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Abstract: The synthesis, structural characterization and magnetic study of novel CoII/4f
and CoII/YIII clusters are described. In particular, the initial employment of di-2-pyridyl
ketone, (py)2CO, in mixed metal Co/4f chemistry, provided access to four triangular clusters,
[CoII

2MIII{(py)2C(OEt)(O)}4(NO3)(H2O)]2[M(NO3)5](ClO4)2 (M = Gd, 1; Dy, 2; Tb, 3; Y, 4), where
(py)2C(OEt)(O)− is the monoanion of the hemiketal form of (py)2CO. Clusters 1–4 are the first reported
Co/4f (1–3) and Co/Y (4) species bearing (py)2CO or its derivatives, despite the fact that over 200
metal clusters bearing this ligand have been reported so far. Variable-temperature, solid-state dc
and ac magnetic susceptibility studies were carried out on 1–4 and revealed the presence of weak
ferromagnetic exchange interactions between the metal ions (JCo-Co = +1.3 and +0.40 cm−1 in 1 and 4,
respectively; JCo-Gd = +0.09 cm−1 in 1). The ac susceptibility studies on 2 revealed nonzero, weak
out-of-phase (χ”M) signals below ~5 K.

Keywords: 3d/4f metal clusters; di-2 pyridyl ketone; magnetism; cobalt; lanthanides; mixed metal
Co/Ln clusters

1. Introduction

The synthesis and characterization of new mixed-metal 3d/4f clusters has attracted immense
interest over the last few decades, due to their fascinating structural features (high nuclearities,
unprecedented metal topologies, aesthetically pleasing architectures, etc.), as well as due to their
interesting magnetic properties [1–3]. In particular, 4f ions often favor the formation of heterometallic
compounds that possess exceptionally high nuclearities, with representative examples being clusters
of Ni64Gd96 [4], Ni76La60 [5], Ni54Gd54 [6], Cu36Dy24 [7], Ni10Gd42 [8], Ni30La20 [9,10], etc. This
intriguing ability of 4f ions possibly stems from their strong oxophilicity, which, in combination with
their high coordination numbers, results in the formation of hydroxo/oxo species that readily promote
the aggregation process. Concerning the magnetic properties of the 3d/4f compounds, the 4f ions
bring several advantages, such as their considerable number of unpaired electrons (e.g., Gd3+ has
seven unpaired e−) and their large single ion anisotropy (e.g., Tb3+, Dy3+, Ho3+, etc.) as a result of
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their orbital angular momentum. The above properties make them ideal candidates for the synthesis
of heterometallic clusters with single-molecule magnetism behavior (SMMs) [11,12], fulfilling the
desirable features for a compound to behave as an SMM, namely (i) high spin ground state (S) and
(ii) negative axial zero field splitting parameter (D). SMMs are discrete metal compounds that exhibit
superparamagnetic behavior below a blocking temperature TB and have been proposed for several
technological applications including high-density information storage, molecular spintronics and
qubits for quantum computation [11–15].

The study of mixed-metal 3d/4f reaction systems, as a means for the isolation of new SMMs with
a high energy barrier for the magnetization reversal, has led to a large variety of such species that now
include Mn/4f [16–21], Fe/4f [22–25], Ni/4f [8,26], Cu/4f [27–30] and Co/4f [8,31–33] compounds [1,2]. It
is noteworthy that the majority of 3d/4f SMMs are Mn/4f clusters containing some MnIII centers with an
S = 2 spin state and a significant uniaxial anisotropy. Some remarkable examples, e.g., a Mn6Tb2 [18]
and a Mn21Dy [17] cluster, display high energy barriers for the magnetization reversal (Ueff = 103 K
and 74 K, respectively), which are of comparable magnitude to the family of the most thoroughly
studied homometallic carboxylato Mn12 SMMs [11]. On the other hand, the reported Co/4f SMMs are
significantly less, despite the fact that the combination of the anisotropic 3d7 CoII with the 4f ions
has a great potential to yield SMMs with high Ueff and distinctively different properties from other
heterometallic species. A possible explanation for this could be related to synthetic challenges such as
the oxidation of the Co2+ to the diamagnetic and low spin Co3+, which occurs easily in the presence of
a base under ambient conditions.

