-17.7	-172.5	2.103	-10.2	-6.1
[Cu(ttcn)2] ²⁺	-34.3	3.3	7.6	-113.9	2.099	-23.2	-5.3
					MAPD ³	17.1 (11.7)	4.6 (2.1)
					MPD ⁴	-17.1	-4.5

¹ Values given in 10⁻⁴ cm⁻¹. ² With MPW1PW91 functional the structures of [Cu(H₂O)₆]²⁺ and [Cu(H-2P1)₂]⁴⁻ did not give a converged wavefunction during the ORCA simulations. ³ Mean absolute percent deviation (MAPD) and standard deviation (SD) in parenthesis. ⁴ Mean percent deviation (MPD).

Complex	GGGG ³	GGHR ⁴	HGGGW⁵	HSA(1-5) 6	PrP(108-112) 6	PrP(108-112) 6	PrP(184-188) 6
Donors	NH₂, N⁻, N⁻, N⁻	NH2, N ⁻ , N ⁻ , NHis	Nhis, N⁻, N⁻, CO	NH₂, N⁻, N⁻, NHis	SMet, N ⁻ , N ⁻ , NHis	N-, N-, N-, NHis	N-, N-, N-, NHis
Cu-D(1)	2.033	2.039	1.991	2.085	2.541	1.991	2.001
Cu–N⁻(1)	1.912	1.877	1.996	1.944	1.917	1.899	1.906
Cu–N⁻(2)	1.913	1.958	1.921	1.943	1.970	1.990	1.993
Cu–D(2)	1.951	1.961	2.066	2.005	1.993	2.019	2.055
D(1)-Cu-N-	84.6	82.7	91.0	80.3	93.4	84.0	83.5
(1)							
N-(1)-Cu-N-	83.5	83.9	106.3	83.6	83.4	83.5	82.9
(2)							
N-(1)−Cu−	82.9	94.6	82.1	95.5	94.7	92.8	92.4
D(2)							
D(1)-Cu-D(2)	109.1	98.6	80.4	99.6	93.9	104.2	106.2

Table S13. Selected bond distances (Å) and angles (degree) for the models of HSA and PrP and for the X-ray structures of similar Cu(II)-peptide complexes.^{1,2.}

¹ Distances in Å and angles in degrees. ² D stands for donor and could be: $D(1) = NH_2$, N_{His} , S_{Met} , N^- and $D(2) = N^-$, N_{His} , CO. ³ GlyGlyGlyGly; experimental data taken from ref. [11]. ⁴ GlyGlyHis-*N*-methylamide; experimental data taken from ref. [12]. ⁴ HisGlyGlyGlyTrp; experimental data taken from ref. [13]. ⁶ Structure DFT optimized at the level of theory B3LYP-D3 (this work).

2. Supporting Figures

Figure S1. Superimposition of the optimized structure of [Cu(bipy)₂(NCS)]⁺ complex at B3LYP-D3 level of theory (in blue) and X-ray structure from ref. [<u>14</u>] (in orange).

Figure S2. Superimposition of the optimized structure of [Cu(ttcn)]²⁺ complex at B3LYP-D3 level of theory (in blue) and X-ray structure from ref. [10] (in orange).

Figure S3. Superimposition of the optimized structure of [Cu(*S*,*S*-mnpala)] complex at B3LYP-D3 level of theory (in blue) and X-ray structure from ref. [<u>15</u>] (in orange).

Figure S4. Superimposition of the optimized structure of [CuH₋₂GGH]⁻ complex at B3LYP-D3 level of theory using 6-311g(d,p) for the main group elements and SDD [ECP] for Cu (in blue), and *def*2-TZVP for all atoms in SMD continuum model for water (in orange).

Figure S5. Superimposition of the optimized structure of $[Cu(mnt)]^{2-}$ complex at B3LYP-D3 level of theory using 6-311g(d,p) for the main group elements and SDD [ECP] for Cu (in blue), and X-ray structure from ref. [<u>16</u>] (in orange).

3. Cartesian Coordinates

[Cu(H-1P1)2]4-

	Value
Charge	-2
Electronic Energy (a.u.)	-1218.118651
Gibbs energy (a.u.)	-1218.029674
Number of Imaginary Frequencies	0

0	0.375047	2.136137	0.000480
С	1.581228	2.463214	0.000160
Ν	1.951555	0.015222	-0.000306
С	2.733929	-1.050932	-0.000295
С	4.182609	-1.020669	-0.000257
С	4.821799	0.345883	-0.000028
С	3.885922	1.450306	-0.000043
С	2.526435	1.282742	-0.000128
Н	4.284526	2.459599	0.000092
С	-3.885883	-1.450327	0.000186
С	-2.526402	-1.282727	0.000038
Ν	-1.951566	-0.015187	-0.000250
С	-2.733961	1.050952	-0.000283
С	-4.182640	1.020649	-0.000193
С	-4.821787	-0.345926	0.000157
Н	-4.284469	-2.459627	0.000409
С	-1.581159	-2.463195	0.000380
0	-0.374981	-2.136083	0.000626
Н	2.239049	-2.018530	-0.000342
Н	-2.239100	2.018560	-0.000413
0	4.850065	-2.077092	-0.000403
0	6.056141	0.498951	0.000112
0	-6.056125	-0.499026	0.000353
0	-4.850133	2.077049	-0.000392
Cu	-0.000020	0.000015	-0.000008

[Cu(acac)₂]

	Value
Charge	0
Electronic Energy (a.u.)	-730.697837
Gibbs energy (a.u.)	-730.621447
Number of Imaginary Frequencies	0

С	-3.276837	0.000083	0.004091
Cu	0.000031	0.000022	-0.002132
0	-1.348694	-1.408352	-0.001562
С	-2.601661	-1.222549	0.001643
С	-2.601548	1.222585	0.002158
0	-1.348501	1.408154	-0.001225
Н	-4.358489	0.000081	0.006824
Н	-3.207778	2.138103	0.003466
Н	-3.208127	-2.137928	0.002235
С	3.276840	0.000172	0.005010
0	1.348386	1.408013	-0.002763
С	2.601472	1.222621	0.001509
С	2.601699	-1.222496	0.002274
0	1.348742	-1.408312	-0.002708
Н	4.358488	0.000220	0.008879
Н	3.208182	-2.137860	0.004128
Н	3.207570	2.138216	0.002257

[Cu(bipy)2(NCS)]+

	Value
Charge	1
Electronic Energy (a.u.)	-1679.404520
Gibbs energy (a.u.)	-1679.131341
Number of Imaginary Frequencies	0

