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Abstract: Nanotechnology offers the possibility of operating on the same scale length at which
biological processes occur, allowing to interfere, manipulate or study cellular events in disease or
healthy conditions. The development of hybrid nanostructured materials with a high degree of
chemical control and complex engineered surface including biological targeting moieties, allows
to specifically bind to a single type of molecule for specific detection, signaling or inactivation
processes. Magnetite nanostructures with designed composition and properties are the ones that
gather most of the designs as theragnostic agents for their versatility, biocompatibility, facile
production and good magnetic performance for remote in vitro and in vivo for biomedical applications.
Their superparamagnetic behavior below a critical size of 30 nm has allowed the development of
magnetic resonance imaging contrast agents or magnetic hyperthermia nanoprobes approved for
clinical uses, establishing an inflection point in the field of magnetite based theragnostic agents.

Keywords: magnetite; superparamagnetism; biodetection; magnetofection; imaging; therapy;
tissue engineering

1. Introduction

Magnetism has been technologically exploited for centuries, well before quantum mechanics
helped to unveil the fundamental mechanisms governing the behavior of magnetic materials.

Electrical steels, permanents magnets, nickel-iron alloys or soft ferrites mechanized in different
configurations just from bulk, ribbon or disks are the enabling materials behind disparate developments
like compasses for marine navigation, bulk magnetic separation devices in mining industry, inductive
heating in massive foundry industry, sophisticated devices for electric power generation and distribution
or communications and information storage in hard disks [1].

The large variety of applications exploiting different aspects of magnetism has permeated
our technically developed society in the last decades and follows still an intense evolution by the
hand of applications based on magnetic materials tailored at the nanometric scale. In fact, the
optimization and maturity of chemical synthetic procedures during the last decades has allowed the
development of materials with designed properties which are only observable at the nanoscale such as,
surface plasmonic resonance, enhanced and specific catalytic activity, size-dependent fluorescence,
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superparamagnetism [2], quantum tunneling magnetization [3] or enhanced coercivity [4] that, all
combined, open the door to highly interesting biomedical and technological applications.

In addition to their designed properties, magnetic nanoparticles (MNPs) are an intense topic of
research in diagnostic, theragnostic and regenerative medicine applications, due to their small size,
which is comparable to relevant cell length scales and allows to interact and interfere with biological
processes, minimizing adverse effects and opening the way to new diagnostic and therapeutic
paradigms [5].

Specifically, superparamagnetic iron oxides nanoparticles (SPIONs) are witnessing a predominant
role in nanomedicine developments relaying on their biocompatibility, unbeatable low cost production,
physicochemical performance and versatile chemistry that make them almost universally present as a
main components in contrast agents for magnetic resonance imaging (MRI), magnetic hyperthermia
sources or drug delivery nanoplatforms [6].

It is striking, however, that Nature had incorporated crystalline magnetite nanoparticles (NPs) as
a strategy for magnetic guiding in small animals, thousands of years before the recent developments of
nanotechnology. Magnetotactic bacteria, bees or pigeons are equipped with magnetic dipolar arrays
of small Fe3O4 NPs, biologically synthesized in specific vesicles, that serve as natural compasses to
orientate in the magnetic field of the Earth. Moreover, magnetite NPs can be found also in humans,
when a pathologically altered iron metabolism triggers their synthesis inside ferritin (Fn), a spherical
hollow protein in charge of delivering Fe3+ to feed our cell biomachinery [7].

Besides its good magnetic performance (Curie temperature well above any biomedical application,
large values of initial susceptibility and saturation magnetization) and biocompatibility, the availability
of facile wet chemistry techniques to produce superparamagnetic (SPM) cores with well controlled
size, shape and composition has promoted magnetite to the most relevant position in the field of
nanomedicine for biodetection, imaging and therapy.

In fact, it competes with the most well accepted soft organic compounds, like liposomes or
nano-emulsions, fully biocompatible, biodegradable with enhanced ability for encapsulating a variety
of hydrophilic or lipophilic drugs [8] that have found approval for clinical uses in a variety of applications
as vaccines, antifunghical, anesthetics or antibiotics [9]. Although with a slower pace, a few set of
superparamagnetic magnetite NPs have been clinically tested and approved for commercialization
as enhanced contrast agents for magnetic resonance imaging (Feridex; Resovist, Ferumoxtran) [10]
or magnetic hyperthermia therapies for brain tumor treatment (NanoTherm) [11], establishing an
inflection point in the use of inorganic materials as theragnostic agents.

By simple and scalable methods like co-precipitation, hydrothermal or solvothermal decomposition
procedures, easy production of spheres, cubes, hexagons, octahedra, hollow spheres, rods, plates or
wires can be obtained with controlled size. Combined with surface functionalization procedures, these
magnetite NPs can be engineered to produce multifunctional hybrid nanostructures with a designed
composition of inorganic/organic/biological shells containing carbon, metal (Au, Ag, Cu, etc.), metal
oxides (Ti, Si, Zr, etc.), hydroxides (Al, etc.), organic compounds (polymers like polyacrylic acid (PAA),
polyethylene glycol (PEG), etc.), short organic molecules (OAc, dopamine, etc.) and biological moieties
(antibodies, aptamers, plasmids, etc.) [12].

This core-shell strategy has given rise to different configurations like single- and multi-core@shell
nanoparticles, where magnetite is located in the core (Fe3O4@SiO2; Fe3O4@C), in the shell
(gelatin-NPs@Fe3O4-NPs) or embedded in a polymer matrix (polyester, gelatin magnetic beads).
In all cases, the nanostructure inherits a combination of abilities that ensures their multimodal
capacities for simultaneous magnetic separation/detection/targeting procedures like contrast agents
in magnetic resonance imaging/positron emission tomography (MRI/PET), magnetic hyperthermia
(MH)/drug delivery therapeutic agents, among others [12].

Moreover, magnetite based nanostructures can be also included as the magnetic phase in a
nanocomposite material like mesoporous silica, biopolymer sponges (chitosan, k-carrageenan, alginate,
etc.), porous stiff materials (hydroxyapatite, polycaprolactone, etc.) or hydrogels, allowing to produce



Magnetochemistry 2020, 6, 4 3 of 27

magnetic scaffolds for tissue engineering combining all the theragnostic abilities, inherited from
magnetite, together with magnetic cell growth stimulation or magnetic external fixation [13].

The list of nanostructured materials containing magnetite NPs is huge, and the applications in
nanomedicine cover almost any aspect from detection, diagnosis and therapy to regenerative medicine.

In this work, we present the structure, properties, synthetic procedures and applications emerging
from the magnetically intrinsic properties of magnetite nanostructures with tailored configuration, size
and shape.

2. Magnetite: Structure and Properties from Bulk to Nanoscale

Magnetite, Fe3O4, is an iron oxide compound where iron ions (with valence 3+ and 2+) adjust
to the AB2O4 = Fe3+ (Fe2+Fe3+)O4 formulation, arranged in an inverse-spinel crystal structure [14],
composed by tetrahedral, A, and octahedral, B, sublattices. The magnetic and electric properties of
magnetite arise from the interactions between the Fe3+ (d5) and Fe2+ (d6) ions placed on octahedral
positions and Fe3+ (d5) ions on tetrahedral positions. The spinel is a stable crystal structure that accepts
the substitution of the A and B lattice locations by a variety of nearly 30 different metal ions with
valences ranging from +1 to +6. An example of this stability is the fact that both, natural magnetite is
commonly found containing impurity ions (Ti, Al, Mg, and Mn), and substituted ferrites containing
transition metals (Co, Mn, Zn) can be easily obtained by wet chemistry procedures [15]. The unit
cell in bulk Fe3O4 consists in a face centered cubic, fcc, (Fd3m space group) arrangement of O2− ions,
in which Fe3+ (d5) cations occupy 1/2 of the tetrahedral interstices, and a 50:50 mixture of Fe3+ (d5)
and Fe2+ (d6) cations occupy 1/8 of the octahedral interstices, with a characteristic unit cell parameter
≈8.4 Å (see Figure 1).
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Figure 1. On the left, the inverse spinel structure (crystal structure adapted from [16] (Science Direct,
2016), of Fe3O4 is based on a face centered cubic (fcc) arrangement of O2− ions in which Fe3+ (d5)
cations occupy 1/2 of the tetrahedral interstices, and a 50:50 mixture of Fe3+ (d5) and Fe2+ (d6) cations
occupy 1/8 of the octahedral interstices. On the right, the set of exchange interactions between Fe3+

(d5), Fe2+ (d6) and O2− ions, giving rise to ferrimagnetic ordering.