Many carboxylate and O or N,O-ligands have been used for the synthesis of 3d/4f metal
clusters [1–3]; amongst them, di-2-pyridyl ketone ((py)2CO, Scheme 1) is very attractive as its carbonyl
group can easily undergo nucleophilic attack, providing a wide range of hemiaketal and gem-diol
derivatives that are able to link many metal ions, favoring the formation of high nuclearity metal
clusters with interesting structural features and magnetic properties [34,35]. Over 200 homo- and
heterometallic compounds have now been reported, containing (py)2CO and its derivatives, thus the
absence of such Co/4f clusters is noticeable considering the great development of this research field.
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In 2010, our groups employed (py)2CO in Ni/4f cluster chemistry and reported a new family of
triangular Ni2Ln compounds with interesting magnetic properties [36,37]. Expanding this research,
we herein report the synthesis and characterization of four isostructural triangular Co2M clusters
(M=Tb, Dy, Gd, Y); these compounds are the first examples of Co/4f or Y species bearing (py)2CO and
its derivatives, with the Co2Dy analogue displaying out-of-phase ac magnetic susceptibility signals at
low temperatures, indicative of the slow relaxation of the magnetization.

2. Results and Discussion

2.1. Synthetic Comments

We have developed an intense interest in the synthesis of 3d/4f metal clusters by the employment
of various pyridyl oximate- and alkoxide-containing ligands; these research efforts have yielded
a variety of new mixed-metal species with interesting structural features and magnetic properties,
including Ni8Dy8 [38,39], Ni2Ln2 [40], Ni3Ln [26], Ni2Ln [36,37,40], Mn4Ln2 [41], etc. Restricting
further discussion to the use of (py)2CO in this field, we recently reported the first Mn/4f compounds,
which belong to a family of cross-shaped Mn4Ln2 clusters, where some of them exhibit slow relaxation
of magnetization; whereas, in the past, we reported the first Ni/4f compounds with the monoanionic
form of (py)2CO. Wishing to expand this work, we recently decided to investigate the previously
unexplored reaction system of Co2+/Ln3+/(py)2CO.

The reaction of Co(ClO4)2·6H2O, Ln(NO3)3·6H2O (Ln=Gd, 1; Dy, 2; Tb, 3) or Y(NO3)3·6H2O (4),
(py)2CO and CH3CO2Na·3H2O in EtOH afforded a red solution from which well-shaped red crystals
of compounds 1–4 with the general formula [Co2M{(py)2C(OEt)(O)}4(NO3)(H2O)]2[M(NO3)5](ClO4)2

were subsequently isolated. The formation of 1–4 is summarized in Equation (1).

EtOH
4 Co(ClO4)2·6H2O + 3M(NO3)3·6H2O + 8(py)2CO + 8NaO2CMe·3H2O + 8EtOH →[

Co2M
{
(py)2C(OEt)(O)

}
4
(NO3)(H2O)

]
2
[M(NO3)5](ClO4)2 + 8MeCO2H + 2NaNO3 + 6NaClO4 + 66H2O

Gd, 1; Dy, 2; Tb, 3; Y, 4

(1)

The nature of the base and the crystallization method are not crucial for the identity of the products
and affect only their crystallinity and the reaction yield; we were able to isolate 1–4 (IR evidence) by
using other bases, such as NaOMe, NaOEt, LiOH·H2O, etc. On the other hand, the ratio of the reactants
and the nature of solvent affect the product identity, as by further increasing the excess of (py)2CO,
mononuclear CoII compounds are isolated. EtOH is the only solvent that favors the formation of 1–4,
whereas the use of different solvents yields amorphous products that could not be further characterized.