Cu	0.279733	0.189307	-0.557624
Ν	2.100911	1.113455	-0.484417
С	2.281154	2.408096	-0.761700
С	3.539217	2.999055	-0.708014
С	4.631393	2.210222	-0.364403
С	4.438641	0.859676	-0.085513
С	3.150660	0.333211	-0.152734
С	2.809490	-1.084680	0.110855
С	3.729956	-2.045061	0.529384
С	3.298872	-3.347884	0.753044
С	1.957639	-3.663083	0.559077
С	1.095864	-2.655508	0.145528
Ν	1.510410	-1.404091	-0.076793
Ν	-1.417827	-0.932986	-0.877787
С	-1.649687	-1.522917	-2.057562
С	-2.855075	-2.138887	-2.357563
С	-3.853826	-2.133485	-1.387807
С	-3.616830	-1.509361	-0.170488
С	-2.383673	-0.896837	0.064167
С	-2.058359	-0.169870	1.322231
С	-2.985565	0.031447	2.347329
С	-2.602616	0.749159	3.474175
С	-1.307148	1.249535	3.554347
С	-0.444069	1.005830	2.492020
Ν	-0.806460	0.313828	1.410686
Ν	-0.584802	1.739891	-1.392574
С	-1.719734	2.077491	-1.254459
S	-3.252841	2.504877	-1.055599
Н	-0.839534	-1.483176	-2.775600
Н	-3.004897	-2.598760	-3.325339
Н	-4.812012	-2.600015	-1.581309
Н	-4.391776	-1.490301	0.581898
Н	-3.996561	-0.342172	2.269240
Н	-3.311915	0.923361	4.274056
Н	-0.973484	1.820476	4.411068

Н	1.383094	2.946150	-1.039916
Н	0.573500	1.381318	2.496884
Н	3.651218	4.050334	-0.938347
Н	5.626383	2.636164	-0.318753
Н	5.281981	0.233941	0.171550
Н	4.767681	-1.784430	0.683893
Н	4.002101	-4.105279	1.077332
Н	1.582016	-4.664277	0.724332
Н	0.041959	-2.838842	-0.015597

[Cu(en)₂]²⁺

	Value
Charge	2
Electronic Energy (a.u.)	-578.078382
Gibbs energy (a.u.)	-577.883320
Number of Imaginary Frequencies	0

С	2.809634	-0.669253	0.358955
N	1.533799	1.380466	-0.009028
С	2.809525	0.669420	-0.358802
N	1.533995	-1.380530	0.009325
Н	1.625255	-1.805806	-0.915854
Н	1.383917	2.159812	-0.650138
Н	1.624932	1.805304	0.916377
Н	3.681141	1.265830	-0.083439
Н	2.822982	0.529978	-1.441919
Н	2.823227	-0.529802	1.442057
Н	3.681305	-1.265526	0.083491
Н	1.384141	-2.159588	0.650791
С	-2.809375	0.669320	0.359313
Cu	-0.000002	-0.000074	-0.000262
N	-1.534098	-1.380549	-0.009145
С	-2.809626	-0.669107	-0.358875
Ν	-1.533857	1.380498	0.009094
Н	-1.625379	1.805363	-0.916264
Н	-1.384414	-2.159868	-0.650358
Н	-1.625403	-1.805492	0.916204
Н	-3.681448	-1.265369	-0.083908
Н	-2.822852	-0.529258	-1.441938
Н	-2.822216	0.529486	1.442384
Н	-3.681174	1.265775	0.084649
Н	-1.383774	2.159838	0.650180

[Cu(H₋₂GGG)]⁻

	Value
Charge	-1
Electronic Energy (a.u.)	-896.336286
Gibbs energy (a.u.)	-896.223319
Number of Imaginary Frequencies	0

Ν	1.434301	-2.141540	-0.183349
Н	1.271515	-2.964591	0.387574
С	2.740764	-1.488101	0.126598
С	2.704461	0.063516	0.040940
Н	3.015984	-1.736365	1.154434
Н	3.543269	-1.849356	-0.522379
0	3.777195	0.669082	0.145258
Ν	1.471240	0.524469	-0.100157
С	1.123040	1.934806	-0.075652
С	-0.419031	2.118075	-0.020345
Н	1.564641	2.446198	0.788911
Н	1.486453	2.462819	-0.965656
0	-0.919359	3.244843	-0.087703
Ν	-1.060741	0.948701	0.101443
С	-2.485907	0.751625	0.090628
С	-2.796397	-0.771895	0.039698
Н	-2.980496	1.160498	0.981477
Н	-2.971096	1.224472	-0.773586
0	-3.960747	-1.142387	0.049997
Н	1.403641	-2.446380	-1.151615
0	-1.760836	-1.574810	-0.013867
Cu	-0.053073	-0.649679	-0.020186

[Cu(H₋₂GGH)]⁻

	Value
Charge	-1
Electronic Energy (a.u.)	-1160.700824
Gibbs energy (a.u.)	-1160.515887
Number of Imaginary Frequencies	0

Ν	-2.176715	-0.512508	-0.446891
С	-1.746122	-1.757363	-1.052199
С	-0.207243	-1.876166	-1.032289
Н	-2.159804	-2.622740	-0.522095
Н	-2.069914	-1.837923	-2.096142
0	0.337619	-2.761197	-1.686645
С	-3.387776	-0.365235	0.077061
С	-3.520403	0.915267	0.937954
0	-4.373883	-1.105548	0.006342
N	-2.344802	1.825315	0.835242
Н	-3.598937	0.576757	1.973634
Н	-4.458885	1.415933	0.682020
Н	-2.198260	2.345645	1.694371
N	0.418196	-0.954902	-0.251835
С	1.851251	-1.041824	-0.120978
Н	2.349249	-1.077162	-1.096986
С	2.397498	0.141327	0.703440
С	2.394854	-2.327156	0.713815
Н	1.951110	0.072359	1.703559
Н	3.474525	-0.004006	0.798240
С	2.103993	1.487999	0.144695
0	1.593717	-2.856862	1.492090
Ν	0.798576	1.951333	0.038998
С	2.938796	2.451248	-0.357469
С	0.844801	3.149549	-0.513377
Ν	2.127439	3.498158	-0.769465
Н	4.009673	2.477314	-0.459563
Н	-0.002282	3.771233	-0.753684
Н	2.432424	4.354851	-1.200783
Н	-2.497056	2.505677	0.097033
0	3.609205	-2.520734	0.496878
Cu	-0.701443	0.574453	0.133270

[Cu(H₂O)₆]²⁺

	Value
Charge	2
Electronic Energy (a.u.)	-655.599583
Gibbs energy (a.u.)	-655.496642
Number of Imaginary Frequencies	0

Cu	0.001611	-0.000129	-0.000670
0	2.129291	-0.001331	-0.435829
0	-0.505488	-0.306641	-1.906099
0	-2.130006	0.001062	0.430821
0	0.512251	0.306967	1.903435
0	0.063440	-2.093031	0.275952
0	-0.071992	2.094380	-0.264956
Н	0.666286	2.662306	-0.520745
Н	2.792748	0.133167	0.252732
Н	-0.459573	0.372217	-2.593565
Н	-2.606422	0.114165	1.262556
Н	0.427510	1.178120	2.316253
Н	-0.680172	-2.655571	0.527992
Н	2.602833	-0.118020	-1.268696
Н	-0.426962	-1.178481	-2.318571
Н	-2.791163	-0.135524	-0.259545
Н	0.462486	-0.372844	2.589773
Н	0.862214	-2.636305	0.268783
Н	-0.876487	2.629253	-0.264121

[Cu(mnt)2]2-

	Value
Charge	-2
Electronic Energy (a.u.)	-2314.363831
Gibbs energy (a.u.)	-2314.350111
Number of Imaginary Frequencies	0