At temperatures above 118 ◦K, Fe2+ and Fe3+ ions are randomly distributed over the octahedral
sites allowing electron hopping between them and giving rise to the low electrical resistivity, around
7 mili-Ohm/cm at Troom, of magnetite [15]. Below 118 ◦K, the Fe3+ and Fe2+ ions become ordered
following a cubic to orthorhombic crystallographic transition, as proposed by Verwey [17], where c
axis of the new orthorhombic phase is parallel to and slightly smaller than the cube edge of the fcc
phase and accompanied by electronic charge ordering of the Fe3+ and Fe2+ ions on the B sites, which
produces a large increase in resistivity [18].

The magnetic ordering in magnetite is dominated by the specific distribution of Fe3+ and Fe2+

ions on both A and B sites, and the exchange interactions originated when the 3d electron orbital
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of the Fe ions overlap with the 2p electron orbital of O2− ions, since direct exchange between Fe-Fe
interactions are negligible due to the large distance between Fe ions [19]. Fe-O-Fe super-exchange
interaction depends on the distance and angle of bonds between the Fe3+ and Fe2+ and O2− ions and is
responsible for antiparallel alignment of the net magnetic moment of A and B sublattices, which gives
rise to the ferrimagnetic order in magnetite [15]. As proposed by Neel, Fe3+ ions on the oppositely
aligned tetrahedral and octahedral cancel each other, and only the remaining magnetic moment of Fe2+

ions contributes to the total magnetic moment of magnetite (see Figure 1).
Moreover, the spin magnetic moments, which are tied to their electron orbit by the spin–orbit

interaction, orientate themselves into specific directions in the lattice that minimize the crystalline field
and give rise to the magnetic anisotropy axes. In magnetite, easy (low-energy), hard (high-energy)
and intermediate (medium-energy) magnetocrystalline anisotropy directions are defined by the cubic
lattice axes [111], [100] and [110], respectively (see Figure 1) [15]. At low temperatures, 118 ◦K, the
crystallographic transition from cubic to orthorhombic provokes the appearance of a magnetic isotropic
point where the anisotropy constant (K1) sign changes from − to +, (K1 = 0) and is known as the
Verwey transition.

Compared to other permanent magnetic materials (see Table 1), [20] magnetite shows a low effective
magnetocrystalline anisotropy constant, high saturation magnetization per unit mass (MS~92 emu/g),
low coercivity (HC = 10–40 mT) and high Curie temperature (TC = 850◦) compared to relevant
temperatures for biomedical applications, and a molecular magnetic moment of 4.1 µBohr (accounting
for the larger Fe2+ contribution) [15].

Table 1. Bulk magnetocrystalline anisotropy constant, Kan, Curie temperature, Tc, for representative
magnetic materials. Data compiled from data included in [20].

Material Fe Co Ni PtFe Fe3 O4 γ-Fe2O3

Kan (kJ/m3) 48 530 4.8 6600 11 4.6
TC (K) 1043 1388 631 750 858 863

However, besides the specific crystalline structure of different magnetic materials, there is one
common fact that affects their main magnetic behavior: size.

In order to accommodate all the magnetic interaction terms (exchange, Zeeman, demagnetizing
field and anisotropy) bulk materials attain stability by adopting a magnetic configuration of
multidomains separated by domain walls, that minimizes the total magnetic free energy [21].
When preparing small particles with sizes down to the nanometer scale, the balance of magnetic
interaction terms changes: the energy cost of introducing domain walls is higher than the reduction of
demagnetizing field, the anisotropy energy decreases proportionally to the reduction in volume of the
particle, and single domain becomes the most stable magnetic configuration [22]. This multidomain
to single domain transition happens for particles with a critical radius in the nanometer scale,
(RC = 10–100 nm), and depends on the material properties as RC = 36

√
AK/µ0M2

s (A, exchange
constant, K, anisotropy constant and Ms, saturation magnetization) [23].

Fe3O4 NPs undergo a transition from multi- to single-domain magnetic structure 80–90 nm, and
by further size reduction, which in magnetite happens between 25 to 30 nm, another transition arises
when the total anisotropy energy of the crystallite becomes smaller than thermal energy. This fact
originates that, in absence of externally applied magnetic fields, the magnetization (M) spontaneously
fluctuates at room temperature by thermal stimulation and, in average, M equals zero. This is the so
called superparamagnetic regime, characterized by negligible remanence or coercive forces (Figure 2a)
and reversible magnetization with a rapid “on–off” magnetic switching, modulated by the initial
magnetic susceptibility (χin) (in magnetite NPs can range from: χin = 0.5–1) [24].
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Figure 2. (a) Overlapping into a single curve of magnetization data versus H/T, that correspond to
measurements performed corresponding from 250 to 320 K, on a dried sample of SPM multi-core
Fe3O4@C, showing negligible remanence and coercive forces and (b) Transmission electron microscopy
(TEM) micrograph of multi-core Fe3O4 @C, with averaged size 187 nm. (Figures reprinted with
permission from [25], IEEE, 2016).

Chemical procedures like coprecipitation, thermal decomposition or hydrothermal preparations,
are the most used wet chemistry techniques to provide high quality and monodisperse
SPIONs with diameters ranging from 10 to 30 nm that have become a standard material as
magnetic hyperthermia actuators with high specific absorption rates (SAR) in clinical applications
(MAGFORCE-NanoTherm) [11] or as T2 MRI commercial contrast agents (Feridex; Resovist,
Ferumoxtran [10]).

In addition, SPM behavior can be preserved in multi-core configurations (see Figure 2b) even
though several magnetic cores stand in close contact embedded inside a coating shell (see Figure 2) [25].
These NPs are particularly interesting for those applications that require a high concentration of
magnetic material in a small region to ensure an intense magnetic response (i.e., cell isolation purposes).
The key procedure consists in coating the single-core magnetite surfaces to avoid exchange interaction
between them that may cause exchange bias, commonly resulting in reduced saturation magnetization,
low initial magnetic susceptibility or the loss of SPM behavior.

However, associated with the size reduction, the increase of surface-to-volume ratio (typically,
for 5 nm NPs, the surface spins represent 30% of total amount of spins [26]), entails the dominant
contribution of surface properties, incorporating a crucial problem for magnetic applications: the
reduction of saturation magnetization [27]. For very small magnetic NPs, a surface dead magnetic
layer appears related to specific features like:

1. The large contribution of surface ions, located on edges or corners, with coordination numbers
lower than inner core ions, (see Figure 3) gives rise to an abrupt breakdown of the lattice and
magnetic symmetry, which induces changes in magnetic anisotropy at the surface.

2. The chemical environment of the coating shell influences the magnetic properties of the
surface ions.

3. The interaction of the surface spins with the inner ones by an exchange bias may lead to some
degree of frustration that lowers the total magnetization of the nanoparticle [28].
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Figure 3. (a) Ratio of surface to volume ions in a cubic lattice, for very small nanoparticles (NPs) surface
ions can amount up to large percentages of the totality and (b) corner, edge, surface and inner ions
with different coordination numbers.

Although the preservation of optimum magnetic properties in small magnetic particles through
the increase of crystalline quality and minimization of surface distortion has witnessed a large effort
in chemical approaches in the last years [29], the production of pure colloidal SPIONs remains a
challenge. Magnetite cores with a thin overoxidized (Fe3+) surface shell, compositionally close to a
maghemite polymorph (γ-Fe2O3), are normally obtained and only synthetic procedures driven at high
temperatures can improve the purity and crystallinity of colloidal SPIONs with enhanced saturation
magnetization (MS = 70–85 emu/g) [30].

3. Synthetic Procedures of Multifunctional SPM Magnetite Nanostructures

For in vitro or in vivo applications, not only the magnetic core, but also the capping ligands on
the surface, are the crucial aspects to ensure an adequate performance of the magnetic nanostructures
when they interact with biological media, like fluids or tissues, where they can be critically arrested.