2.2. Description of Structures

A representation of the cationic [Co2Gd{(py)2C(OEt)(O)}4(NO3)(H2O)]2+ that is present in the
molecular structure of 1 is shown in Figure 1. A representation of the elipsoid plot for 1 is shown in
Figure S1 in the supplementary material. Selected interatomic distances and angles for 1 are listed in
Table 1.

Complex 1 crystallizes in the monoclinic space group C 2/c. Its structure consists of two isostructural
triangular cationic clusters [Co2Gd{(py)2C(OEt)(O)}4(NO3)(H2O)]2+, which are symmetrically related
with a 2-fold crystallographic axis. The positive charge of the cation is balanced by one [Gd(NO3)5]2−

and two NO3
− counterions. The cationic cluster is comprised of two Co2+ and one Gd3+ ions,

which are held together by four (py)2C(OEt)(O)− ligands. The {Co2GdO4}3+ core of this complex
displays an oxo-centered triangular arrangement, in which one µ3-alkoxo group coming from one
(py)2C(OEt)(O)− ligand bridges the three metal centres; in addition, three µ2-O2− ions, from three
different (py)2C(OEt)(O)− ligands, are located peripherally, bridging the two metal ions in each edge of
the triangle. Alternatively, the structural core in 1 can be described as a defective cubane, in which one
vertex and three edges are missing. The central µ3-O2− ion deviates 1.12(2) Å from the plane formed
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by the metal ions. The intermetallic distances in 1 are Co1 . . . Gd = 3.471 Å, Co2 . . . Gd = 3.546 Å and
Co1 . . . Co2 = 3.192 Å.
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Figure 1. Structure of the cationic cluster 1. The hydrogen atoms and the counteranions were omitted
for clarity.

Table 1. Selected interatomic distances (Å) and angles (degrees) for 1.

Gd(1)-O(1) 2.252(15) Co(1)-N(5) 2.220(20)
Gd(1)-O(3) 2.387(15) Co(2)-O(3) 2.142(13)
Gd(1)-O(7) 2.304(13) Co(2)-O(5) 2.048(14)
Gd(1)-N(2) 2.582(17) Co(2)-O(7) 2.046(14)
Gd(1)-N(8) 2.578(19) Co(2)-N(4) 2.070(16)
Co(1)-O(1) 2.021(15) Co(2)-N(6) 2.08(2)
Co(1)-O(3) 2.265(15) Co(2)-N(7) 2.176(19)
Co(1)-O(5) 1.984(16) Gd(1)-Co(1) 3.471(3)
Co(1)-N(1) 2.083(18) Gd(1)-Co(2) 3.546(3)
Co(1)-N(3) 2.093(19) Co(1)-Co(2) 3.192(4)

Co(1)-O(1)-Gd(1) 108.5(6) Co(2)-O(7)-Gd(1) 109.1(5)
Co(1)-O(3)-Gd(1) 96.5(5) Co(1)-O(3)-Co(2) 92.8(5)
Co(2)-O(3)-Gd(1) 102.9(6) Co(1)-O(5)-Co(2) 104.6(7)

The monoanionic (py)2C(OEt)(O)− ligands are derived from the nucleophilic attack of one EtOH
molecule on the central C atom of the carbonyl group of (py2)CO. The three (py)2C(OEt)(O)− ligands
adopt a η1:η2:η1:µ2 coordination mode, with the fourth one being coordinated to the metals in a
η1:η3:η1:µ3 fashion (Scheme 2). The two CoII ions are six-coordinate with their coordination spheres
({O1, O5, O3, N1, N3, N5} for Co1; {O3, O5, O7, N4, N6, N7} for Co2) displaying distorted octahedral
geometries. The three O and the three N donor atoms around each CoII ion adopt the facial, fac-
topological arrangement; each CoII ion is surrounded by three five-membered chelate rings, formed by
three different (py)2C(OEt)(O)− ligands. The Co oxidation state was assigned by charge considerations
and bond-valence sum (BVS) calculations [42].
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Scheme 2. A schematic representation of the coordination modes of (py)2C(OEt)(O)− in 1.