Cu	-0.000062	-0.000284	-0.000220
S	1.654224	-1.565642	0.557406
S	1.653914	1.565129	-0.558152
S	-1.654345	-1.565543	-0.557807
S	-1.653752	1.565373	0.557621
Ν	5.330778	-1.917560	0.630977
Ν	5.330425	1.918364	-0.629898
Ν	-5.330915	-1.917552	-0.630089
Ν	-5.330218	1.918387	0.630922
С	3.115262	-0.653022	0.223104
С	3.115102	0.653121	-0.223119
С	4.344614	-1.335799	0.442857
С	4.344344	1.336264	-0.442404
С	-3.115262	-0.652980	-0.222958
С	-3.115060	0.653172	0.223212
С	-4.344683	-1.335797	-0.442324
С	-4.344207	1.336323	0.442952

0.912317

-1.903315

-0.781665

1.753667

0.100606

1.951973

-2.300949

-1.776649 -0.791427

1.776381

-1.321349

2.127275

0.951361

0.087920

[Cu(OH)4]²⁻

0

0

0

Η

Н

H H

					Value
Charg	e				-2
Electro	onic Energy (a.u.)	1			-500.696516
Gibbs	energy (a.u.)				-500.681608
Numb	er of Imaginary I	Frequencies			0
Molecular Geometry in Cartesian Coordinates					
Cu	-0.065441	-0.078506	-0.011850		
0	1.821726	0.845627	-0.140264		

0.067206

-0.030455

0.073924

-0.077685

-0.111090

0.810486

-0.041329

S19

[Cu(salen)]

	Value
Charge	0
Electronic Energy (a.u.)	-1075.026637
Gibbs energy (a.u.)	-1074.911087
Number of Imaginary Frequencies	0

Cu	-0.000749000	0.181460000	-0.001133000
0	1.397439000	-1.183755000	-0.039149000
0	-1.396520000	-1.182908000	0.029403000
Ν	1.318702000	1.627913000	0.200084000
Ν	-1.319049000	1.626642000	-0.197932000
С	2.598049000	1.513447000	0.190396000
С	0.650706000	2.924234000	0.404248000
С	-0.651066000	2.923072000	-0.403584000
С	-2.598855000	1.512070000	-0.190165000
С	2.653860000	-1.037271000	-0.033792000
С	3.470875000	-2.229661000	-0.128864000
С	4.842581000	-2.149386000	-0.137687000
С	5.470519000	-0.893547000	-0.048600000
С	4.705042000	0.291885000	0.053179000
С	3.322301000	0.261652000	0.063347000
С	-2.654067000	-1.037314000	0.031544000
С	-3.468383000	-2.229554000	0.131373000
С	-4.840107000	-2.149827000	0.142494000
С	-5.469605000	-0.894270000	0.053295000
С	-4.706503000	0.290889000	-0.050710000
С	-3.323072000	0.261139000	-0.063660000
Η	3.210498000	2.412115000	0.295210000
Η	0.424474000	3.010222000	1.471382000
Н	-0.424918000	3.007332000	-1.470897000
Н	-3.210554000	2.411005000	-0.295779000
Н	2.944406000	-3.173822000	-0.195708000
Η	5.442300000	-3.048293000	-0.212298000
Η	6.551825000	-0.825787000	-0.054734000
Η	5.224804000	1.241148000	0.126954000
Н	-2.941372000	-3.173423000	0.197670000
Н	-5.439091000	-3.049041000	0.219316000
Н	-6.550992000	-0.828116000	0.062001000
Н	-5.226640000	1.239976000	-0.123263000
Н	1.290119000	3.760997000	0.113883000

Н -1.291714000 3.759429000 -0.114872000

[Cu(salicylaldehydeiminato)2]

	Value
Charge	0
Electronic Energy (a.u.)	-998.331649
Gibbs energy (a.u.)	-998.142363
Number of Imaginary Frequencies	0

С	5.257858	-1.128033	-0.000194
С	3.939674	-1.526027	0.000244
С	2.875189	-0.581973	0.000347
С	3.239328	0.809165	-0.000072
С	4.607144	1.177345	-0.000443
С	5.610731	0.236813	-0.000532
Н	6.039313	-1.881114	-0.000253
Н	3.665931	-2.574277	0.000556
Н	4.855856	2.234744	-0.000698
Н	6.651460	0.535758	-0.000872
0	1.654777	-1.020684	0.000903
0	-1.654790	1.020674	0.000931
С	2.261247	1.852285	-0.000088
N	0.977388	1.684371	-0.000422
С	-2.875199	0.581967	0.000364
С	-3.939689	1.526016	0.000264
С	-3.239335	-0.809175	-0.000071
С	-5.257871	1.128012	-0.000183
Н	-3.665955	2.574267	0.000588
С	-4.607147	-1.177363	-0.000451
С	-5.610738	-0.236835	-0.000536
Н	-6.039331	1.881088	-0.000240
Н	-4.855853	-2.234764	-0.000717
Н	-6.651466	-0.535784	-0.000883
С	-2.261240	-1.852282	-0.000095
Ν	-0.977385	-1.684339	-0.000427
Н	-2.654003	-2.872540	0.000123
Н	2.654032	2.872535	0.000139
Н	-0.421781	-2.534011	-0.000298
Н	0.421810	2.534059	-0.000285
Cu	0.000012	0.000014	0.000096

[Cu(salpn)]

	Value
Charge	2
Electronic Energy (a.u.)	-1115.079620
Gibbs energy (a.u.)	-11114.830341
Number of Imaginary Frequencies	0

Cu	-0.008144000	0.255419000	0.164944000
0	1.216887000	-1.194204000	-0.213975000
0	-1.298659000	-1.110592000	0.590921000
Ν	1.500069000	1.546253000	0.355970000
Ν	-1.478034000	1.612234000	-0.151468000
С	2.756753000	1.218574000	0.292214000
С	1.185659000	2.962543000	0.544374000
С	0.195793000	3.455044000	-0.514820000
С	-1.245406000	3.066195000	-0.214120000
С	-2.716267000	1.248456000	-0.331225000
С	2.503927000	-1.220947000	-0.186435000
С	3.177969000	-2.454512000	-0.423744000
С	4.550848000	-2.532842000	-0.413146000
С	5.351774000	-1.395615000	-0.166079000
С	4.734594000	-0.190063000	0.064749000
С	3.321353000	-0.067602000	0.064288000
С	-2.552740000	-1.162007000	0.308161000
С	-3.261416000	-2.384273000	0.497762000
С	-4.599046000	-2.487687000	0.196677000
С	-5.328938000	-1.386439000	-0.304793000
С	-4.680264000	-0.188870000	-0.483123000
С	-3.300240000	-0.040621000	-0.186831000
Н	3.484476000	2.026917000	0.420771000
Н	0.751106000	3.099532000	1.541952000
Н	0.241171000	4.547765000	-0.561940000
Н	-1.907762000	3.511893000	-0.965759000
Н	-3.424175000	2.037239000	-0.609271000
Н	2.558802000	-3.323030000	-0.611730000
Н	5.028978000	-3.489636000	-0.597412000
Н	6.431651000	-1.476097000	-0.160483000
Η	5.330989000	0.697945000	0.254419000
Η	-2.695488000	-3.225490000	0.878627000
Н	-5.104560000	-3.436538000	0.345497000
Н	-6.381651000	-1.487161000	-0.537810000
Н	-5.225298000	0.673687000	-0.856031000