However, besides the efforts devoted to produce multifunctional magnetite nanostructures
with high quality, the requirements to ensure a good in vitro and in vivo performance include a
biocompatible coating and an adequate solvent dispersant, and for in vitro and in vivo applications
is crucial to maintain colloidal stability of the preparations. Therefore, the chemical engineering to
prepare SPIONs with several added functionalities requires a hierarchical procedure involving the
production of good quality magnetite cores and several functionalization steps to add plasmonic NPs,
fluorescent moieties, biological agent or biocompatible coating shells.

3.1. Synthesis of the Magnetic Core. Synthetic Procedures Modulating Size and Shape

With the aim of producing magnetite NPs with exceptional magnetic specifications, high
crystalline quality, well-controlled size and shape, and easy procedures, different wet chemistry
approaches have been studied based on co-precipitation, thermal decomposition, solvothermal or
hydrothermal techniques (summarized in Figure 4). In combination or alone, they can be conveniently
modified to produce magnetite NPs with different morphologies (spheres, cubes, hexagons, octahedra,
hollow spheres, etc.), high crystalline quality, different architectures of single- or multiple-core
configurations [31] or to provide large gram-scale production of NPs [32]. These techniques have
allowed the development of SPIONs spanning from 10 nm to several hundreds of nanometers.
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Figure 4. Summary of synthetic routes commonly used to produce superparamagnetic iron oxides
nanoparticles (SPIONs).

3.1.1. Precipitation Methods

Precipitation methods of iron salts in a highly basic solution are easy, fast, scalable and can be
done at low to moderate temperatures and inert atmosphere. Co-precipitation of two iron Fe2+/Fe3+

salt precursors can be easily controlled by experimentally adjusting the Fe2+/Fe3+ ions ratio, pH and
temperature, providing spherical NPs with a good control of the structural (size, morphology) (see
Figure 5a) and magnetic properties but a with wide size distribution. Although its easiness has made
this basic method very popular, the ensembles produced in this way inherit a distribution of blocking
temperatures, undesired in certain in vivo applications [33] or a distribution of magnetic moments that
need to be avoided for magnetic detection kits.
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Figure 5. TEM image of (a) spherical magnetite NPs coated with citrated and obtained by a
coprecipitation method and (b) bare cubic magnetite NPs obtained by a precipitation method.

Related to these needs, optimized co-precipitation procedures have been implemented attending
to fundamental chemistry facts: reaction kinetics, atmosphere and temperature control. Following the
general theory of nucleation and growth, under the so-called burst nucleation approach, a monodisperse
solution of “nuclei” can be obtained by using supersaturated solutions of the precursors to nucleate in
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a fast and homogenous way. Furtherly, imposing a slow pace at the growth stage, a monodisperse
ensemble of NPs can be achieved [34].

In addition, since magnetite easily oxides into hematite (Fe2O3), a non-magnetic iron oxide phase,
applying inert conditions to the reaction, with a controlled oxygen atmosphere, avoids the formation
of Fe2O3 and γ-Fe2O3, the other ferrimagnetic oxide.

Moreover, crystalline quality can be optimized by supplying energy to facilitate the annealing of
the magnetite lattice. A modified technique [35], based on the precipitation of a single iron salt in a
basic solution and a free oxygen atmosphere, allows to obtain Fe(OH)2, which after heating at 363 K in
a water bath for 2 h, allows the oxidation into Fe3O4 to obtain cubic magnetite NPs (see Figure 5b).

The addition of compounds like dextran, polyvinyl alcohol (PVA), PAA, etc., in subsequent step
of the reaction ensures protection of the magnetite cores from oxidation, increases biocompatibility
and stabilizes the colloidal dispersion.

3.1.2. Thermal Decomposition

Thermal decomposition of organic iron precursor phase in presence of adequate surfactants (fatty
acids, oleic acid (OA), oleylamine, etc.), driven in high temperatures, allows to improve the crystalline
quality of iron oxide NPs with well controlled morphology, size and narrow distribution (see Figure 6).
The reaction temperature is adjusted to the used solvents, which are usually compounds with high
boiling points (octylamine, phenyl ether, phenol ether, hexadecanediol, octadecene, etc.).

Magnetochemistry 2019, 5, x FOR PEER REVIEW 8 of 27 

 

In addition, since magnetite easily oxides into hematite (Fe2O3), a non-magnetic iron oxide phase, 

applying inert conditions to the reaction, with a controlled oxygen atmosphere, avoids the formation 

of Fe2O3 and γ-Fe2O3, the other ferrimagnetic oxide. 

Moreover, crystalline quality can be optimized by supplying energy to facilitate the annealing of the 

magnetite lattice. A modified technique [35], based on the precipitation of a single iron salt in a basic 

solution and a free oxygen atmosphere, allows to obtain Fe(OH)2, which after heating at 363 K in a 

water bath for 2 h, allows the oxidation into Fe3O4 to obtain cubic magnetite NPs (see Figure 5b). 

The addition of compounds like dextran, polyvinyl alcohol (PVA), PAA, etc., in subsequent step 

of the reaction ensures protection of the magnetite cores from oxidation, increases biocompatibility 

and stabilizes the colloidal dispersion. 

3.1.2. Thermal Decomposition 

Thermal decomposition of organic iron precursor phase in presence of adequate surfactants 

(fatty acids, oleic acid (OA), oleylamine, etc.), driven in high temperatures, allows to improve the 

crystalline quality of iron oxide NPs with well controlled morphology, size and narrow distribution 

(see Figure 6). The reaction temperature is adjusted to the used solvents, which are usually 

compounds with high boiling points (octylamine, phenyl ether, phenol ether, hexadecanediol, 

octadecene, etc.). 

  

(a) (b) 

Figure 6. TEM images of (a) hydrophobic Fe3O4@OA NPs and (b) hydrophobic cubic Fe3O4@OA NPs, 

obtained by thermal decomposition method. 

The most commonly used iron organic precursors are iron(III) N-nitrosophenylhydroxylamine 

(Fe(cup)3), iron(III) acetylacetonate (Fe(acac)5), iron pentacarbonyl (Fe(CO)5), which follow different 

routes: Fe(cup)3 or Fe(acac)3 directly decompose into magnetite/maghemite, while Fe(CO)5 goes 

through an intermediate step of metal formation and then an oxidation of Fe0 into magnetite by 

addition of a mild oxidant [36]. 

This procedure allows to obtain sophisticated hollow magnetite structures, which in the case of 

thermal decomposition of iron pentacarbonyl [37] produces in a first stage Fe@Fe3O4 structures (see 

Figure 7a) prior to the final formation of small hollow magnetite spheres (see Figure 6b). Large hollow 

magnetite spheres (see Figure 7c) can be obtained through the thermal decomposition of ferric 

chloride hexahydrate (FeCl3·6H2O) [38]. 

50 nm

Figure 6. TEM images of (a) hydrophobic Fe3O4@OA NPs and (b) hydrophobic cubic Fe3O4@OA NPs,
obtained by thermal decomposition method.

The most commonly used iron organic precursors are iron(III) N-nitrosophenylhydroxylamine
(Fe(cup)3), iron(III) acetylacetonate (Fe(acac)5), iron pentacarbonyl (Fe(CO)5), which follow different
routes: Fe(cup)3 or Fe(acac)3 directly decompose into magnetite/maghemite, while Fe(CO)5 goes
through an intermediate step of metal formation and then an oxidation of Fe0 into magnetite by
addition of a mild oxidant [36].

This procedure allows to obtain sophisticated hollow magnetite structures, which in the case of
thermal decomposition of iron pentacarbonyl [37] produces in a first stage Fe@Fe3O4 structures (see
Figure 7a) prior to the final formation of small hollow magnetite spheres (see Figure 6b). Large hollow
magnetite spheres (see Figure 7c) can be obtained through the thermal decomposition of ferric chloride
hexahydrate (FeCl3·6H2O) [38].
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Figure 7. TEM image of (a) Fe@Fe3O4@OA NPs 13 nm, (b) small hollow Fe3O4@OA NPs and (c) STEM
of large hollow Fe3O4@OA NPs.

Thermal decomposition is a versatile procedure that allows also to obtain magnetite NPs with
a diminished magnetic dead layer [39], different morphologies like spheres [40] or cubes [41], with
narrow size distribution and controlled ion substitution with transition metals like Fe, Mn, Co, Ni,
or Cr. However, the use on non-polar solvents is a main disadvantage that needs to be overcome
by a phase transfer strategy, to change organic-stabilized NPs into water dispersions suitable for
biomedical applications.