Gd1 is eight-coordinate and its {O1, O3, O7, O9, O10, O12, N2, N7} coordination sphere is rich
in O donor atoms as a consequence of the oxophilic character of the lanthanides. Its coordination
environment is formed by two five-membered chelate rings, the central µ3-O2− ion, one bidentate
chelate NO3

− ion and one terminal H2O molecule. Gd2 in the [Gd(NO3)5]2− ion is 10-coordinated,
surrounded by five bidentate chelating nitrate groups. Gd2 lies on a crystallographic 2-fold axis, which
passes through the N11 atom of a NO3

− group.
To deduce the coordination polyhedra defined by the donor atoms around Gd1, a comparison of

the experimental structural data with the theoretical data for the most common polyhedral structures
with eight vertices was performed by means of the program SHAPE [43,44]; a reliable, high-quality fit
was not achieved.

Closer inspection of the crystal structure of 1 reveals the absence of strong H-bonding interactions.
This might be a result of the very well-separated neighboring Co2Gd units. The shortest metal···metal
distance between neighboring trinuclear clusters is 10.564 Å (Gd1 . . . Gd1), while the shortest
metal···metal distance between a trinuclear cluster with a neighboring [Gd(NO3)5]2− anion is 7.491 Å
(Gd1 . . . Gd2).

Compounds 2–4 are isostructural with 1, as confirmed by a comparison of their unit cell dimensions.
The identity, purity and stability of these compounds was also studied by powder X-ray diffraction
(pxrd) studies (Figure S2 in the Supplementary Material).

Compound 1 and its structural analogues (2–4) are the first Co/Ln or Y clusters bearing (py)2CO
and/or its transformed gem-diol or hemiketal derivatives. They also join the very small family of
heterometallic 3d/4f/(py)2CO clusters [26,36,37,41,45,46]; thus, they provide insight into the coordination
chemistry of this versatile ligand and unlock the chemical and structural features, which can further
lead to the isolation of higher nuclearity heterometallic species.

2.3. Magnetism Studies

Solid-state, variable-temperature dc magnetic susceptibility (χM) data were collected on
vacuum-dried microcrystalline samples of complexes 1–4 in the 2.0–300 K range, and they are
shown in Figure 2, top, as χMT vs. T plots. The experimental values for 1–4 at 300 K are 16.04,
26.86, 23.09 and 5.5 cm3

·K·mol−1, respectively, being close to the expected ones for one and a half
non-interacting LnIII cations (1, Gd, S = 7/2, L = 0, 8S7/2, g = 2; 2, Dy, S = 5/2, L = 5, 6H15/2, g = 4/3; 3, Tb,
S = 3, L = 3, 7F6, g = 3/2; 4, Y, S = 0) and two non-interacting high spin CoII cations (S = 3/2, g = 2) of
15.05, 26.1, 21.5 and 3.8 cm3

·K·mol−1, respectively.
The study of the static magnetic properties of highly anisotropic LnIII cations with high-spin

CoII ions (S = 3/2) within the same molecule is challenging because both types of paramagnetic
centers present spin-orbit contribution due to the strong orbital contribution to the magnetic moment;
this yields high anisotropies, which prevent the use of spin-only Hamiltonians for the mathematical
interpretation and fitting of the experimental curves [47,48]. Although L is not fully quenched, spin-only
Hamiltonians are used to fit the curves for practical reasons, where feasible, in the reported compounds.
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For complex 4, the χMT vs. T curve remains almost constant with the decreasing temperature from
300 to 50 K and then drops to 3.7 cm3

·K·mol−1. This complex contains a diamagnetic YIII, which allows
the study of the interaction between the Co(II) ions using the spin Hamiltonian H = −2J (ŜCo1·ŜCo2) +

DŜz2 + Σiµge f f
→

HŜi in the full range of temperature; the exchange interactions between the CoII ions
are weak ferromagnetic with J = +0.40 cm−1, D = 9.5 cm−1 and g = 2.35.
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Solid line represents the best fit for 1 and 4.

