Supplementary Material

Field Induced Single Ion Magnetic Behaviour in Square-pyramidal Cobalt(II) Complexes with Easyplane Magnetic Anisotropy

	1	2
Formula	C14H32ClCoN4F4B	C38H47Cl2CoN5O4
M _w (g mol ⁻¹)	437.63	767.64
Crystal size (mm)	0.50×0.19×0.15	0.44×0.16×0.15
Crystal system	Monoclinic	Monoclinic
Space group	$P2_1$	C2/c
T (K)	148(2)	139(2)
a (Å)	8.2356(12)	34.573(3)
b (Å)	14.849(2)	14.1926(11)
c (Å)	8.4147(14)	16.0044(11)
(°)	90.00	90.00
(°)	109.245(8)	113.669(4)
(°)	90.00	90.00
V (Å ³)	971.5(3)	7192.5(10)
Z	2	8
$ ho_{ m calcd}~(g~{ m cm}^{-3})$	1.496	1.417
μ (MoK α) (mm ⁻¹)	1.062	0.674
F(000)	458.0	3224.0
Tmax, Tmin	0.863, 0.775	0.914, 0.889
h k l range	$-10 \le h \le 10, -18 \le k \le 18, -$	$-46 \le h \le 46, -19 \le k \le 19, -21$
n, ĸ, i range	$10 \le l \le 10$	$\leq l \leq 21$
Collected reflections	2908	6696
Independent	2316	6082
reflections	2010	0002
Goodness-of-fit	1 064	1 011
(GOF) on F ²	1.001	1.011
R1, wR2 (I > 2σ I)	0.0636, 0.1576	0.0617, 0.1613
R1, wR2 (all data)	0.0849, 0.1673	0.0672, 0.1667
CCDC Number	1458031	1455062

Table S1. X-ray Crystallographic Data and Refinement Parameters for complexes 1 and 2.

 $R1 = \Sigma ||Fo| - |Fc|| / \Sigma |Fo|$ and $wR2 = |\Sigma w(|Fo|^2 - |Fc|^2) | / \Sigma |w(Fo)^2 |^{1/2}$.

Bond distance (Å)								
Complex 1	Co – N1	2.1518(1)	Complex 2	Co – N2	2.1485(1)			
	Co – N2	2.1972(1)		Co – N3	2.1808(1)			
	Co – N3	2.1433(1)	-	Co – N4	2.1541(1)			
	Co – N4	2.1618(1)	_	Co – N5	2.1754(1)			
	Co – Cl1	2.2850(1)	-	Co – Cl2	2.2447(1)			
		Bond a	ngle (<u>°</u>)					
Complex 1	Cl1-Co1-N2	98.91(6)	Complex 2	Cl2-Co1-N2	115.38(4)			
	Cl1-Co1-N1	105.48(5)		Cl2-Co1-N3	105.45(4)			
	Cl1-Co1-N4	98.33(5)	_	Cl2-Co1-N5	118.47(4)			
	Cl1-Co1-N3	108.07(5)	_	Cl2-Co1-N4	108.62(6)			
	N2-Co1-N1	91.26(6)	_	N2-Co1-N3	81.59(6)			
	N2-Co1-N4	162.74(6)	_	N2-Co1-N5	82.28(5)			
	N2-Co1-N3	82.71(5)	-	N2-Co1-N4	135.62(4)			
	N1-Co1-N4	83.36(5)	-	N3-Co1-N5	135.99(5)			
	N1-Co1-N3	146.43(5)	-	N3-Co1-N4	81.63(4)			
	N4-Co1-N3	92.72(6)	-	N5-Co1-N4	81.96(4)			

Table S2. Bond distances (Å) and bond angles ($\underline{}$) around Co^{II} centers found in complex **1** and **2**.

Shape analysis

Table S3. Summary of SHAPE analysis for complexes 1-2.

	1	D	Domtogon
FF-3	1	D_{5h}	rentagon
vOC-5	2	C_{4v}	Vacant octahedron
TBPY-5	3	D_{3h}	Trigonal bipyramid
SPY-5	4	C_{4v}	Spherical square pyramid
JTBPY-5	5	D_{3h}	Johnson trigonal bipyramid J12

Structure [ML5]	PP-5	vOC-5	TBPY-5	SPY-5	JTBPY-5
Complex 1	32.439	2.186	3.037	0.558	5.891
Complex 2	32.028	4.674	5.931	0.846	9.781

Figure S1. Distorted square-pyramidal coordination geometry around the Co^{II} centers in 1 (left) and 2 (right).