3.1.3. Hydrothermal Synthesis

Hydrothermal synthesis is a case of solvothermal procedures, that submit the reactants into a
stainless-steel autoclave at high pressure and temperatures but using water as solvent. This high
energy wet chemistry technique, produces NPs with high crystalline quality and optimum magnetic
performances, since lattice formation benefits from the high temperatures (from 355 to 525 K), high
vapor pressures (from 0.3 to 4 MPa) and long times (up to 72 h) to which the experimental conditions
are subjected. Specifically, a combination of high temperatures, between 355 to 525 K, and prolonged
reaction time (24 h), has been studied and successfully applied [42] to produce Fe3O4@OA (see
Figure 8) and Fe3O4@PAA coated NPs, with sizes around 20 nm and high yield (nearly 86%), by mixing
FeCl2·4H2O and FeCl3·6H2O in a Teflon vessel with either an OA or a PAA solution, respectively.
The so obtained NPs show a high degree of crystallinity (see Figure 8) and a saturation magnetization
(MS = 84 emu/g, close to the range of bulk magnetite (MS~92 emu/g).
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Figure 8. Fe3O4@OA coated NPs developed by hydrothermal method. (a) Low-resolution bright-field
TEM images and corresponding ED ring patterns and (b) representative HRTEM image together with
Fourier Transform FT pattern (inset). White arrows mark the dimer boundaries. Bottom insets: a
filtered HRTEM image of a selected dimer NPs (left) and the corresponding GPA images for g111
(middle) and g011 (right) diffraction spots. (Figures reprinted with permission from [42], ACS, 2014.
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In another approach, magnetite NPs with rounded cubic shape and 39 nm were obtained by
coprecipitation at 343 K of ferrous Fe2+ and ferric Fe3+ ions by N(CH3)4OH solution, and a subsequent
Teflon vessel thermal treatment at T = 523 K for 24 h [43]. The improved crystalline and magnetic
quality after the annealing at high temperatures was clearly stated by the increase in MS from 59.8 to
82.5 emu/g.

3.1.4. Solvothermal Procedures

Solvothermal procedures, using organic solvents at high pressure and temperature, open new
possibilities to prepare magnetite NPs with complex configurations. Sphere like particles with an
average size of 190 nm and containing multiple SPIONs cores closely packed inside a carbon coating
shell were prepared using a mixture of ferrocene and acetone and kept at 513 K in a Teflon-lined
stainless-steel autoclave for 72 h [44]. By means of chemical control, this solvothermal procedure is
suitable to provide NPs with sizes between 100 and 250 nm [45] and morphologically controlled SPM
multi-core Fe3O4@C spheres (see Figure 9).
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Figure 9. SEM micrographs of SPM multi-core Fe3O4@C spheres developed by a solvothermal technique
with different amounts of hydrogen peroxide (a) 0.50, (b) 1.00, (c) 1.50, and (d) 2.00 mL, ensuring
size control (a) 100, (b) 150, (c) 200, and (d) 250 nm. (Images reprinted with permission from [45],
ACS, 2011).

3.1.5. Biogenic Inspired Procedures

Monodisperse magnetite NPs, with precise shape and size and crystalline quality, appear in
magnetotatic bacteria, honeybees, pigeons, reptiles or amphibians. In humans, magnetite NPs can be
found and are the signature of diseases in which an altered homeostasis of iron biomineralizes NPs at
higher rates (neurological disorders, cancer, etc.). The mechanism of magnetite formation in living
organisms (prokaryotes, archaea or eukaryotes) follows three steps: (1) formation of a specific organic
reactor matrix (e.g., vesicles, protein cages, etc.) with favorable chemical environment; (2) formation of
an intermediate iron compound and (3) conversion of this iron precursor into the magnetite NPs [46].
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Compared to synthetic routes that occur at high energy operative conditions, natural magnetite
biomineralization strategies occur at soft physiological conditions and are inspiring a new paradigm
on green chemistry procedures. One of such strategies is based on the use of hollow Fn cages, an
ubiquitous protein present in almost all living organisms that contains toxic Fe2+ and transforms it by
oxidation into ferryhydrate (FeOOH)—an innocuous iron oxide mineral. In neurological diseases with
a biologically altered iron homeostasis, the Fn protein shell transforms its ferryhydrate payload into
magnetite NPs by a chemically complex procedure [47].

In a pioneering work [48], empty ferritin (apo-ferritin) was successfully used to synthesize
magnetite NPs under high temperature and controlled pH conditions, opening a new bio-mimetic
methodology based on the use of hollow biological cavities as templates to perform constrained
reactions. Within this approach, cage like structures with sizes in the range from 18 to 500 nm, including
virus capsids or ferritins obtained from different animal sources, have been used taking profit from
their special characteristics (Fn from Pyrococcus furiosus remains stable above water boiling point) in
synthetic procedures, at high reaction temperatures, to produce size controlled magnetite NPs [49,50].

3.2. Surface Functionalization: Core Protection, Colloidal Stability, Biocompatibility and Multifunctional
Decoration

Physiological human media (blood, saliva, etc.) are a crowded biochemical environment with
a complex machinery in which foreign materials (viruses, bacteria, etc.) are readily recognized
and passivated by the immune system (IS) [51]. Therefore, nanoparticles exposed to in vitro or
in vivo conditions require a highly engineered surface to protect the magnetite core from possible
oxidation into hematite and ensure their magnetic quality, providing colloidal stability by preventing
opsonization (unspecific attachment of a protein corona composed of albumin, immunoglobulin,
apolipoproteins) [52] and providing abilities for theragnostic functions.

Different capping strategies include the use of small organic molecules, surfactants or active
moieties like fluorescent molecules (rhodamine, fluorescein, etc.); natural polysaccharides, such as
dextran, artificial block copolymers (poloxamers, poloxamines) or large polymers, like PEG that avoids
opsonization [53]; inorganic materials, like amorphous or mesoporous silica and carbon, adding
textural properties or thermal insulation; metal NPs (with plasmonic activity) and biological moieties
for tagging, penetration or therapeutic abilities (monoclonal antibodies, aptamers, carbohydrates [53]
and drugs).

3.2.1. Small Organic Molecules

Small organic molecules, or surfactants, can be anchored easily to magnetite NPs surface, since
their hydroxyl groups, Fe-OH, greatly facilitate the anchoring of different compounds: alkoxylanes,
carboxylic acids, phosphonic acids, dopamine, etc.

The most popular in situ coating consists in directly adding small biocompatible compounds
(amino acid, citric acid, vitamin, cyclodextrin) during core synthesis.

However, additional enhancement of colloidal stability in basic or acidic media, where the organic
molecules can decompose, can be achieved by grafting the Fe-OH group surface with silane groups,
Si-OCH3, which show good water stability and no cytoxicity [54,55]. Different silane compounds are
available, like 3-aminopropyltriethyloxysilane (APTES) and mercaptopropyltriethoxysilane (MPTES),
providing chemical versatility [54] since they incorporate amino and sulfhydryl functional groups
which facilitate bioconjugation procedures or drug grafting [55,56].

Phosphonic acid forms strong Fe-O-P bonds, which densely graft the magnetite NPs surface and
allow a further combination with polydopamine groups, providing an improved pH and temperature
stability [56]. Shahoo et al. have reported an efficient coating of 6–8 nm magnetite NPs, by oleic acid,
lauric acid, phosphonic acids (dodecyl-; hexadecyl-) and dihexadecyl-phosphate, concluding that the
bonding strengths of alkyl phosphonates and phosphates are stronger than that of carboxylate and
proposed them as alternative biocompatible coatings in organic solutions [57].
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Oleic acid (CH3(CH2)7CH = CH(CH2)7CO2H) provides large colloidal stability to magnetite NPs,
but its lipophilic character is a main drawback in biomedical applications (see Figure 10). Its large
steric stability, compared to similar compounds like stearic acid (CH3(CH2)16CO2H), arises from its
cis-double-bond, which forms a kink in the middle of the carbon chain structure [58].
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Moreover, reported by Guardia et al. [59], Fe3O4 NPs with sizes from 6 to 17 nm present
large saturation magnetization values (MS from 79 to 84 emu/g at T = 5 K), close to the bulk value
(MS = 92 emu/g), which in contrast to similar bare Fe3O4 NPs of 4 nm have only MS = 50 emu/g. These
results point to the role of oleic acid in reducing the spin surface disorder of small magnetite NPs,
which is of large interest for the magnetic performance improvement in ultra-small SPIONs.