The χMT vs. T curve for 1 remains almost constant until 20 K and then starts to increase, reaching
the value of 20.01 cm3

·K·mol−1 at 2 K, which shows an extremely weak ferromagnetic coupling between
the metal ions. The fitting of the experimental data to the Hamiltonian equation H = −2J(ŜCo1 ŜGd +

ŜCo2 ŜGd)−2J’(ŜCo1 ŜCo2) + DŜz
2 + Σiµge f f

→

HŜi, in the whole temperature range, provided the coupling
values between CoII-CoII ions (J = +1.3 cm−1) and CoII-GdIII ions (J = +0.09 cm−1), respectively, with
a mean g value of 2.35. This magnetic coupling is in agreement with previous studies in CoII-GdIII

complexes, which always present a ferromagnetic coupling when the CoII is a high spin cation [49,50].
Complexes 2 and 3 exhibit a similar magnetic behavior to that of complex 1, with a very smooth

drop while cooling down due to the depopulation of the Stark sublevels, reaching a minimum
(21.88 cm3

·K·mol−1 for 2; 18.99 cm3
·K·mol−1for 3) at 12 K.
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The field dependence of the magnetization at 2 K for complexes 1–4 is shown in Figure 2, bottom.
For complexes 1–3, the magnetization increases rapidly below 1 T. For 4, magnetization presents
a value of 3.8 cm3

·K·mol−1, which corresponds to the value of two ferromagnetically coupled CoII

cations at 2 K (S = 1/2 for each one). For 1–3, the values of the magnetization at 5 T are 13.5, 10.9 and
10.9 µβ, respectively.

The study of the dynamic magnetic properties was also performed for all compounds under a zero
magnetic field, revealing a clear dependency of the χM” on temperature and frequency for complex 2
(Figure S3, Supplementary Material), indicating that 2 might be an extremely weak SMM.

3. Materials and Methods

3.1. Materials, Physical and Spectroscopic Measurements

All manipulations were performed under aerobic conditions using materials (reagent grade)
and solvents as received. Elemental analyses (C, H, N) were performed by the University of Patras
microanalysis service. IR spectra (4000–400 cm−1) were recorded using a Perkin Elmer 16PC FT-IR
spectrometer with samples prepared as KBr pellets. Powder X-ray diffraction data (pxrd) were collected
using an Inex Equinox 6000 diffractometer. Solid-state, variable-temperature and variable-field magnetic
data were collected on powdered samples using an MPMS5 Quantum Design magnetometer operating
at 0.03 T in the 300–2.0 K range for the magnetic susceptibility and at 2.0 K in the 0–5 T range for the
magnetization measurements. Diamagnetic corrections were applied to the observed susceptibilities
using Pascal’s constants. Alternating current (ac) magnetic susceptibility experiments were carried out
at 1000 Hz.

3.2. Synthesis of [Co2Gd{(py)2C(OEt)(O)}4(NO3)(H2O)]2[Gd(NO3)5](ClO4)2 (1)

Solid (py)2CO (0.111 g, 0.60 mmol) and NaO2CMe·3H2O (0.041 g, 0.30 mmol) were added to a
pink solution of Co(ClO4)2·6H2O (0.110 g, 0.30 mmol) in EtOH (15 mL) under stirring, yielding a red
solution. Gd(NO3)3·6H2O (0.046 g, 0.10 mmol) was then added and the resulting solution was stirred
for 30 min. The red solution was allowed to stand undisturbed in a closed flask. Red prismatic crystals
appeared after 2 days, which were collected by filtration, washed with EtOH (2 × 5 mL) and Et2O
(2 × 5 mL) and dried in air. Yield: ~65%. Anal. Calcd (Found) for 1: C, 38.91 (38.80); H, 3.39 (3.72); N,
10.03 (9.73) %. Selected IR data (KBr, cm−1): 3390 (s,b), 2972 (m), 2928 (w), 2897 (w), 1602 (m), 1568 (w),
1470 (s), 1441 (m), 1384 (s), 1317 (s), 1222 (m), 1090 (s), 1053 (s), 903 (w), 777 (m), 686 (m), 635 (m), 624
(m), 541 (w), 474 (m).