Figure S2. A view of supramolecular 2D arrangement of complex **1** through intermolecular H-bonding interactions.

Figure S3. A view of packing diagram of complex **1** illustrating the continuous 2D arrangement of counter anions along the crystallographic *a*-axis.

Figure S4. A view of supramolecular 2D arrangement of complex 2 through intermolecular H-bonding interactions.

Figure S5. A view of packing diagram of complex **2** illustrating the continuous 2D arrangement of lattice solvent molecules and counter anions along the crystallographic *c*-axis.

D– H···A	D–H(Å)	H…A(Å)	D…A (Å)	<d-h-a(°)< th=""><th>Symmetry[#]</th></d-h-a(°)<>	Symmetry [#]
C6-H6A…Cl1	0.980	2.580	3.239	125.00	0
C1-H1B…F4	0.990	2.520	3.348	141.00	1
C9—H9B…F1	0.990	2.410	3.365	162.00	1
C8-H8B····Cl1	0.990	2.790	3.728	159.00	2
C10-H10A…F3	0.990	2.430	3.382	161.00	3
C14—H14B…F4	0.990	2.520	3.130	120.00	4

Table S4. H-bond parameters found in complex 1.

(0) x,y,z; (1) 1-x,1/2+y,1-z; (2) x,y,1+z; (3) -1+x,y,1+z; (4) 2-x,1/2+y,1-z.

Table S5. H-bond parameters found in complex 2.

	D– H…A	D–H(Å)	H···A(Å)	D…A (Å)	<d-h-a(°)< th=""><th>Symmetry[#]</th><th></th></d-h-a(°)<>	Symmetry [#]	
	C31—H31B…O1	0.990	2.440	3.305	146.00	0	
	C22—H22A…O4	0.990	2.570	3.530	163.00	1	
	С37—Н37С…О3	0.980	2.500	3.316	140.00	1	
			# (0) x,y,z; (1)	x,1-y,1/2+z.			
(a)	(b)			(c)		(d)	
3.0-	2.0-	معممم			000000000000000000000000000000000000000	² 2.4-	000000000000000000000000000000000000000
F_ 2.7-	100- ⊇ 80	A and a second	000000000000000000000000000000000000000	p	• 2K	_m 2.0-	• 2K
E 2.4-	Z	A A A A A A A A A A A A A A A A A A A	• 2K Z • 3K	1.8-	• 3K • 4K	Ž V 16	∘ 3K ∘ 4K
×2.1	0.5-	W.	• 4K • 5K	1.5-	• 5K • 7K	- 1.0-	• 5K
1.8-	δ 50 100 150 200 250 300 <i>T</i> /K 0.0-	P	• 7K	1.2		1.2	· / K
0 50	100 150 200 250 300 T/K	0 1 2 3 H	4567 /T	0.5 1.0 1.5	5 2.0 2.5 3.0 3 H/T (T/K)	.5 0.5 1.0 1.5 F	2.0 2.5 3.0 3.5 H/T (T/K)

Figure S6. $\chi_M T vs. T$ plots measured at 0.1 T for complex **1** (**a**). $1/\chi_M vs. T$ plots shown in the inset; $M/N\mu_B vs. H$ plots for complex **1** (**b**) at the indicated temperatures. The solid lines are the best fit; $M/N\mu_B vs. H/T$ plots at the indicated temperatures for complexes **1** (**c**) and **2** (**d**). The solid lines are the best fit.

Table S6. Magnetic anisotropy (*D* parameter) and SIM parameters for previously reported pentacoordinate Co^{II} single ion magnets (SIMs).