To enable lipophilic magnetite NPs [33] for biomedical applications which are mainly water based,
a phase transfer, like the addition of amphiphilic molecules to the oil-soluble phase is the primary
strategy to create a double layer with the hydrophilic segments exposed towards the solvent [60].

Additionally, surfactant exchange can be afforded by replacing the initial one by a new bifunctional
surfactant, which has one group capable of binding to the NPs surface with a strong chemical bond
and another terminal group that has a polar character and remains exposed to water [60].

Other interesting ability of organic coatings is the protection against degradation in acidic or basic
media. Specifically, it has been reported [61] that magnetite coated with bipyridinium, F3O4@bipy NPs
(13 nm) shows increased water solubility of the ferrofluid up to 300 mg/mL and stability of magnetite
in a wide range of pH conditions, from very acidic to very basic (1 ≤ pH ≤ 11), extremely useful for
acidic in vivo conditions like in tumor locations, where therapeutic procedures require an extended
period of stability of Fe3O4 NPs.

3.2.2. Large Polymers

The incorporation of large polymers has been reported to add different advantages like size and
shape control in one-pot procedures, enhanced colloidal stability, ability to prevent protein corona
formation, biocompatibility and large availability of sites for the bioconjugation of biological moieties
(aptamers, antibodies).

Their most remarkable fact is that they offer many repulsive groups balancing the attractive
magnetic and Van der Waals interactions that agglomerate magnetite NPs and numerous sites for
grafting antibodies, aptamers, etc. Synthetic functional polymers, such as linear or brush structures
like, PEG, PVA, polylactic acid (PLA), polyvinilpirrolidone (PVP) or PAA, (see Figure 11) are commonly
incorporated by two alternative approaches: grafting from and grafting onto the NPs.
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Figure 11. TEM images of magnetite NPs coated with (a) aminolauric acid and (b) polyacrylic acid
(PAA).

Grafting polymers on the NPs’ surface, by in situ procedures is the most used strategy, since it
allows a strict control of the polymer’s architecture and functionality, and although the density of
grating is poor, the procedure is easier than a radical polymerization departing from monomer growth,
which ensures a dense but uncontrolled coating.

In situ PAA grafting onto Fe3O4 NPs by a one-pot method has shown to produce materials with
high colloidal stability and versatile surface for grafting biological molecules [62]. Other conventionally
prepared one-pot polymer coated NPs include Fe3O4@PVP coated nanocrystals [63], with high colloidal
stability in 10 different types of organic solvents and aqueous solutions, with pH ranging between 2.0
and 11.0. Generally, polyelectrolyte polymers provide enhanced colloidal stability when grafted onto
magnetite NPs, owing to their electrostatic repulsive forces [64].

Other than stability, the incorporation of large polymers can be used to gain size and morphology
control. In a one-pot procedure, by adding PVA to an aqueous solution of Fe2+/Fe3+ salts with urea
at 358 K, nanosized polyhedral particles with an approximated size around 300 nm and modified
microspheres, between 100 to 280 nm, could be obtained controlling the polymer concentration [65].
A much more drastic effect on shape control has been shown when two PAA samples with average
polymerization degrees of 208 and 126, PAA208 and PAA126, respectively, were used as an additive
reactant to produce nanorods and flowerlike magnetite particles, respectively [65].

Besides enhancing colloidal stability, the specific interaction of the coating polymer with the
physiological medium is of crucial importance in ensuring biocompatibility, facilitating bioconjugation
or avoiding a fast entrapment by the IS. Therefore, taking inspiration from erythrocytes (red blood
cells) whose chemical strategy to avoid protein corona formation comprises a protective shell barrier of
hydrophilic oligosaccharide groups [66], a neutral electric surface composed of different hydrophilic
coating shells (large brushes, densely packed [67]) have been synthetically incorporated and studied [68].
In this context, hydrophilic polymer brushes like linear dextrans and their derivatives, PEG; natural
molecules, like polysialic acid, heparin, polysaccharides and artificial block-copolymers, like poloxamers
or poloxamines, have shown to act as protein corona evaders [69].

From all these possibilities, PEG coating strategies, known as PEGylation, are the most used
for biomedical applications, and their effectiveness in evading the IS depends on their molecular
weight and density. PEGylated NPs with different molecules from 2000 and 20,000 g/mol and densities
between 0.5 and 50 wt % have been shown to reduce opsonization from 1600 counts per million (cpm),
to an almost constant value of 400 cpm, for PEG coating with MW larger than 5000 (g/mol), showing
that PEGylation can hinder but not completely stop protein adsorption [67]. Coating density is a key
factor in controlling the inter-distance between PEG terminal brushes that below a certain threshold
hinder the adsorption of proteins. Above 5% of PEG coating, an inter-distance threshold about 1.0 nm
between terminal PEG brushes can be estimated, and small protein adsorption remains constant below
400 cpm [67].
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Functional polymers with responsive performance under pH, temperature or light irradiation
stimuli are essential to provide controlled drug release [70]. Specifically, thermoresponsive polymer
hydrogels like Pluronic, poly-isopropylacrilamide (PNIPAM) and their derivatives (e.g., PNIPAM
with chitosan [71]) can be used to expel loaded molecules exploiting their coil-to-globule transition
at defined temperatures. These hydrogels, in combination with SPIONs can be heated up by the
application of an alternating magnetic field (magnetic hyperthermia) to undergo a controlled network
shrinking useful for enhanced drug delivery applications [72].

3.2.3. Inorganic Materials

Inorganic materials are used also to confer core protection; colloidal stability and other functional
properties like surface plasmon resonance (metal NPs), thermal isolation (carbon shell), etc. Silica
(SiO2) is one of the most commonly used inorganic coating materials, due to its versatile chemical
silanol surface groups (-SiOH), colloidal stability and biocompatibility. The preparation of magnetite
NPs coated with silica by sol-gel procedures allows to control the shell thickness [73] and is affordable
by the basic hydrolysis of silanes in aqueous solutions of different organosilane compounds (tetraethyl
orthosilicate (TEOS), APTES). The reaction between the oxide surface of magnetite and the silica takes
places by the OH− groups [74], and by an adjustment of the amount of added TEOS and the reaction
time, the silica shell thickness can be easily tailored. Moreover, different configurations of the silica
coated magnetite nanostructures can be achieved following two different routes: Stöber processes
generally result into a multi-core coated NPs, while microemulsion processes provide mainly single
core-shell NPs [74] (see Figure 12).
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Figure 12. TEM micrographs of silica coated magnetite NPs by (a) Stöber processes, which generally
result in multi-core coated NPs and (b) microemulsion processes, which provide mainly single
core-shell NPs.

4. Biomedical Applications Arising from the Tunable Magnetic Properties of Magnetite
Nanoparticles

The SPM character, inherent from the magnetite cores, allows to combine several abilities within a
single nanostructure that can be triggered externally, under demand, by the application of a remote
magnetic field to produce different magnetic responses of biomedical interest (summarized Table 2)
like magnetophoresis, hyperthermia, magnetization or magnetic resonance.
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Table 2. Summary of biomedical applications based on the combination of SPIONS and
magnetic stimulation.