Η	2.105709000	3.556773000	0.503568000
Н	0.499542000	3.073316000	-1.494518000
Н	-1.523480000	3.498690000	0.756204000

[Cu((S,S)-mnpala)]

Charge Electronic Energy (a.u.) Gibbs energy (a.u.) Number of Imaginary Frequencies Molecular Geometry in Cartesian Coordinates -0.980721 Cu 0.277971 -0.254193 0 1.933078 -1.823473 -0.743111 0 -1.619290 -0.533977 4.163341 0 -0.842255 -2.517196 -0.415629 0 -2.913854 -3.281973 -0.024907 0 0.507891 2.874268 -1.670015 0 -1.610299 2.418069 -1.607679 Ν 1.4889480.664088-0.002778 Ν -1.504301 0.007668 0.070346 Ν -0.510445 2.531842 -1.091881 С 3.026773 -1.230605 -0.369506 С 2.805426 0.084540 0.432232 С 2.836454 -0.251189 1.922048 С 1.018151 1.825238 0.771992 С -0.410228 2.273665 0.430914 С -1.500585 1.268757 0.836587 С -2.425733 -1.033691 0.635194 С -0.690769 -3.901830 0.485529 С -2.067632 -2.413548 -0.000032 С -0.695050 3.633034 1.085222 Н 1.629604 0.986070 -0.960642 Η -1.848492 0.226074 -0.866118 Η 3.613798 0.777811 0.184517 Η -0.887457 2.191937 1.986750 Н 0.633684 2.839121 2.562916 Η 3.751273 -0.810520 2.119731 Η 1.705021 2.666069 0.641725 Η 1.009948 1.559572 1.828490 Η -2.473601 1.757457 0.761463 Η -1.329787 1.022177 1.887034 Н -2.161162 -1.125995 1.694488 Η -4.486224 -1.551534 0.808400 Η -4.194072 0.180529 1.076886 Η -4.148168 -0.505425 -0.564416 Η -0.647369 3.529530 2.171615 Value 0 -1204.567793 -1204.324814 0

Н	-1.688984	3.989812	0.812137
Н	0.044057	4.372024	0.773081

[Cu(ttcn)₂]²⁺

	Value
Charge	2
Electronic Energy (a.u.)	-3058.098458
Gibbs energy (a.u.)	-3057.798303
Number of Imaginary Frequencies	0

Cu	0.000000	0.000000	0.000000
S	-0.054261	-0.544914	2.640466
S	2.239634	0.834354	0.357214
S	0.933426	-2.226158	-0.272301
С	1.340528	0.582915	3.049876
С	2.577275	0.533018	2.152568
С	3.163856	-0.523750	-0.480453
С	2.750570	-1.937305	-0.086916
С	0.455116	-3.005636	1.329334
С	0.732783	-2.211868	2.607084
Н	1.650861	0.388877	4.078459
Н	0.881508	1.573484	3.033226
Н	3.272779	1.313578	2.466508
Н	3.098160	-0.419237	2.236745
Н	4.227904	-0.373163	-0.286790
Н	2.990011	-0.335982	-1.541391
Н	3.256025	-2.654542	-0.736105
Н	3.026829	-2.174117	0.939110
Н	0.957550	-3.974313	1.375749
Н	-0.612388	-3.197430	1.204981
Н	0.331702	-2.779977	3.448437
Н	1.800726	-2.095049	2.786362
S	0.054261	0.544914	-2.640466
S	-2.239634	-0.834354	-0.357214
S	-0.933426	2.226158	0.272301
С	-1.340528	-0.582915	-3.049876
С	-0.732783	2.211868	-2.607084
С	-2.577275	-0.533018	-2.152568
С	-3.163856	0.523750	0.480453
С	-2.750570	1.937305	0.086916
С	-0.455116	3.005636	-1.329334
Н	-1.650861	-0.388877	-4.078459
Н	-0.881508	-1.573484	-3.033226
Н	-0.331702	2.779977	-3.448437
Н	-1.800726	2.095049	-2.786362

Н	-3.272779	-1.313578	-2.466508
Н	-3.098160	0.419237	-2.236745
Н	-4.227904	0.373163	0.286790
Н	-2.990011	0.335982	1.541391
Н	-3.256025	2.654542	0.736105
Н	-3.026829	2.174117	-0.939110
Н	-0.957550	3.974313	-1.375749
Н	0.612388	3.197430	-1.204981

[Cu(mnt)₂]²⁻(B3LYP-D3-def2-TZVP)

	Value
Charge	-2
Electronic Energy (a.u.)	-3757.671174
Gibbs energy (a.u.)	-3757.657362
Number of Imaginary Frequencies	0

Cu	-0.000006000	0.000105000	0.000017000
S	1.650068000	-1.553774000	0.567408000
S	1.650217000	1.553816000	-0.567307000
S	-1.650111000	-1.553757000	-0.567373000
S	-1.650251000	1.553822000	0.567346000
Ν	5.308984000	-1.919257000	0.640123000
Ν	5.308850000	1.919323000	-0.640452000
Ν	-5.308730000	-1.919644000	-0.640366000
Ν	-5.308765000	1.919581000	0.640383000
С	3.100313000	-0.650948000	0.228281000
С	3.100373000	0.650795000	-0.228314000
С	4.327457000	-1.334748000	0.449464000
С	4.327584000	1.334454000	-0.449561000
С	-3.100356000	-0.650924000	-0.228263000
С	-3.100410000	0.650819000	0.228332000
С	-4.327501000	-1.334722000	-0.449438000
С	-4.327618000	1.334481000	0.449585000

[Cu(mnt)2]²⁻ (B3LYP-D3-def2-TZVP, SMD for CH2Cl2)

	Value
Charge	-2
Electronic Energy (a.u.)	-3757.858073
Gibbs energy (a.u.)	-3757.843726
Number of Imaginary Frequencies	0

Cu	0.000023000	0.000007000	0.000020000
S	1.636940000	1.560004000	0.559850000
S	1.637009000	-1.559922000	-0.559785000
S	-1.636922000	-1.559913000	0.559982000
S	-1.636940000	1.559881000	-0.560009000
Ν	5.298011000	1.902926000	0.625409000
Ν	5.297664000	-1.903292000	-0.625686000
Ν	-5.298089000	-1.902673000	0.625383000
Ν	-5.298035000	1.902788000	-0.625220000
С	3.082967000	0.651050000	0.224494000
С	3.082993000	-0.650934000	-0.224330000
С	4.311660000	1.327373000	0.441063000
С	4.311721000	-1.327160000	-0.440975000
С	-3.082932000	-0.650997000	0.224455000
С	-3.082940000	0.650943000	-0.224497000
С	-4.311634000	-1.327309000	0.441002000
С	-4.311654000	1.327158000	-0.441275000

[Cu(H-2GGH)]- (B3LYP-D3-def2-TZVP)