3.3. Synthesis of [Co2Dy{(py)2C(OEt)(O)}4(NO3)(H2O)]2[Dy(NO3)5](ClO4)2 (2)

This was prepared in the same manner as complex 1 but using Dy(NO3)3·6H2O (0.046 g, 0.10 mmol)
in place of Gd(NO3)3·6H2O. After 2 days, red prismatic crystals of 2 appeared, which were collected
by filtration, washed with EtOH (2 × 5 mL) and Et2O (2 × 5 mL) and dried in air. Yield: ~60%. Anal.
Calcd (Found) for 2: C, 38.72 (38.91); H, 3.37 (3.75); N, 9.99 (10.08) %. Selected IR data (KBr, cm−1):
3394 (s,b), 2974 (m), 2930 (w), 2897 (w), 1604 (m), 1570 (w), 1472 (s), 1443 (m), 1384 (s), 1315 (s), 1225
(m), 1090 (s), 1054 (s), 904 (w), 780 (m), 686 (m), 635 (m), 625 (m), 542 (w), 472 (m).

3.4. Synthesis of [Co2Tb{(py)2C(OEt)(O)}4(NO3)(H2O)]2[Tb(NO3)5](ClO4)2 (3)

This was prepared in the same manner as complex 1 but using Tb(NO3)3·6H2O (0.046 g, 0.10 mmol)
in place of Gd(NO3)3·6H2O. After 2 days, red prismatic crystals of 3 appeared, which were collected
by filtration, washed with EtOH (2 × 5 mL) and Et2O (2 × 5 mL) and dried in air. Yield: ~65%. Anal.
Calcd (Found) for 3: C, 38.85 (38.73); H, 3.39 (2.99); N, 10.02 (9.84) %. Selected IR data (KBr, cm−1):
v = 3394 (s,b), 2974 (m), 2930 (w), 2896 (w), 1604 (m), 1570 (w), 1472 (s), 1442 (m), 1384 (s), 1316 (s), 1224
(m), 1089 (s), 1054 (s), 904 (w), 780 (m), 686 (m), 636 (m), 626 (m), 542 (w), 474 (m).
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3.5. Synthesis of [Co2Y{(py)2C(OEt)(O)}4(NO3)(H2O)]2[Y(NO3)5](ClO4)2 (4)

This was prepared in the same manner as complex 1 but using Y(NO3)3·6H2O (0.038 g, 0.10 mmol)
in place of Gd(NO3)3·6H2O. After 2 days, red prismatic crystals of 4 appeared, which were collected
by filtration, washed with EtOH (2 × 5 mL) and Et2O (2 × 5 mL) and dried in air. Yield: ~65%. Anal.
Calcd (Found) for 4: C, 41.56 (41.47); H, 3.62 (3.53); N, 10.72 (11.09) %. Selected IR data (KBr, cm−1):
3390 (s,b), 2972 (m), 2928 (w), 2897 (w), 1602 (m), 1568 (w), 1470 (s), 1441 (m), 1384 (s), 1317 (s), 1222
(m), 1090 (s), 1053 (s), 903 (w), 777 (m), 686 (m), 635 (m), 624 (m), 541 (w), 474 (m).

Caution! Although no such behavior was observed during the present work, perchlorate and nitrate salts
are potentially explosive; such compounds should be synthesized and used in small quantities, and treated with
utmost care at all times.