Magnetic
Property Application Pros/Cons. Commercial Kit Toxicity

Magnetophoresis

Cell isolation

- Selective separation of tagged cells
without damaging

- Unaltered sample fluid after separation
- Requires the use of antibodies for

selective binding

MACS®

Separators,
Miltenyi

No in vitro
toxicity

Magnetofection

- Fast/efficient transfection of
magnetized agents

- Hallbach arrays with permanent magnets
are cheap and easy to implement

NONE No in vitro
toxicity

Magnetic guiding
- Magnetized stents can attract injected

magnetic NPs to reduce restenosis
- In preclinical stage

NONE
no in vivo
toxicity
tested in rat

Magnetic detection

Magnetometry
SQUID

- Most sensitive magnetometry for
iron detection

- Expensive devices
NONE No in vitro

toxicity

GMR
sensors

- Detecting surface requires the binding
of antibodies

- Versatile for microarray detection
NONE No in vitro

toxicity

Impedance
Sensors

- Immunodetection requires the binding
of antibodies

- Implemented in paper strips kit
- Attains detection limits in the clinical range

NONE No in vitro
toxicity

Inductive
heating

Hyperthermia
cancer treatment

- Selective killing of cancer cells
- In clinical use for glioblastoma tumors
- Increase of life expectancy 6–13 months

MAGFORCE
NanoTherm,
(clinical therapy)

NONE

Thermally
Enhanced release
of therapeutic
agents

- Controlled release by magnetic
hyperthermia stimulation

- Selective targeting
- Under demand dosage
- Under study stage

NONE No in vitro
toxicity

Thermal
stimulation

- Allows deep brain stimulation avoiding the
implantation of electrodes in brain

- In preclinical stage
NONE

no in vivo
toxicity
tested in
mouse

Magneticre
laxation

MRI
contrast agents:
single (T2)

- MRI contrast enhancement for soft tissues
- In clinical use

Ferucarbotran
(Resovist®, Bayer
Healthcare)
(MRI clinical
diagnosis)

NONE

MRI
contrast agents:
dual(T1/T2)

- Enhanced contrast for soft and hard tissues.
- Avoiding the use of Gd for T1 contrast
- In preclinical stage

NONE

no in vivo
toxicity
tested in
mouse

Magnetic
prototyping

3D magnetic
bioprinting

- Bioprinting of tissue or replacements with
biologically functional

- No need of artificial substrate
- Bioprinted functional saliva

secretory organoids
- Tested ex vivo
- Under study stage

NONE
No in vitro
and ex vivo
toxicity

4.1. Magnetophoresis

Magnetophoresis refers to the controlled motion of SPIONs in a viscous medium induced by the
application of an external magnetic field. This useful characteristic can be used to isolate, concentrate
and drive magnetically labelled biomarkers or cells, from physiological samples (cerebrospinal fluid
(CSF), blood, saliva, cell aspirates, etc.) and for in vivo targeting with the application of an external
magnetic gradient. The use of magnetic separation techniques saves energy when exposing analytes to
a permanent magnet and includes a high degree of specificity, if magnetic particles are conveniently



Magnetochemistry 2020, 6, 4 16 of 27

coated with antibodies that specifically target the desired biomarker. Moreover, extraction of the target
can be done, without damaging the rest of the fluid for further analysis.

4.1.1. Cell Isolation

Purification and preconcentration of biomarkers or cells from patient’s fluid samples or aspirates
are crucial for a successful culture of isolated cells for transplantation or for an accurate high
signal-to-noise ratio detection step (magnetic, optical or chemical) without the unspecific interference
of other biochemical compounds in the sample [75]. Simple magnetic separation has been described by
using cationic liposomes loaded with SPIONs (MCL), which were mixed with bone marrow aspirates
under shaking for 1 h and transferred into tissue culture dishes, with a disk-shaped magnet at the
bottom. Magnetically labeled cells were subject to the attraction of the magnetic field and 30% of
them were isolated. Increased separation effectivity, up to an 85% was afterwards achieved using
magneto-liposomes, conjugated with CD105 antibodies [76].

4.1.2. Magnetofection

Magnetofection, consists in the transfection of magnetic therapeutic vectors (plasmids, engineered
viruses, etc.) inside cells, forced by a magnetic field, and is becoming a widely used technique in gene
therapy which benefits from its higher degree of penetration compared to non-magnetic approaches.

Polyethylenimine-modified SPIONS/pDNA complexes (PEI-SPIONs/pDNA complexes) have
been used to rapidly and uniformly distribute on the surface of MG-63 osteoblasts cells, by their
incubation under the exposure to a uniform magnetic field enabled by specially designed Hallbach
array of permanent magnets. With this homogeneous magnetic exposure, local transfection, without
the disruption of the cells’ membrane, was obtained, improving the magnetofection efficiency of pDNA
into osteoblasts, thereby providing a novel approach for the targeted delivery of therapeutic genes to
osteosarcoma tissues as well as a reference for the treatment of other tumors [77].

4.1.3. Magnetic Guiding

Magnetic guiding of MNPs exposed to the application of a magnetic gradient can be used to deliver
therapeutic payloads in a precise location with a high degree of specificity. An innovative approach has
been studied to reduce the re-stenosis of vasculature after stenting in in vivo experiments by combining
stainless steel stents and the use of paclitaxel loaded SPIONs. The stents were magnetized upon the
external application of a magnetic field, creating a magnetic field gradient capable to attract the MNPs
delivered to the rat via a catheter. Paclitaxel release to the surrounding tissues was effective, reducing
therefore restenosis of the vasculature tissue although the dose of paclitaxel-SPIONs was low [78].

4.2. Magnetic Detection

Magnetic detection exploits different aspects of the magnetic properties of both SPIONs and the
components of the detecting sensors.

4.2.1. Superconducting Quantum Interference Device

(SQUID) is the most sensitive magnetometer for DC or low frequency measurements. Constituted
by superconducting loops containing Josephson junctions, when a current is induced in the SQUID
ring by an external magnetic flux, a change in voltage happens across the junction, which generates an
output signal from the amplified voltage [79]. Although SQUID has been used to detect ferromagnetic
contamination in the lungs or magnetite NPs brain in AD patients in ex vivo conditions [80], it has
been applied to susceptibility measurements for in vivo identification of SPIONs loaded on a tumor
in the lymph nodes of rats [81]. Moreover, the effectivity of iron quantification by SQUID magnetic
relaxometry was successfully used to evaluate SPIONs conjugated to Her2-expressingMCF/Her2-18
cells (breast cancer cells) injected into xenograft MCF7/Her2-18 tumors in nude mice [82]. Brown
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relaxation of magnetic NPs in liquids has also been exploited to detect biomarkers in liquid-phase
immunoassays using SQUID magnetometry of magnetite beads conjugated with biotin, with sizes
from 54 to 322 nm, attaining a sensitivity of 5.6 × 10−8 mol/mL [83].

4.2.2. Giant Magnetoresistance (GMR)

Giant Magnetoresistance (GMR) sensors are based on the significant change in electrical resistance
of an arrangement of thin-film layers of alternating ferromagnetic and nonmagnetic conducting spacers
when they are exposed to an externally applied magnetic field [84]. The variation in magnetoresistance
of these spin-dependent sensors decorated with specific antibodies, provides quantitative analysis
in combination with MNPs. The main strategy behind several magnetoresistive detectors, consists
in attaching MNPs to the analytes, which during the detection procedure remain attached to the
sensing surface creating a magnetic disturbance that triggers the change in electrical resistance of the
device [85]. GMR detectors have been improved in the last years, being able to respond even upon
small variations of magnetic fields, incrementing their sensitivity to detect small concentrations of
analytes [84].

Although accurate GMR detection is facilitated by using SPM magnetite beads [86] with a large
magnetic moment, a successful strategy using small SPIONs (30 nm) labeled with streptavidin was
developed to detect Interleukin-6 (IL-6) antibody and amine modified DNA (deoxyribonucleic acid)
oligonucleotide, by functionalizing the surface of the sensor with APTES and Glutathione [87]. This
APTES-Glu modification was successfully extended to microarray detection, showing to be a versatile
and robust method [87].

4.2.3. Impedance Based Sensor

Emergent strategies are trying to couple lateral flow immunoassay (LFIA) (paper-strips), which
stand out for their low-cost, speed, portability and ease of use, with an innovative magnetic detection
based on Cu-impedance change in the presence of MNPs [88].

The sensing property relies on the high rate of oscillation of the magnetic moments of the
SPIONs that induces localized eddy currents on the surface of the sensor, increasing its electrical
radio-frequency impedance, for which no external magnetic field is required. This facile magnetic
detection strategy is based on the use of paper-strip immunodetection kits in combination with SPIONS
functionalized to specifically bind to prostate-specific antigen PSA. The strips were seeded with capture
anti-PSA antibody and anti-IgG (both at a concentration of 1 mg/mL) forming the test and control
lines, respectively. PSA standard solutions at known concentrations were submitted to the strip and
attached to test line. The subsequent binding of conjugated SPIONs to PSA ensured the magnetic
reading and the final determination of analyte concentrations. This facile method allowed to attain a
limit of detection within the clinical range of interest around 0.25 ng/mL and a resolution of 50 pg [89].

Further improvements are reported, by using large SPM multi-core carbon coated nanoflowers
(Fe3O4@C) as LFIA labels that provide a magnetic moment substantially larger than that of single-core
SPIONs, allowing for a more sensitive and precise detection [90].