	Value
Charge	-1
Electronic Energy (a.u.)	-2604.054000
Gibbs energy (a.u.)	-2603.869058
Number of Imaginary Frequencies	0

Ν	2.158505000	-0.583153000	0.395667000
С	1.706552000	-1.811392000	1.008587000
С	0.169466000	-1.892906000	1.001226000
Н	2.092866000	-2.689355000	0.481724000
Н	2.039144000	-1.893465000	2.047911000
0	-0.389097000	-2.770870000	1.654341000
С	3.387656000	-0.421874000	-0.061175000
С	3.562559000	0.857985000	-0.906585000
0	4.374540000	-1.157856000	0.061462000
Ν	2.393493000	1.774957000	-0.851242000
Н	3.688248000	0.525997000	-1.938106000
Н	4.488287000	1.353006000	-0.605947000
Н	2.252225000	2.258152000	-1.730369000
Ν	-0.442670000	-0.960073000	0.233187000
С	-1.877413000	-0.999261000	0.121248000
Н	-2.360091000	-1.011811000	1.103802000
С	-2.392347000	0.198277000	-0.699340000
С	-2.475078000	-2.261515000	-0.695392000
Н	-1.949255000	0.120151000	-1.698338000
Η	-3.472379000	0.090806000	-0.795790000
С	-2.063552000	1.531330000	-0.135861000
0	-1.729628000	-2.774320000	-1.537747000
Ν	-0.749819000	1.957930000	-0.022969000
С	-2.871760000	2.514494000	0.364860000
С	-0.765215000	3.153301000	0.530062000
Ν	-2.035672000	3.534620000	0.781307000
Η	-3.940745000	2.569526000	0.463738000
Η	0.095929000	3.751934000	0.774211000
Н	-2.317894000	4.397286000	1.211992000
Н	2.534657000	2.482802000	-0.139770000
0	-3.672741000	-2.466598000	-0.411489000
Cu	0.711460000	0.555914000	-0.145691000

[Cu(H-2GGH)]⁻ (B3LYP-D3-def2-TZVP, SMD for H2O)

	Value
Charge	-1
Electronic Energy (a.u.)	-2604.240362
Gibbs energy (a.u.)	-2604.051867
Number of Imaginary Frequencies	0

Ν	2.039622000	-0.951812000	0.054558000
С	1.462965000	-2.195655000	0.502457000
С	-0.050513000	-2.060603000	0.625677000
Н	1.665857000	-3.020980000	-0.189658000
Н	1.859424000	-2.500327000	1.476471000
0	-0.694650000	-3.022652000	1.122623000
С	3.334488000	-0.746631000	-0.005719000
С	3.734037000	0.666908000	-0.414242000
0	4.245182000	-1.583985000	0.234634000
Ν	2.575567000	1.582072000	-0.556903000
Н	4.277707000	0.602724000	-1.357174000
Н	4.429515000	1.047090000	0.334294000
Η	2.566025000	2.006547000	-1.477844000
Ν	-0.566547000	-0.923642000	0.178310000
С	-2.012403000	-0.759611000	0.226606000
Н	-2.347241000	-0.670495000	1.264406000
С	-2.447209000	0.503282000	-0.546536000
С	-2.811250000	-1.929470000	-0.410419000
Η	-2.168930000	0.359342000	-1.594871000
Η	-3.534430000	0.579429000	-0.505119000
С	-1.864180000	1.785874000	-0.067686000
0	-2.388764000	-2.417834000	-1.490918000
Ν	-0.497404000	2.005915000	-0.052593000
С	-2.483460000	2.926303000	0.355590000
С	-0.302244000	3.243360000	0.372008000
Ν	-1.480876000	3.831965000	0.625462000
Η	-3.524035000	3.169998000	0.474667000
Η	0.650908000	3.724312000	0.509952000
Η	-1.603299000	4.777767000	0.955855000
Η	2.633467000	2.340001000	0.115256000
0	-3.886103000	-2.253569000	0.165957000
Cu	0.794338000	0.496375000	-0.201133000

Cu(II)-HSA model (AspAlaHisLysSer–NHCH3 with NH2, N⁻, N⁻, His3-N coordination)

	Value
Electronic Energy (Eh)	-2136.096560
Sum of electronic and thermal Free Energies (Eh)	-2135.546024
Number of Imaginary Frequencies	0

Ν	3.302594	0.327105	1.291590
Н	4.142528	0.476878	0.734078
Н	3.594753	0.419892	2.263673
С	2.824124	-1.064170	1.068674
Н	2.578971	-1.123389	0.002072
С	3.896788	-2.118922	1.364781
Н	4.444032	-1.859946	2.273148
Н	3.415356	-3.084582	1.501692
С	4.843493	-2.078486	0.171911
0	4.547656	-2.891218	-0.834392
0	5.730073	-1.251444	0.104576
С	1.464179	-1.292934	1.761731
0	1.008283	-2.441633	1.819219
Ν	0.885331	-0.146489	2.126271
С	-0.529789	-0.123088	2.476848
Н	-1.005822	-1.047345	2.130717
С	-0.769966	0.005886	3.983511
Н	-0.325657	-0.846581	4.500609
Н	-0.318015	0.924958	4.366029
Н	-1.842186	0.021084	4.187039
С	-1.202849	1.019635	1.706522
0	-2.443812	1.082114	1.643452
Ν	-0.366559	1.863719	1.072360
С	-0.947144	2.799538	0.122559
Н	-1.941934	3.096563	0.469274
С	-0.092399	4.068749	-0.024224
Н	-0.630412	4.771296	-0.660863
Н	0.023180	4.519876	0.965755
С	1.249166	3.809208	-0.630492
Ν	2.103282	2.818402	-0.162577
С	3.182297	2.831841	-0.930987
Н	4.032614	2.176848	-0.846241
Ν	3.064493	3.789550	-1.871680
Н	3.745388	3.997759	-2.585438
С	1.844313	4.414839	-1.701375
Н	1.501393	5.202291	-2.349186
С	-1.196315	2.170560	-1.272405

0	-1.602486	2.848585	-2.200181
Ν	-0.946946	0.833123	-1.344088
Н	-0.607890	0.400190	-0.500225
С	-1.415422	-0.039796	-2.404574
Н	-1.776572	0.611947	-3.203776
С	-0.289602	-0.938575	-2.947591
Н	-0.682368	-1.455103	-3.825810
Н	0.532533	-0.294410	-3.276784
С	0.217800	-1.995097	-1.953847
Н	0.590333	-1.518981	-1.038814
Н	-0.628710	-2.621372	-1.655466
С	1.307326	-2.889817	-2.568210
Н	2.263193	-2.355805	-2.622222
Н	1.021607	-3.119308	-3.600748
С	1.512846	-4.226836	-1.853678
Н	0.548747	-4.748884	-1.788503
Н	2.180692	-4.852285	-2.453199
Ν	2.138219	-4.071874	-0.520947
Н	2.250518	-4.987591	-0.092684
Н	1.536679	-3.550807	0.123213
Н	3.671361	-3.386327	-0.672409
С	-2.610108	-0.923270	-1.962482
0	-2.943059	-1.877812	-2.651259
Ν	-3.181204	-0.606014	-0.774967
Н	-2.975213	0.279651	-0.332389
С	-4.290160	-1.356735	-0.222313
Н	-4.503231	-2.167146	-0.927307
С	-3.934588	-1.980383	1.148857
Н	-4.631333	-2.795350	1.361841
Н	-2.929725	-2.417639	1.062262
0	-4.034492	-1.078460	2.231461
Н	-3.467442	-0.297331	2.066741
Cu	1.516648	1.387824	1.113656
С	-5.544727	-0.472786	-0.115170
0	-5.535218	0.676423	-0.485331
С	-6.761869	-1.117685	0.508306
Н	-6.585499	-1.177921	1.586609
Н	-7.638422	-0.500284	0.316591
Н	-6.920648	-2.132911	0.134463