Constant	Coordination geometry	D	Ueff	- (-)	D.C
Complex	around Co ^{II} center	(cm ⁻¹)	(cm-1)	το (S)	Ker.
[Co ^{II} (tbta)N ₃](ClO ₄)	Trigonal bipyramidal	-10.7	19.7	1.6×10^{-8}	1
[Co ^{II} (bzimpy)Cl ₂]	Trigonal bipyramidal	71.7	nr	nr	2
[Co ^{II} (Idppy)Cl ₂]	Trigonal bipyramidal	71.7	nr	nr	3
[Co ^{II} (ddppy)Cl ₂]	Trigonal bipyramidal	71.7	nr	nr	3
[Co(phen)(DMSO)Cl ₂]	Trigonal bipyramidal	-17.0	10.4	5.6 × 10-9	4
[Co ^{II} (Me6tren)Cl](ClO4)	Trigonal bipyramidal	-6.2	nr	nr	5
[Co ^{II} (Me6tren)Br](ClO4)	Trigonal bipyramidal	-2.5	nr	nr	5
$[Co(NS_{3^{iPr}})Cl](BPh_4)$	Trigonal bipyramidal	-23.0	32.0	2.1×10^{-11}	6
$[Co(NS_3^{tBu})Cl]ClO_4$	Trigonal bipyramidal	-21.4	21.0	4.6×10^{-8}	7
$[Co(NS_3^{tBu})Br]ClO_4$	Trigonal bipyramidal	-20.2	21.0	4.6×10^{-8}	7
[Co(NS ₃ tBu)NCS]ClO ₄	Trigonal bipyramidal	-11.0	20.0	2.0×10^{-9}	7
[Co ^{II} (Me4cyclam)N3]ClO4	Trigonal bipyramidal	46.7	nr	nr	8
[Co(TPMA)(CH ₃ CN)](BF ₄) ₂ ·CH ₃ CN	Trigonal bipyramidal	9.66	15.0	1.7×10^{-8}	9
[Co(TPMA)Cl]Cl	Trigonal bipyramidal	-8.49	16.4	5.2×10^{-8}	9
[Co(TPMA)Br]Br	Trigonal bipyramidal	-7.18	12.3	8.0×10^{-8}	9
[Co(tpa)Cl]·ClO ₄	Trigonal bipyramidal	-10.1	12.0	7.2×10^{-6}	10
[Co(tpa)Br]·ClO ₄	Trigonal bipyramidal	-7.8	8.7	5.8×10^{-6}	10
$[Co(tbta)Cl] \cdot (ClO_4) \cdot (MeCN)_2 \cdot (H_2O)$	Trigonal bipyramidal	-7.5	8.1	3.5×10^{-6}	10
[Co(tbta)Br]·ClO ₄	Trigonal bipyramidal	-4.3	5.0	2.1×10^{-6}	10
[Co ^{II} (hdppy)Cl ₂]	Square pyramidal	151	9.4	1.3×10^{-7}	11
[Co ^{II} (DAPDPI)(NCS) ₂]	Square pyramidal	-40.5	11.1	3.6×10^{-6}	12
[Co ^{II} (DBPDPI)(NCS) ₂]	Square pyramidal	-40.6	16.6	5.1×10^{-7}	12
[Co(bbp)Cl2]·(MeOH)	Square pyramidal	14.9	19.6	5.8×10^{-5}	13
[Co(bbp)Br2]·(MeOH)	Square pyramidal	8.4	6.4	3.1×10^{-5}	13

Figure S7. Temperature dependence of the out-of-phase $(\chi M'')$ (**a**) AC magnetic susceptibility plots for complex **1** under 2000 Oe dc field; Natural logarithm of the ratio of $\chi M''$ over $\chi M' vs. 1/T$ (**b**) for complex **1** (solid lines represent the best fit obtained from Equation (2) described in the main text).

Figure S8. Orientation of the computed g tensor for complexes 1 (left) and 2 (right) with ORCA.

Table S7. Energy of the first four excited states (cm⁻¹) and their contribution to the *D* and *E* values in cm⁻¹ at CAS(7,5) NEVPT2 level by ORCA.

State	Mult	Complex 1			-	Complex	2
		Energy	D	Ε	Energy	D	Ε
1st	4	1129	8.620	-6.926	768.3	47.398	40.233
2nd	4	2089	-2.392	0.221	1090.2	41.051	-30.688
3rd	4	2862	30.084	29.458	4116.3	1.825	1.712
4th	4	7278.2	8.422	-8.379	8311.1	-4.774	0.015
5th	4	9160.6	0.087	-0.087	8520.8	-0.631	-0.018
6th	4	10944.9	-0.077	0.008	10889.7	-6.708	0.017

