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Abstract: The assembly of [Co2
III(µ-2,5-dpp)(CN)8]2− anions and [MII(CH3OH)2(DMSO)2]2+

cations resulted into the formation of two heterobimetallic 1D coordination polymers of formula
[MII(CH3OH)2(DMSO)2(µ-NC)2Co2

III(µ-2,5-dpp)(CN)6]n·4nCH3OH [M = CoII (1)/FeII (2) and
2,5-dpp = 2,5-bis(2-pyridyl)pyrazine. The [Co2

III(µ-2,5-dpp)(CN)8]2− metalloligand coordinates
the paramagnetic [MII(CH3OH)2(DMSO)2]2+ complex cations, in a bis-monodentate fashion, to give
rise to neutral heterobimetallic chains. Cryomagnetic dc (1.9–300 K) and ac (2.0–13 K) magnetic
measurements for 1 and 2 show the presence of Co(II)HS (1) and Fe(II)HS (2) ions (HS – high-spin),
respectively, with D values of +53.7(5) (1) and −5.1(3) cm−1 (2) and slow magnetic relaxation for 1,
this compound being a new example of SIM with transversal magnetic anisotropy. Low-temperature
Q-band EPR study of 1 confirms that D value is positive, which reveals the occurrence of a strong
asymmetry in the g-tensors and allows a rough estimation of the E/D ratio, whereas 2 is EPR silent.
Theoretical calculations by CASSCF/NEVPT2 on 1 and 2 support the results from magnetometry
and EPR. The analysis of the ac magnetic measurements of 1 shows that the relaxation of M takes
place in the ground state under external magnetic dc fields through dominant Raman and direct
spin-phonon processes.

Keywords: cobalt(III); cobalt(II); iron(II); cyanide complexes; heterobimetallic chains; single ion
magnets; ab initio calculations

1. Introduction

The design of heterometallic coordination polymers (CPs) is of high interest due to their
potential applications as molecular magnets and luminescent or multifunctional materials [1–13].
For constructing CPs with various dimensionalities and network topologies, the node-and-spacer
approach was proved to be very efficient [14–17]. The spacers can be represented by organic
molecules [18,19] or diamagnetic/paramagnetic metalloligands [20–39], while the nodes are a
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species with complementary chemical and physical properties (as Lewis acidity, charge, shape, etc.).
Cyanido-bearing metalloligands are commonly used spacers due to their ability to bridge metal ions.
Aiming at the preparation of polynuclear complexes, homoleptic cyanide complexes such as [M(CN)6]3−

[MIII = Fe, Cr, Mn, and Co] and [M(CN)8]3− [MV = Mo and W] were largely exploited [20–27] as opposed
to the heteroleptic ones with a diversity of capping ligands, e.g., [MIII(AA)(CN)4]− [AA = 2,2′-bipyridine
(bpy), 1,10-phenantroline (phen), 2,2′-bipyrimidine (bpym) and derivatives; MIII = Fe, Cr, and Co],
[MIII{HB(pz)3}(CN)3]−, [HB(pz)3

− = tris(pyrazolyl)borate ion] and [WV/IV(bpy)(CN)6]−/2− [28–39].
Moreover, in comparison with the homoleptic analogues, the capping ligands reduce the number of
potential bridges, favoring the achievement of low-dimensional CPs.

Single-ion and single-molecule magnets (SIMs and SMMs) are highly anisotropic discrete motifs
showing slow relaxation of the magnetization [40–44]. Most of them are complexes of trivalent
rare-earth cations (for instance DyIII, NdIII, etc.) [45–51], while examples concerning 3d metal ions
such as CoII, FeII, MnIII or NiII are comparatively fewer [43,52–59]. Recent studies evidenced
the influence of the coordination environment around the metal ion on the magnitude of the
magnetic anisotropy [60–65]. Coordinative and supramolecular architectures enclosing magnetically
isolated SIMs and SMMs moieties are very appealing considering their potential use in molecular
electronics [66,67]. Mostly, these networks consist of organic diamagnetic spacers that connect
the spin centers [68–81]. Large axial magnetic anisotropy values were determined for chains of
cobalt(II) SIMs such as [CoII(tpyt)2(HCOO)2(H2O)]n [tpyt = 2,4,6-tris(4-pyridyl)-1,3,5-triazine] [82]
and [Co(btm)2(SCN)2·H2O]n, [btm = bis(1H-1,2,4-triazol-1-yl)methane] [83] or 2D networks,
{[Co(3,3′-Hbpt)2(SCN)2]·2H2O}n [Hbpt = 1H-3-(3-pyridyl)-5-(3′-pyridyl)-1,2,4-triazole] [84] and
[Co(bpeb)2(NCS)2]·nG [bpeb = 1,4-bis(pyridine-4-ylethynyl)benzene and: G = ortho-dichlorobenzene,
thianthrene, toluene, and pyrrole] [85]. Diamagnetic cyanido-bearing building blocks such as the
homo- [CoIII(CN)6]3− and [MIV(CN)8]4− (MIV = Mo and W) or the heteroleptic [WIV(bipy)(CN)6]2−

complex anions were less employed as metalloligands to prepare extended structures of molecule-based
nanomagnets [86–90]. The 2D networks of SMMs built from [WIV(bipy)(CN)6]2− spacers and {NiIIDyIII}
nodes are illustrative examples of this strategy [86].