	Value
Electronic Energy (Eh)	-3202.091124
Sum of electronic and thermal Free Energies (Eh)	-3201.382999
Number of Imaginary Frequencies	0

Cu(II)-PrP (region 106-126, Ac–AsnMetLysHisMet–NHCH₃ with Met109-S, N⁻, N⁻, His111-N coordination)

С	4.180305	2.565601	-0.430777
0	3.761089	2.257307	-1.554472
Ν	3.629069	2.132513	0.722958
С	2.389923	1.380949	0.803814
С	1.143311	2.316418	0.866034
0	1.322119	3.489354	1.231695
С	2.389315	0.536249	2.099748
С	2.383456	1.440522	3.323947
0	3.385452	2.058024	3.676521
Ν	1.192743	1.515308	3.990160
Н	3.941416	2.525097	1.604386
Н	2.342487	0.698603	-0.046708
Н	1.516745	-0.113195	2.074969
Н	3.289528	-0.080415	2.147558
Н	0.350438	1.230470	3.510641
Н	1.105207	2.269955	4.656640
Ν	-0.048233	1.704628	0.710010
С	-1.200099	2.418726	1.289900
С	-2.369467	1.443966	1.532624
0	-3.321217	1.760568	2.268160
С	-1.676402	3.621539	0.440618
С	-2.093570	3.241189	-0.984169
S	-1.983637	4.627379	-2.187809
С	-0.163462	4.650908	-2.384092
Η	-0.910502	2.837878	2.262415
Η	-2.514034	4.103220	0.955609
Н	-0.843547	4.326431	0.421679
Η	-3.125843	2.880373	-1.015976
Η	-1.463845	2.437989	-1.377612
Η	0.097694	5.530658	-2.976645
Н	0.335855	4.714089	-1.413119
Η	0.177736	3.752937	-2.908250
Ν	-2.243595	0.308717	0.825803
С	-3.236647	-0.733434	0.769570
С	-2.749245	-1.856474	-0.184066
0	-3.483392	-2.836328	-0.403360

С	-4.604614	-0.195029	0.288204
С	-5.749845	-1.178401	0.535115
С	-7.082212	-0.636246	-0.000224
С	-8.190187	-1.643364	0.240636
Ν	-9.523613	-1.111457	-0.314437
Н	-3.385205	-1.193414	1.761145
Н	-4.528497	0.038128	-0.782790
Н	-4.789502	0.737611	0.828803
Н	-5.501082	-2.133717	0.062532
Н	-5.842434	-1.358890	1.614966
Н	-7.326143	0.317536	0.489414
Н	-6.989071	-0.440123	-1.077904
Н	-8.007131	-2.592085	-0.268787
Н	-8.362259	-1.833092	1.302636
Н	-10.303025	-1.761440	-0.172301
Н	-9.436651	-0.928442	-1.319516
Н	-9.760309	-0.220831	0.135120
Ν	-1.525372	-1.635947	-0.726194
С	-1.010000	-2.630734	-1.667347
С	0.104788	-3.449013	-0.992528
0	0.061354	-4.666734	-0.882325
С	-0.555842	-1.984952	-3.001827
С	0.474426	-0.898338	-2.909745
С	1.617338	-0.695981	-3.643515
Ν	0.332057	0.172331	-2.031834
С	1.337668	1.004539	-2.258966
Ν	2.139400	0.516199	-3.221666
Н	-1.793383	-3.357532	-1.896380
Н	-0.183986	-2.771529	-3.667733
Н	-1.457288	-1.565781	-3.467281
Н	2.080679	-1.286932	-4.417454
Н	1.533124	1.925181	-1.741545
Н	3.041157	0.926992	-3.425454
Ν	1.129304	-2.691917	-0.475140
С	1.993025	-3.148890	0.596611
С	1.466106	-2.752161	1.999110
0	2.174768	-2.892641	2.992210
С	3.416303	-2.602655	0.400825
С	4.054634	-3.115897	-0.890073
S	5.623441	-2.284145	-1.343414
С	6.677800	-2.772705	0.067816
Η	1.060541	-1.689713	-0.578625
Н	1.995789	-4.242879	0.554426

Η	3.377782	-1.507027	0.367520
Н	4.004750	-2.874457	1.279687
Н	4.219904	-4.198668	-0.839840
Н	3.385336	-2.927094	-1.735633
Н	7.684213	-2.403519	-0.142760
Н	6.329888	-2.330111	1.004105
Н	6.714749	-3.861674	0.166888
Ν	0.216183	-2.218309	2.038921
Н	-0.331048	-2.130806	1.190743
С	5.385206	3.478471	-0.278368
Н	6.149839	3.169467	-0.994534
Н	5.081090	4.498718	-0.533329
Н	5.805800	3.479743	0.730355
С	-0.382323	-1.747517	3.275964
Н	-1.101416	-0.961212	3.030464
Н	-0.896266	-2.553348	3.813562
Н	0.398618	-1.348241	3.927575
Cu	-0.737582	0.145820	-0.320021

	Value
Electronic Energy (Eh)	-3203.190312
Sum of electronic and thermal Free Energies (Eh)	-3202.468159
Number of Imaginary Frequencies	0

Cu(II)-PrP (region 106-126, Ac–AsnMetLysHisMet–NHCH3 with N⁻, N⁻, N⁻, His111-N coordination)

С	3.241516	-3.569114	-1.600081
0	2.439989	-4.068501	-0.802119
Ν	3.292608	-2.231386	-1.806773
С	2.585693	-1.285074	-0.938049
С	1.163612	-1.003233	-1.471074
0	0.790316	0.082428	-1.873750
С	3.419788	-0.042954	-0.688177
С	4.681899	-0.403294	0.105694
0	4.748718	-1.417415	0.795293
Ν	5.704137	0.467721	-0.014082
Н	3.946407	-1.860405	-2.479438
Н	2.479403	-1.794913	0.014960
Н	3.664014	0.476205	-1.618277
Н	2.826673	0.660302	-0.096553
Н	5.585488	1.378316	-0.448584
Н	6.511970	0.325222	0.573956
Ν	0.375738	-2.121908	-1.387929
С	-0.867512	-2.313719	-2.140488
С	-2.011731	-1.352789	-1.760794
0	-2.796729	-1.024019	-2.654937
С	-1.319148	-3.791496	-2.050770
С	-0.987955	-4.571675	-0.769342
S	-1.476485	-3.872803	0.860692
С	-3.287976	-3.769169	0.674818
Н	0.884761	-2.960471	-1.124974
Н	-0.690379	-2.076418	-3.192088
Н	-2.392446	-3.817839	-2.249549
Н	-0.847984	-4.358070	-2.861183
Н	0.085980	-4.741809	-0.668864
Н	-1.451888	-5.559109	-0.824044
Н	-3.682636	-3.453151	1.640533
Н	-3.543774	-3.028133	-0.079445
Н	-3.685870	-4.753249	0.425183
Ν	-2.084719	-0.951997	-0.484619
С	-2.897147	0.226754	-0.242071
С	-2.309146	1.020216	0.922845