4.3. Inductive Heating

Inductive heating, also known as magnetic hyperthermia, consists in the transformation of
electromagnetic energy into heat, when an alternating external magnetic field (f = 3 kHz, 300 MHz) is
applied to a magnetic nanoparticle. The temperature rise that is transmitted to the medium, in which
the NPs are housed, depends on the magnetic quality of the NPs, the viscosity of the medium and
the parameters of the external magnetic field, among others [91]. This externally controlled rise of
temperature can be used for killing cancer cells when rising to 315 K, stimulating cell growth for mild
thermal increase or triggering release mechanisms for enhanced delivery.
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4.3.1. Cancer Hyperthermia Treatment

Through magnetic hyperthermia, cancer treatments can be developed by selectively heating
between 314 and 316 K cancerous tissues which are previously loaded with MNPs. In biomedical
applications, magnetic exciters are restricted to a safety upper limit of H·f < 4.58 ×·108 A·m·s−1 [92].

This technique benefits from a natural mechanism called enhanced permeation and retention, due
to the defects and poor drainage of cancerous tissues that cause the accumulation of NPs inside the
damaged tissue [93]. This entrapment of NPs inside the tumor tissue allows the heating and weakening
of cancer cells, minimizing side effects in the surrounding healthy cells. It is worth highlighting the
development by MagForce [94] of a clinically used magnetic hyperthermia therapy, which combines a
magnetic field applicator (100 kHz) and an injectable therapeutic agent consisting in Fe3O4@amylosan
NPs to treat glioblastoma, an aggressive brain tumor.

Within this commercial solution, even large tumors around 5 cm can be treated by the direct
injection with 3 mL of magnetite based ferrofluid, which heats up by the application of the external
alternating magnetic fields. This technique has been used in phase II clinical trials in combination
with stereotactic radiotherapy and obtained the European approval as a treatment for brain tumors in
2010, after demonstrating its ability to increase life expectancy from 6 to 13 months in patients with
glioblastoma multiforme, compared to others treated only with chemotherapy.

4.3.2. Controlled Release

Another therapeutic strategy based on magnetic hyperthermia consists in the thermal stimulation
of thermo-active moieties to provoke the release of therapeutic agents (drugs, growth factor, oligomers,
etc.) under demand.

One of the most successful drug delivery applications, triggered by magnetic hyperthermia,
combines SPIONs with a coating of thermosensitive polymers such as PNIPAM and its derivates. These
polymers form hydrogels at room temperature and can allocate molecules acting as drug nanocarriers.
When the temperature rises above a critical range (T = 306–313 K), these structures retract and expel all
the drug contained within.

Steps are being taken so that this technique meets the essential conditions of an effective tool in
precision medicine, temperature control and release time control. In fact, it has already been possible
to produce the collapse of 49% of the volume of the therapeutic agent at a temperature of biomedical
interest T = 311 K (see Figure 13) [95]. Optimizing the biopolymers mixture (PNIPAM/chitosan), it is
even possible to release 70% of the drug housed in a single second [71].
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Figure 13. Absorbance measurements performed to address VEGF release for HUVEC cells incubated
with PNIPAM (release temperature at 305 K) and PNIPAM/38 (release temperature at 311 K) loaded
with VEGF and raised to different temperatures, (a) 311 K and (b) 293 K. The wells with standard
cultural medium with and without VEGF (10 ng/mL) were used as controls. Experiments performed
at 311 K show the ability of thermal release of VEGF loaded on PNIPAM based materials. (Images
reprinted with permission from [95], Springer, 2014).
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Besides drugs, there is a large interest in the controlled release of biological moieties with
therapeutic effects for regenerative medicine. Several proteins (recombinant human bone morphogenic
proteins, rhBMPs, induce osteogenesis) and growth factors (vascular endothelial growth factor (VEGF))
responsible for the triggering of angiogenesis (process of blood vessel formation) are crucial for ensuring
the long-term viability of repaired tissues with functional recovery. Specifically, VEGF is effective only
when concentration gradients at physiological levels are generated, and new strategies are needed for an
adequate delivery at the site of tissue repair. In this context, the grafting complex-elastin-dendron-VEGF
hyperbranched poly(epsilon-lysine) peptides integrating in their core parallel thermoresponsive
elastin-like peptide sequences over the surface of Fe3O4@PAA NPs (see Figure 14) has been reported [96].

Magnetochemistry 2019, 5, x FOR PEER REVIEW 19 of 27 

 

Besides drugs, there is a large interest in the controlled release of biological moieties with 

therapeutic effects for regenerative medicine. Several proteins (recombinant human bone 

morphogenic proteins, rhBMPs, induce osteogenesis) and growth factors (vascular endothelial 

growth factor (VEGF)) responsible for the triggering of angiogenesis (process of blood vessel 

formation) are crucial for ensuring the long-term viability of repaired tissues with functional 

recovery. Specifically, VEGF is effective only when concentration gradients at physiological levels 

are generated, and new strategies are needed for an adequate delivery at the site of tissue repair. In 

this context, the grafting complex-elastin-dendron-VEGF hyperbranched poly(epsilon-lysine) 

peptides integrating in their core parallel thermoresponsive elastin-like peptide sequences over the 

surface of Fe3O4@PAA NPs (see Figure 14) has been reported [96]. 

   
(a) (b) (c) 

Figure 14. (a) SEM micrograph of Fe3O4@PAA-C-ELP-G3K-Bet16-VEGF, (b) hyperthermia Treatment 

of Fe3O4@PAA and Fe3O4@PAA-C-ELP-G3K-Bet16 samples immersed in phosphate buffered saline, 

pH 7.4, with a volume of 240 µL and a magnetite concentration of 40 µg/µL, and (c) release of hVEGF 

from Fe3O4@PAA-C-ELP-G3K-Bet16-VEGF after hyperthermia treatment. Negative control shows no 

hVEGF release after hyperthermia treatment. (Images taken form [96], Elsevier, 2015). 

These functionalized SPIONs were able to avidly bind VEGF forming a stable complex. Under 

the adequate stimulation of the complex Fe3O4@PAA-C-ELP-G3K-Bet16-VEGF with a magnetic 

induction (H = 30 mT, f = 298 kHz), a mild-temperature rise up to 315 K, the range at which the elastin-

like peptides collapse provoked the VEGF release in only two minutes after magnetic stimulation 

without suffering degradation (see Figure 14). 

4.3.3. Thermal Stimulation 

Additionally, it is worth mentioning a last application of magnetic hyperthermia that has been 

able to produce DBS (Deep brain stimulation) at the nanometric level in a mouse with induced 

thermal sensitivity in specific neurons selected by genetic technique. The mouse brain was injected 

with SPIONs (around 22 nm) and exposed to an external magnetic field which provoked a local 

increase in temperature. With this procedure, the selective activation of the modified neurons was 

observed, without any secondary effect in the neighboring neurons, which were preserved practically 

intact [97]. 

In another recent study [98], the effect of magnetoelectric particles has been modeled to stimulate 

the brain of an affected Parkinson’s patient by simulating a neural network with electrical levels like 

those of a healthy person. The simulation estimates optimal values for the design made from 20 nm 

magnetite NPs, with a concentration of 3 × 106 under the action of an external magnetic field of 300 

Oe operating at a frequency 80 Hz. Undoubtedly, these results open the door to the effective 

development of new innovative and non-invasive DBS methodologies. 

4.4. Magnetic Resonance Imaging 

Nuclear magnetic resonance (NMR) is a powerful magnetic phenomenon mainly used in clinics 

for imaging. In contrast to a surface-based sensor like GMR, NMR is capable of sampling an entire 

volume in a non-invasive way. MRI can be combined with other diagnostic tools, like CT (X-ray 

computed tomography), PET (positron emission tomography) or US (ultrasound), to obtain more 

200 nm

Figure 14. (a) SEM micrograph of Fe3O4@PAA-C-ELP-G3K-Bet16-VEGF, (b) hyperthermia Treatment
of Fe3O4@PAA and Fe3O4@PAA-C-ELP-G3K-Bet16 samples immersed in phosphate buffered saline,
pH 7.4, with a volume of 240 µL and a magnetite concentration of 40 µg/µL, and (c) release of hVEGF
from Fe3O4@PAA-C-ELP-G3K-Bet16-VEGF after hyperthermia treatment. Negative control shows no
hVEGF release after hyperthermia treatment. (Images taken form [96], Elsevier, 2015).