3.6. Single-Crystal X-ray Crystallography

Data were collected at the University of Cyprus on an Oxford-Diffraction SuperNova diffractometer,
equipped with a CCD area detector and a graphite monochromator utilizing Mo-Kα radiation (λ
= 0.71073 Å). Suitable crystals were attached to glass fiber using paratone-N oil and transferred to
a goniostat, where they were cooled to 100 K for data collection. Empirical absorption corrections
(multi-scan based on symmetry-related measurements) were applied using CrysAlis RED software [51].
The structure was solved by direct methods using SIR92 [52] and refined on F2 vai the full-matrix least
squares method using SHELXL97 [53] and SHELXL-2014/7 [54]. Software packages used are listed
as follows: CrysAlisCC for data collection, CrysAlisRED for cell refinement and data reduction [51],
WINGX for geometric calculations [55], DIAMOND [56] and MERCURY [57] for molecular graphics.
The program SQUEEZE [58], a part of the PLATON package of crystallographic software, was used
to remove the contribution of highly disordered solvent molecules. The non-H atoms were treated
anisotropically, whereas the H atoms were placed in calculated, ideal positions and refined as riding
on their respective C atoms. Unit cell parameters and structure solution and refinement data for 1
are listed in Table S1. An initial search of reciprocal space for 2–4 revealed monoclinic cells with
dimensions similar to those of 1; thus, full data collection of their structures was not pursued.

Several crystals of compound 1, from different preparations and at different periods of time,
were carefully tested on the X-rays (using CuKa and MoK radiation) at ambient and low (100 K)
temperatures. The diffraction quality of the crystals proved to be moderate and structure determination
was eventually carried out by means of the best data set collected. It is important to mention that
compound 1 has a unit cell and structure similar to a Ni2Gd analogous compound, as previously
reported by us [36,37], though the latter differs mainly in the nature of the 3d metal ion, i.e., it contains
NiII instead of CoII; thus, although the crystallographic data are not of the best quality, the information
they provide about the structure is absolutely reliable.

The X-ray crystallographic data for 1 have been deposited with a CCDC reference number CCDC
1906734. They can be obtained free of charge at http://www.ccdc.cam.ac.uk/conts/retrieving.html or
from the Cambridge Crystallographic Data Center, 12 Union Road, Cambridge, CB2 1EZ, UK: Fax:
+44-1223-336033; or e-mail: deposit@ccdc.cam.ac.uk.

4. Conclusions

Four new mixed-metal CoII
2Ln (Ln = Gd, 1; Dy, 2; Tb, 3) and CoII

2Y (4) clusters are described,
bearing the anionic hemiaketalic form of di-2-pyridyl ketone as an organic ligand. Compounds
1–4 display a triangular metal topology and were synthesized by the reaction of Co(ClO4)2·6H2O,
M(NO3)3·6H2O, (py)2CO and CH3CO2Na·3H2O in EtOH. They are the first heterometallic Co/4f or Y
clusters containing (py)2CO or its derivatives, and join a very small family of such compounds with
this ligand. dc and ac magnetic susceptibility studies revealed the presence of weak ferromagnetic
exchange interactions between the metal ions, with 2 exhibiting nonzero, weak out-of-phase (χ”M)
signals at temperatures below ~5 K.

http://www.ccdc.cam.ac.uk/conts/retrieving.html
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(py)2CO remains a rich wellspring of new metal clusters with interesting structural features and
magnetic properties, after many years of intense research efforts that have yielded a massive number
of compounds. Further studies on the use of this ligand for the synthesis of new 3d/4f metal clusters
are in progress and will be reported in due course.

Supplementary Materials: The following are available online at http://www.mdpi.com/2312-7481/5/2/35/s1:
Figure S1. Representation of the elipsoid plot for 1, Figure S2. Theoretical and experimental pxrd patterns for
1–4, Figure S3: Representation of χ’ (black line) and χ” (red line) for 2, Figure S4: Linear fit of the ac magnetic
suscetibility data for 2 at the frequency of 1000 Hz using the generalized Debye model to extract the slow relaxation
parameters, Table S1: Crystallographic data for complex 1.
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