0	-2.754080	2.155726	1.184241
С	-4.395369	-0.088177	-0.058741
С	-5.263362	1.166728	-0.183956
С	-6.762292	0.867949	-0.045597
С	-7.559144	2.153251	-0.184987
Ν	-9.064055	1.881293	-0.058365
Н	-2.815322	0.884388	-1.116010
Н	-4.556240	-0.574393	0.911219
Н	-4.662369	-0.798263	-0.846036
Н	-4.947872	1.897126	0.564798
Н	-5.077325	1.618130	-1.165546
Н	-7.072100	0.149185	-0.814830
Н	-6.959803	0.412668	0.933068
Н	-7.316094	2.876036	0.594681
Н	-7.421013	2.622069	-1.160146
Н	-9.622640	2.734583	-0.150278
Н	-9.277979	1.459479	0.850018
Н	-9.371474	1.222556	-0.779871
Ν	-1.271329	0.434369	1.540680
С	-0.551108	1.245816	2.505491
С	0.394136	2.292260	1.866614
0	0.935534	3.125995	2.576397
С	0.166774	0.405391	3.572062
С	1.076872	-0.658087	3.050969
С	2.391054	-0.896341	3.344894
Ν	0.635538	-1.668279	2.201853
С	1.655308	-2.498983	2.017701
Ν	2.730095	-2.068563	2.701064
Н	-1.265584	1.886305	3.033303
Н	0.734882	1.088070	4.205720
Н	-0.597135	-0.068702	4.196999
Н	3.089877	-0.351642	3.955472
Н	1.665022	-3.362125	1.372276
Η	3.675528	-2.381432	2.522367
Ν	0.511342	2.274865	0.509428
С	0.870502	3.475918	-0.247673
С	-0.122086	3.698861	-1.416668
0	0.253156	4.097164	-2.507795
С	2.313263	3.494643	-0.756588
С	3.314101	3.649287	0.384162
S	5.073144	3.713127	-0.143341
С	5.062257	5.143038	-1.279967
Н	0.079546	1.514035	0.001332

Η	0.738468	4.314123	0.446246
Н	2.499911	2.589662	-1.337870
Н	2.393547	4.329173	-1.453628
Н	3.104474	4.551373	0.963161
Н	3.257966	2.816222	1.088432
Н	6.103008	5.357229	-1.523599
Н	4.514952	4.929401	-2.197428
Н	4.630863	6.011228	-0.779287
Ν	-1.423711	3.458430	-1.124152
Н	-1.712793	3.180313	-0.193154
С	4.219915	-4.417244	-2.374973
Н	5.049558	-4.670462	-1.709238
Н	3.730241	-5.344676	-2.669795
Н	4.622655	-3.915420	-3.256459
С	-2.455166	3.630276	-2.132641
Н	-3.421110	3.694061	-1.629737
Н	-2.276616	4.543091	-2.703547
Н	-2.470967	2.789611	-2.834549
Cu	-0.884908	-1.402475	0.941332

	Value
Electronic Energy (Eh)	-2559.637440
Sum of electronic and thermal Free Energies (Eh)	-2558.863617
Number of Imaginary Frequencies	0

Cu(II)-PrP (region 180-193, Ac–IleLysGlnHisThr–NHCH₃ with N⁻, N⁻, N⁻, His187-N coordination)

С	-4.234557	1.280485	2.271030
0	-4.109236	0.075180	2.534409
Ν	-3.563799	1.899251	1.277917
С	-2.661619	1.248819	0.326806
С	-1.512417	2.232986	0.052422
0	-1.834622	3.429004	-0.125839
С	-3.364358	0.806295	-0.979245
Н	-3.652759	2.897330	1.138023
Н	-2.297523	0.335312	0.794580
Н	-2.677282	0.107039	-1.459506
Н	-4.246541	0.220176	-0.689725
Ν	-0.268706	1.737443	-0.052679
С	0.693064	2.658909	-0.682566
С	1.866213	1.879128	-1.301156
0	2.688553	2.448565	-2.043471
С	1.212757	3.750031	0.287662
С	2.034650	3.203366	1.468663
Н	0.192897	3.192039	-1.499211
Н	1.816027	4.460153	-0.290710
Н	0.331659	4.281829	0.651783
Н	1.630905	2.222889	1.753737
Н	1.920144	3.849057	2.348517
Ν	1.921634	0.604652	-0.886687
С	2.932028	-0.337336	-1.307121
С	2.626582	-1.718749	-0.684477
0	3.378287	-2.677027	-0.927170
С	4.337894	0.120265	-0.862889
С	5.491180	-0.696707	-1.432240
Н	2.933786	-0.453182	-2.401586
Н	4.363006	0.058662	0.231523
Н	4.444961	1.164796	-1.163161
Н	5.330766	-1.758516	-1.205471
Н	5.512045	-0.619681	-2.526808
Ν	1.543603	-1.735751	0.135229
С	1.236281	-3.002552	0.800500
С	0.021398	-3.664825	0.120579

0	0.080058	-4.772485	-0.393021
С	1.061517	-2.804370	2.325021
С	-0.007723	-1.841708	2.739452
С	-1.059599	-2.030272	3.598085
Ν	-0.067869	-0.532946	2.256733
С	-1.112529	0.039561	2.841569
Ν	-1.734193	-0.824657	3.665583
Н	2.058929	-3.704232	0.642744
Н	0.857835	-3.774942	2.790190
Н	2.028493	-2.456265	2.710592
Н	-1.376887	-2.900376	4.150226
Н	-2.698760	-0.676968	3.947504
Ν	-1.106726	-2.881737	0.074203
С	-2.171473	-3.064473	-0.890733
С	-1.955458	-2.186347	-2.145249
0	-2.853822	-2.057911	-2.990164
С	-3.546723	-2.762123	-0.227541
Н	-3.507665	-1.723421	0.148760
Н	-1.066912	-1.973971	0.513028
Н	-2.156570	-4.109607	-1.213276
0	-4.611508	-2.928099	-1.137298
Ν	-0.773564	-1.541424	-2.244926
Н	-0.052302	-1.702161	-1.552494
С	-5.183764	2.157808	3.071949
Н	-6.209256	1.854582	2.839762
Н	-5.022837	1.974866	4.137333
Н	-5.078113	3.225852	2.864484
С	-0.468916	-0.633611	-3.339217
Н	0.330170	0.034503	-3.013394
Н	-0.155586	-1.176440	-4.238143
Н	-1.354844	-0.045751	-3.586757
Cu	0.655931	0.026132	0.415950
С	-3.805507	-3.678366	0.963314
Н	-3.802871	-4.724915	0.641946
Н	-3.048371	-3.540880	1.739533
Н	-4.788604	-3.444566	1.380210
Н	-4.302319	-2.572346	-1.993425
С	6.830270	-0.259254	-0.889401
0	6.975028	0.564231	0.038509
Ν	7.918400	-0.822136	-1.452394
Н	8.833967	-0.584138	-1.101381
Н	7.834781	-1.512633	-2.181846
С	3.534543	3.073509	1.138778