Recently, we reported the use of diamagnetic mononuclear cyanide-bearing cobalt(III)
complexes to obtain 1D {CoIIIMnIII} CPs showing slow relaxation of the magnetization
because of the presence in them of the magnetically non-interacting {MnIII(salen)} fragment
[H2salen = N,N′-ethylenebis(salicylimine)] [87]. Based on our previous results, we start a
systematic study of the use of the diamagnetic dicobalt(III) compound [Co2

III(µ-2,5-dpp)(CN)8]2−

[2,5-dpp = 2,5-bis(2-pyridyl)pyrazine] as a metalloligand against fully solvated transition
metal ions. Our first results dealt with two isostructural neutral chains of formula
[MII(CH3OH)2(DMSO)2(µ-NC)2Co2

III(µ-2,5-dpp)(CN)6]n·4nCH3OH [M = Co (1) and Fe (2)].
Their synthesis, X-ray structure and cryomagnetic investigation are discussed herein.

2. Results and Discussion

2.1. Synthesis, IR Spectroscopy and Thermal Study

In previous work, we have shown that the use as a metalloligand of the [Co2
III(µ-2,5-dpp)(CN)8]2−

complex anion towards the preformed complex of formula [MnII(MAC)(H2O)2]Cl2 · 4H2O
(MAC = 2,13-dimethyl-3,6,9,12,18-pentaazabicyclo-[12.3.1]-octadeca-(18),2,12,14,16-pentaene] afforded
a neutral {CoIII

2MnII} chain exhibiting a Curie law behavior because of the occurrence of
intrachain magnetically isolated {MnII(MAC)} units whose trans-positioned coordinated water
molecules were replaced by two cyanide groups from two 2,5-dpp-bridged dicobalt(III)
entities [91]. Based on this result, we decided to explore the complexing ability of this
diamagnetic dicobalt(III) building block, against anisotropic 3d cations such as cobalt(II) and
iron(II) cations. The reaction of [Co2

III(µ-2,5-dpp)(CN)8]2– with fully solvated cobalt(II) and
iron(II) cations in DMSO:MeOH solvent mixtures yielded the two isostructural heterobimetallic
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chains of formula [MII(CH3OH)2(DMSO)2(µ-NC)2Co2
III(µ-2,5-dpp)(CN)6]n·4nCH3OH [M = Co (1)

and Fe (2)]. They consist of chains with regular alternating [Co2(µ-2,5-dpp)(CN)8]2– spacers and
[MII(CH3OH)2(DMSO)2]2+ nodes.

The FTIR spectra of 1 and 2 (see Figures S1(1) and S2(2) in Supplementary Materials) show bands
at 2140 (1 and 2), 2171 (1) and 2165 cm−1 (2) corresponding to the stretching vibrations of the terminal
and bridging cyanide ligands. As expected, these bands occur at higher frequencies compared to that
of the free dicobalt(III) metalloligand (about 2130 cm−1) but close to those for the similar {Co2

IIIMnII}
zig-zag chain (ca. 2140 and 2160 cm−1) [91]. The 2,5-dpp ligand exhibits absorption bands at 1632
(1 and 2), 1443 (1) and 1437 cm−1 (2), which correspond to the υ(C=N) and υ(C=C) stretching vibrations,
respectively. The strong absorption peaks at 1028 (1) and 1020 cm−1 (2) are tentatively attributed
to the S=O stretching vibration of the DMSO ligands. Finally, the medium intensity peaks at 429
(1)/420 cm−1 (2) are most likely due to the vibrations of the CoII-O/FeII-O bonds. The FTIR spectroscopic
characteristics of 1 and 2 are consistent with the single-crystal X-ray results (see below).

The TG curves of 1 [Figure S3a] and 2 [Figure S3b] are similar, as expected. The first step between
25 and 150 ◦C is the result of several endothermic processes, and it can be assigned to the loss of the
methanol molecules. These molecules are slowly released, starting from room temperature under
the measurement conditions, as indicated by the slope of the step in the TG curve, the crystal lattice
being subjected to rearrangements. The mass loss which occurs in the temperature range 145–400 ◦C
is attributed to the release of the DMSO and cyanide ligands and to the combustion of the organic
residues. Finally, a small step can be observed for 1 close to 900 ◦C (associated with the endothermic
DSC, Tpeak = 894 ◦C) that indicates the transformation of Co3O4 into CoO. Most likely, a mixture of
cobalt and iron oxides is formed in the case of 2.