References

- Schweinfurth, D.; Sommer, M.G.; Atanasov, M.; Demeshko, S.; Hohloch, S.; Meyer, F.; Neese, F.; Sarkar, B. The Ligand Field of the Azido Ligand: Insights into Bonding Parameters and Magnetic Anisotropy in a Co(II)-Azido Complex. *J. Am. Chem. Soc.* 2015, 137, 1993, doi:10.1021/ja512232f.
- 2. Boča, R.; Dlháň, L.U.; Linert, W.; Ehrenberg, H.; Fuess, H.; Haase, W. Ligand sphere-enhanced magnetic anisotropy in cobalt(II) and manganese(II) 2,6-bis-(benzimidazol-2'-yl)-pyridine dichloride. *Chem. Phys. Lett.* **1999**, *307*, 359 doi:10.1016/S0009-2614(99)00519-9.
- 3. Rajnák, C.; Titiš, J.; Šalitroš, I.; Boča, R.; Fuhr, O.; Ruben, M. Zero-field splitting in pentacoordinate Co(II) complexes. *Polyhedron* **2013**, *65*, 122, doi:10.1016/j.poly.2013.08.029.
- 4. Nemec, I.; Marx, R.; Herchel, R.; Neugebauer, P.; van Slageren, J.; Trávníček, Z. Field-induced slow relaxation of magnetization in a pentacoordinate Co(II) compound [Co(phen)(DMSO)Cl₂]. *Dalton Trans.* **2015**, 44, 15014, doi: 10.1039/C5DT02162F.
- Ruamps, R.; Batchelor, L.J.; Guillot, R.; Zakhia, G.; Barra, A.-L.; Wernsdorfer, W.; Guihéry, N.; Mallah, T. Ising-type magnetic anisotropy and single molecule magnet behaviour in mononuclear trigonal bipyramidal Co(II) complexes. *Chem. Sci.* 2014, *5*, 3418, doi:10.1039/C4SC00984C].
- Shao, F.; Cahier, B.; Guihéry, N.; Rivière, E.; Guillot, R.; Barra, A.-L.; Lan, Y.; Wernsdorfer, W.; Campbell, V. E.; Mallah, T., Tuning the Ising-type anisotropy in trigonal bipyramidal Co(II) complexes. *Chem. Commun.* 2015, *51*, 16475, doi:10.1039/C5CC07741A.
- Shao, F.; Cahier, B.; Rivière, E.; Guillot, R.; Guihéry, N.; Campbell, V.E.; Mallah, T., Structural Dependence of the Ising-type Magnetic Anisotropy and of the Relaxation Time in Mononuclear Trigonal Bipyramidal Co(II) Single Molecule Magnets. *Inorg. Chem.* 2017, 56, 1104, doi:10.1021/acs.inorgchem.6b01966.
- Cahier, B.; Perfetti, M.; Zakhia, G.; Naoufal, D.; El-Khatib, F.; Guillot, R.; Rivière, E.; Sessoli, R.; Barra, A.-L.; Guihéry, N.; Mallah, T. Magnetic Anisotropy in Pentacoordinate Ni^{II} and Co^{II} Complexes: Unraveling Electronic and Geometrical Contributions. *Chem. Eur. J.* 2017, 23, 3648, doi:10.1002/chem.201604872.
- 9. Woods, T.J.; Ballesteros-Rivas, M.F.; Gómez-Coca, S.; Ruiz, E.; Dunbar, K.R. Relaxation Dynamics of Identical Trigonal Bipyramidal Cobalt Molecules with Different Local Symmetries and Packing Arrangements: Magnetostructural Correlations and ab inito Calculations. *J. Am. Chem. Soc.* **2016**, *138*, 16407, doi:10.1021/jacs.6b10154.
- 10. Mondal, A.K.; Jover, J.; Ruiz, E.; Konar, S. Quantitative Estimation of Ising-Type Magnetic Anisotropy in a Family of C₃-Symmetric Co^{II} Complexes. *Chem. Eur. J.* **2017**, *23*, 12550, doi:10.1002/chem.201702108.
- 11. Rajnák, C.; Titiš, J.; Fuhr, O.; Ruben, M.; Boča, R. Single-Molecule Magnetism in a Pentacoordinate Cobalt(II) Complex Supported by an Antenna Ligand. *Inorg. Chem.* **2014**, *53*, 8200, doi:10.1021/ic501524a.
- 12. Jurca, T.; Farghal, A.; Lin, P.-H.; Korobkov, I.; Murugesu, M.; Richeson, D.S. Single-Molecule Magnet Behavior with a Single Metal Center Enhanced through Peripheral Ligand Modifications. *J. Am. Chem. Soc.* **2011**, *133*, 15814,doi:10.1021/ja204562m.
- Mondal, A.K.; Goswami, T.; Misra, A.; Konar, S. Probing the Effects of Ligand Field and Coordination Geometry on Magnetic Anisotropy of Pentacoordinate Cobalt(II) Single-Ion Magnets. *Inorg. Chem.* 2017, *56*, 6870, doi:10.1021/acs.inorgchem.7b00233.
- 14. Mondal, A.K.; Jover, J.; Ruiz, E.; Konar, S. Investigation of easy plane magnetic anisotropy in Pligand square-pyramidal Co^{II} single ion magnets. *Chem. Commun.* **2017**, *53*, 5338, doi:10.1039/C7CC02584J.