Н	3.659553	2.716251	0.115503
Н	4.002641	4.067874	1.185616
С	4.236672	2.135121	2.106867
Н	3.816664	1.128368	2.054114
Н	4.165524	2.491356	3.139179
Ν	5.710440	2.012013	1.779286
Н	6.111175	2.936961	1.606504
Н	6.234222	1.594770	2.551273
Н	5.964300	1.402260	0.924464
С	-3.774789	1.848139	-2.039407
Н	-2.864662	2.364489	-2.374686
С	-4.377634	1.087685	-3.235423
Н	-5.359136	0.673637	-2.970570
Н	-3.748200	0.245458	-3.537730
Н	-4.514558	1.741014	-4.101843
С	-4.735139	2.927412	-1.502349
Н	-5.578722	2.438103	-0.993580
Н	-4.193844	3.515485	-0.757649
С	-5.267224	3.891070	-2.570092
Н	-5.918623	3.389752	-3.292517
Н	-4.441468	4.349792	-3.126671
Н	-5.845632	4.700341	-2.110959
Н	-1.445778	1.048153	2.664368

4. References

- Peana, M.; Medici, S.; Nurchi, V.M.; Lachowicz, J.I.; Crisponi, G.; Garribba, E.; Sanna, D.; Zoroddu, M.A. Interaction of a chelating agent, 5-hydroxy-2-(hydroxymethyl)pyridin-4(1H)-one, with Al(III), Cu(II) and Zn(II) ions. J. Inorg. Biochem. 2017, 171, 18–28.
- Ritterskamp, N.; Sharples, K.; Richards, E.; Folli, A.; Chiesa, M.; Platts, J.A.; Murphy, D.M. Understanding the Coordination Modes of [Cu(acac)2(imidazole)n=1,2] Adducts by EPR, ENDOR, HYSCORE, and DFT Analysis. *Inorg. Chem.* 2017, 56, 11862–11875.
- 3. Balaiah, B.; Sastry, B.A.; Chary, M.N.; Ponticelli, G.; Massacesi, M. IR, EPR and optical absorption studies of some 2,2'-bipyridine complexes of Copper(II). *J. Mol. Struct.* **1982**, *78*, 289–297.
- Maki, A.H.; Edelstein, N.; Davison, A.; Holm, R.H. Electron Paramagnetic Resonance Studies of the Electronic Structures of Bis(maleonitriledithiolato)copper(II), -nickel(III), -cobalt(II), and -rhodium(II) Complexes. J. Am. Chem. Soc. 1964, 86, 4580–4587.
- 5. DeWilde, W.; Peeters, G.; Lunsford, J.H. Synthesis and spectroscopic properties of tris(2,2'-bipyridine)ruthenium(II) in zeolite Y. J. Phys. Chem. **1980**, *84*, 2306–2310.
- Bhadbhade, M.M.; Srinivas, D. Effects on molecular association, chelate conformation, and reactivity toward substitution in copper Cu(5-X-salen) complexes, salen^{2–} = N,N'-ethylenebis(salicylidenaminato), X = H, CH₃O, and Cl: synthesis, x-ray structures, and EPR investigations. *Inorg. Chem.* 1993, 32, 5458–5466.
- Maki, A.H.; McGarvey, B.R. Electron Spin Resonance in Transition Metal Chelates. II. Copper(II) Bis-Salicylaldehyde-Imine. J. Chem. Phys. 1958, 29, 35–38.
- Ananth, K.M.; Kanthimathi, M.; Nair, B.U. An e.p.r. study of tetradentate Schiff base copper complexes with an N–(CH₂)_n–N, n = 3–6 backbone. *Transition Met. Chem. (London)* 2001, 26, 333–338.
- Comba, P.; Hambley, T.W.; Lawrance, G.A.; Martin, L.L.; Renold, P.; Váarnagy, K. Template syntheses of chiral tetradentate ligands derived from L-amino acids. Structural and spectroscopic characterization of the free ligands and of their copper(II) complexes. J. Chem. Soc., Dalton Trans. 1991, 277–283.
- 10. Glass, R.S.; Steffen, L.K.; Swanson, D.D.; Wilson, G.S.; de Gelder, R.; de Graaff, R.A.G.; Reedijk, J. Bis(trithiacyclononane)metal(II) compounds and Jahn-Teller distortions from octahedral geometry, electrochemistry, spectroscopy, and crystal structures of the copper bis(tetrafluoroborate) bis(acetonitrile) complex at 177 K and the cadmium bis(tetrafluoroborate) and copper bis(tetrafluoroborate) bis(nitromethane) complexes at 300 K. *Inorg. Chim. Acta* 1993, 207, 241–252.
- Blount, J.F.; Freeman, H.C.; Holland, R.V.; Milburn, G.H.W. Crystallographic Studies of Metal-Peptide Complexes: VI. Disodium Tetraglycilglycinatocuprate(II) 4.5-Hydrate. J. Biol. Chem. 1970, 245, 5177– 5185.
- Camerman, N.; Camerman, A.; Sarkar, B. Molecular design to mimic the copper(II) transport site of human albumin. The crystal and molecular structure of copper(II) - glycylglycyl-L-histidine-*N*-methyl amide monoaquo complex. *Can. J. Chem.* **1976**, *54*, 1309–1316.
- Burns, C.S.; Aronoff-Spencer, E.; Dunham, C.M.; Lario, P.; Avdievich, N.I.; Antholine, W.E.; Olmstead, M.M.; Vrielink, A.; Gerfen, G.J.; Peisach, J.; Scott, W.G.; Millhauser, G.L. Molecular Features of the Copper Binding Sites in the Octarepeat Domain of the Prion Protein. *Biochemistry* 2002, *41*, 3991–4001.
- 14. Tyagi, S.; Hathaway, B.J. Crystal structure and electronic properties of bis(2,2'-bipyridyl)-thiocyanatocopper(II) tetrafluoroborate. *J. Chem. Soc., Dalton Trans.* **1981**, *10*, 2029–2033.

- Comba, P.; Hambley, T.W.; Lawrance, G.A.; Martin, L.L.; Renold, P.; Várnagy, K. Template syntheses of chiral tetradentate ligands derived from L-amino acids. Structural and spectroscopic characterization of the free ligands and of their copper(II) complexes. J. Chem. Soc., Dalton Trans. 1991, 277–283.
- Madhu, V.; Das, S.K. Near-IR absorption due to supramolecular electronic interaction in an extended 3D hydrogen-bonding network material: synthesis, crystal structure and properties of [4,4'-H2bpy][Cu(mnt)2]. *Polyhedron* 2004, 23, 1235–1242.