2.2. Description of the Structures

1 and 2 crystallize in the triclinic system, spatial group P–1, and their structures are made up of
neutral zig-zag chains of formula [MII(CH3OH)2(DMSO)2(µ-NC)2Co2

III(µ-2,5-dpp)(CN)6]n·4nCH3OH,
M = Co (1) and Fe (2) [see Figure 1 (1) and Figure S4(2)]. Since 1 and 2 are isostructural
compounds, only the structure of 1 will be discussed in detail hereafter, and we will refer to
the other one when needed. The asymmetric unit is made up from half of the structure—the
crystallographic inversion center generates the second half—and two non-coordinated methanol
molecules. Each [Co2

III(µ-2,5-dpp)(CN)8]2- complex anion acts as a linker, connecting the
[CoII(CH3OH)2(DMSO)2]2+ unit through two trans-positioned cyanido ligands. Selected bond lengths
and angles for 1 and 2 are listed in Table 1.
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Table 1. Bond lengths (Å) and angles (deg) of the cobalt(II/III) (1) and cobalt(III) and iron(II)
(2) coordination environments.

1 2 1 2

Co1-N1 1.969(5) 1.965(4) N2-Co1-C9 176.2(3) 176.1(2)
Co1-N2 1.986(6) 1.961(4) N2-Co1-C10 95.3(3) 95.7(2)
Co1-C8 1.928(7) 1.916(6) N2-Co1-C11 91.3(3) 90.9(2)
Co1-C9 1.880(8) 1.877(5) C8-Co1-C9 90.1(3) 90.2(2)

Co1-C10 1.873(7) 1.871(6) C8-Co1-C10 88.2(3) 88.3(2)
Co1-C11 1.906(7) 1.918(6) C8-Co1-C11 176.8(3) 177.7(2)

Co2/Fe1-N6 2.104(7) 2.154(5) C9-Co1-C10 88.5(3) 88.2(2)
Co2/Fe1-N6a * 2.104(7) 2.155(5) C9-Co1-C11 88.5(3) 89.2(2)

Co2/Fe1-O1 2.081(6) 2.083(4) N1-Co1-C11 90.3(2) 90.22(19)
Co2/Fe1-O2 2.096(5) 2.134(4) N2-Co1-C8 90.4(3) 89.83(19)

C10-Co1-C11 88.9(3) 89.4(2)
N1-Co1-N2 82.5(2) 82.05(17) Co2/Fe1-N6-C11 173.6(6) 169.3(4)
Co1-C8-N3 179.1(6) 178.2(5) O1-Co2/Fe1-O2 91.9(2) 92.31(18)
Co1-C9-N4 178.5(7) 178.6(5) O1-Co2/Fe1-O2a * 88.1(2) 92.30(18)

Co1-C10-N5 177.3(7) 178.0(5) O1-Co2/Fe1-N6 93.7(2) 91.62(17)
Co1-C11-N6 177.0(6) 176.8(5) O1a-Co2/Fe1-N6 * 86.3(2) 88.38(17)
N1-Co1-C8 92.6(2) 92.07(19) O2-Co2/Fe1-N6 88.9(2) 90.93(17)
N1-Co1-C9 93.6(3) 94.0(2) O2a-Co2/Fe1-N6 * 91.1(2) 89.07(17)

N1-Co1-C10 177.7(3) 177.73(19) N6-Co2/Fe1-N6a * 180.0 180.0

* Symmetry code: (a) = 1 − x, 3 − y, 1 − z (1) and (a) = 1 − x, –1 − y, 3 − z (2).

The two Co(III) ions from 1 and 2 are each hexacoordinated to one pyrazine- and one pyridine-N
of 2,5-dpp ligand and four C atoms of cyanide ligands, in a distorted octahedral geometry. Two N2,5-dpp

and two Ccyanide atoms (N1N2C9C10 set of atoms) are placed in the equatorial positions of a distorted
octahedron, whereas the apical sites are occupied by the other two CN- ligands (C11N6 and C8N3).
The reduced bite angle of the 2,5-dpp molecule [N1-Co1-N2 = 82.5(2) (1) 82.05(17)◦ (2)] is the
source of the primary distortion of the octahedral environment. The Co1-C bond distances range
between 1.873(7)-1.928(7) (1) and 1.871(6)-1.918(6) Å (2). These values are slightly inferior to the Co-N
bond lengths [Co1-N1 = 1.969(5) (1) and 1.965(4) Å (2) and Co1-N2 = 1.986(6) (1) and 1.961(4) Å
(2)]. All structural parameters (bond lengths and angles) of the cobalt(III) environment in 1 and 2
correspond well to previously reported cyanido-based/bridged CoIII complexes, [CoIII(AA)(CN)4]−