These functionalized SPIONs were able to avidly bind VEGF forming a stable complex. Under the
adequate stimulation of the complex Fe3O4@PAA-C-ELP-G3K-Bet16-VEGF with a magnetic induction
(H = 30 mT, f = 298 kHz), a mild-temperature rise up to 315 K, the range at which the elastin-like
peptides collapse provoked the VEGF release in only two minutes after magnetic stimulation without
suffering degradation (see Figure 14).

4.3.3. Thermal Stimulation

Additionally, it is worth mentioning a last application of magnetic hyperthermia that has been
able to produce DBS (Deep brain stimulation) at the nanometric level in a mouse with induced thermal
sensitivity in specific neurons selected by genetic technique. The mouse brain was injected with
SPIONs (around 22 nm) and exposed to an external magnetic field which provoked a local increase
in temperature. With this procedure, the selective activation of the modified neurons was observed,
without any secondary effect in the neighboring neurons, which were preserved practically intact [97].

In another recent study [98], the effect of magnetoelectric particles has been modeled to stimulate
the brain of an affected Parkinson’s patient by simulating a neural network with electrical levels like
those of a healthy person. The simulation estimates optimal values for the design made from 20 nm
magnetite NPs, with a concentration of 3 × 106 under the action of an external magnetic field of 300 Oe
operating at a frequency 80 Hz. Undoubtedly, these results open the door to the effective development
of new innovative and non-invasive DBS methodologies.

4.4. Magnetic Resonance Imaging

Nuclear magnetic resonance (NMR) is a powerful magnetic phenomenon mainly used in clinics
for imaging. In contrast to a surface-based sensor like GMR, NMR is capable of sampling an entire
volume in a non-invasive way. MRI can be combined with other diagnostic tools, like CT (X-ray
computed tomography), PET (positron emission tomography) or US (ultrasound), to obtain more
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accurate diagnosis, for which multimodal SPIONs can be afforded either combining several agents
into a single carrier or by engineering a material which can be active in several modalities [99].

It is a known fact that the magnetic core creates a local magnetic inhomogeneity, which alters
the relaxation time of hydrogen protons in the surrounding water molecules. This fact has motivated
different studies based on the use of magnetic NPs as dual MRI contrast agents for T1 and T2 relaxation,
in order to avoid the conventionally used gadolinium chelates and their potential toxicity.

The strategies developed so far to optimize the magnetic response of magnetite based NPs as MRI
contrast agents have been focused in tailoring their architecture: large particles containing several
SPM single cores (magnetic beads), hollow magnetite spheres and single core NPs of pure magnetite or
doped with transition metals [100].

SPM beads, composed of dozens of SPIONs within a carbon shell [25] and with an
approximate diameter around 100 nm (see Figure 15), have been shown to present a large relaxivity
(r2 = 218 mM−1 s−1) combined with a negligible thermal rise when tested in magnetic hyperthermia
tests (H = 30 mT, f = 293 kHz).
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Figure 15. (a) TEM image of multi-Fe3O4@C NPs, (b) scheme of the phantom NPs concentration
distribution (b.1): A = 0.25 mg/mL; B = 0.1 mg/mL; C = 0.05 mg/mL; D = 0.025 mg/mL; E = 0.005 mg/mL;
F = 0.0025 mg/mL and G = 0 mg/mL; MR T2-weighted image of the agar phantom (b.2); MR
T2*-weighted image of the agar phantom (b.2), performed at 9.4 T (BrukerBiospec) on a set of
agar phantoms loaded with different concentrations of NPs (0.0025 to 0.25 mM) and (c) relaxivity
calculated from T2 MRI relaxation on agar phantoms reprinted with permission from [25], IEEE, 2016.

This combination of enhanced MRI contrast and poor thermomagnetic response offers a potential
advantage for using these materials in therapeutic situations, like brain applications, where any
temperature increase is highly inadvisable for patients [101]. In this case, despite the high content of
magnetic material content in the NPs, the carbon coating shell plays the fundamental role of thermal
insulation, which decouples the magnetic activity of the NPs from its thermal response.

Further enhancement of MRI contrast has been achieved by exploring the effect of shape on T2
relaxation mechanisms, using single core magnetite NPs. In this context, water-dispersible polyethylene
glycol-phospholipid (PEGphospholipid) coated cubic SIONPs (see Figure 16) showed extremely high r2

relaxivity (up to 761 mM−1 s−1) [102], yielding superior in vivo MRI details. Ascribing this exceptionally
high relaxivity to the magnetic shape anisotropy, magnetite NPs with different shapes were studied,
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from octapod (D = 30 nm, r2 = 679.3 ± 30 mM−1 s−1) [103] to rod-like length of 30–70 nm and diameter
of 4–12 nm, seeming to confirm this hypothesis.
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Gadolinium, a paramagnetic ion with the largest number of unpaired electrons, is the most
effective T1 contrast agent, which has however the main drawback of being toxic. Although it is always
used in combination with chelating molecules with the aim of avoiding its potential risk, alternative
strategies are seeking to exploit new aspects of SPIONs to produce versatile dual contrast agents, taking
advantage of the existing SPION (Ferucarbotran (Resovist®), Bayer Healthcare) clinically approved as
MRI contrast agent. Ultra-small magnetite NPs with a diameter around 3.5 nm have been studied as
candidates for dual-modal MRI contrast with simultaneous T1/T2 switching, activity [104]. In this study,
the observed switching between T1−T2 contrast (see Figure 17) is ascribed to the fact that ultra-small
SPIONs are single-dispersed in blood and produce T1 contrast, while after their extravasation and
accumulation in the tumoral site, the NPs’ self-assembling into larger clusters induces the appearances
of T2 contrast modulated by magnetic interactions.
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Figure 17. T1- and T2-weighted MRI of a mouse bearing orthotopic 4T1 tumors before and after i.v.
administration of ultra-small SPIONs at different time points. Bright contrast with increasing signal in
T1-weighted MR images was observed in the tumor, particularly peripheral regions (inset), at early
time points (i.e., 5–150 min) resulting from the single-dispersed ultra-small SPIONs, whereas signals in
several regions of the tumor turning dark (arrow indicated) were observed in T2-weighted images 24 h
after ultra-small SPIONs injection because of ultra-small SPIONs clustering in the tumor interstitials.
(Image reprinted with permission from [104], ACS, 2017).



Magnetochemistry 2020, 6, 4 22 of 27

4.5. Magnetic Prototyping of Functional Biological Structures

One of the milestones in regenerative medicine is the fabrication of tissue, replacements or organs
with biologically relevant functionality. This emerging field combines multiple strategies arising from
different approaches like cell-based therapies, tissue-engineered biomaterials, scaffolds or implantable
devices. The exposure of magnetized cells under a three-dimensional (3D) magnetic pattern, known as
3D magnetic bioprinting, allows the prototyping of organelles or autologous implantable biodevices
without the need of a material substrate.

Recently a 3D bio-fabrication system, by magnetic 3D bioprinting (M3DB), has been tested
to generate innervated saliva secretory (SG) organoids using magnetized neural crest derived
mesenchymal stem cells (human dental pulp stem cells (hDPSC). The magnetized cells were spatially
arranged with magnet dots to generate 3D spheroids and afterwards cultured with fibroblast growth
factor 10 to promote epithelial morphogenesis and neurogenesis. The preformed SG organoids were
then transplanted into ex vivo model showing epithelial growth, innervation and production of salivary
a-amylase upon FGF10 stimulation [105].

5. Conclusions

Magnetite NPs with superparamagnetic behavior, commonly known as SPIONS, can be easily
tailored in nanostructured materials combining functional organic or inorganic matrices (mesoporous
or amorphous silica, biocompatible polymers like chitosan, k-carragenan, PNIPAM, PEG, PAA) to
incorporate therapeutic or tagging moieties like drugs, aptamers or antibodies.

The list of nanostructured materials containing magnetite NPs is immense, and the applications
in nanomedicine cover almost any aspect from diagnosis, therapy or regenerative medicine, since in
all cases the nanostructure inherits the intrinsic properties of magnetite that ensure multiple abilities
like magnetic separation/detection/targeting, magnetofection, magnetic resonance contrast imaging,
magnetic hyperthermia therapy and stimulated delivery, magnetic cell growth stimulation and 3D
magnetic prototyping of organelles.
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