[AA = bidentate ligand], the dicobalt(III) complex (PPh4)2[Co2
III(-2,5-dpp)(CN)8] · 2H2O

(PPh4
+ = tetraphenylphosphonium cation) and the chain {[MnIII(salen)(-NC)2CoIII(4,4′-dmbpy)(CN)2]

· H2O}n (4,4′-dmbpy = 4,4′-dimethyl-2,2′-bipyridine) [87,91,92]. The Co-C-Ncyanide angles in 1 are
almost linear, their values ranging from 177.0(6) to 179.1(6)◦ [176.8(5)-178.6(5)o (2)]. The values of the
CoIII

···CoIII separation through the 2,5-dpp spacer are 6.68 (1) and 6.67 Å (2).
Each MII ion [M = Co2 (1) and Fe1 (2)] is placed in a centrosymmetric octahedral surrounding.

Two trans-positioned nitrogen atoms from two cyanide bridges and two methanol molecules build
the equatorial plane, and two O atoms from two DMSO molecules fill the apical coordination sites.
An almost ideal octahedral geometry at the cobalt(II) (1) and iron(II) (2) ions was estimated through
the SHAPE 2.1 program (0.212 (1) and 0.202 (2) for OC-6, being zero for the ideal octahedron; see Table
S1 in Supplementary Materials†) [93,94]. The value of the equatorial M1-N6 bond length (2.104(7)
(1) and 2.155(5) Å (2)) is slightly longer than the other equatorial M2–O2 interaction (2.096(5) (1) and
2.134(4) Å (2)), the axial M2-O1 bond distance being the shorter one (2.081(6) (1) and 2.083(4) Å (2)).

The values of the CoIII
···MII separation across the bridging cyanide are ca. 5.13 (1) and 5.17 Å (2).

The shortest intrachain MII
···MII distances are 11.74 (1) and 11.77 Å (2), values which are somewhat

shorter than the interchain ones (13.35 (1) and 13.51 Å (2)). The metal ions are placed in an almost
intrachain right angle, through the bridging cyanido and 2,5-dpp ligand (Co1b-Co1-M2 = 84.82 (1) and
84.51◦ (2)), and linear angle through the cyanido-bridge (Co1-M2-Co1a = 180◦ (1 and 2)).
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Intrachain H-bonds involve the methanol molecules of crystallization and the coordinated
methanol and peripheral cyanido ligands (see Figure 2 (1) and Figure S5(2) and Table 2 (1 and 2)).
The O2 atom of the coordinated methanol molecule acts as a hydrogen donor towards the O3
atom from a crystallization methanol molecule (O2···O3 = 2.603(10) (1) and 2.614(7) Å (2)), which in
turn is a hydrogen acceptor towards the other crystallographically independent O4 water molecule
(O3···O4 = 2.800(19) (1) and 2.715(9) Å for (2)). The latter one is also connected to the N3cyanide atom
through a hydrogen bond (O4···N3 = 2.802(15) (1) and 2.836(8) Å (2)), the whole leading to an 18-gon
(octadecagon) heteronuclear ring which is sectioned by a pyrazine ring.
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Table 2. Hydrogen bonds in 1 and 2 (compound 1/compound 2).

D-H· · ·A D-H (Å) H· · ·A (Å) D· · ·A (Å) D-H· · ·A (deg)

O2-H2· · ·O3 0.85/0.855(9) 1.76/1.765(13) 2.603(10)/2.614(7) 167.3/172(4)
O3-H3A· · ·O4 0.86/0.82 1.94/1.91 2.800(19)/2.715(9) 173.9/166.0
O4-H4A· · ·N3 0.86/0.85 1.96/2.00 2.802(15)/2.836(8) 166.2/169.0

2.3. Static (dc) Magnetic Properties of 1 and 2

Static (dc) magnetic properties of 1, represented as the thermal dependence of the χMT product,
is depicted in Figure 3 (χM is the magnetic susceptibility per CoIII

2CoII unit). At room temperature,
the value of χMT is 2.97 cm3 mol−1 K and is an expected value for magnetically diluted CoHS

II

single-ion (CoIII ion is diamagnetic) with a significant orbital angular momentum [95]. The χMT vs. T
plot is continuously decreasing upon cooling process to reach a value of 1.68 cm3 mol−1 K at 1.9 K.
No maximum of the magnetic susceptibility is observed in the χM vs. T plot. Two main factors could
cause the decrease of χMT vs. T curve: the thermal depopulation of the higher Kramer doublets of the
CoHS

II ions and, also, AF interactions between the CoHS
II paramagnetic centers. However, this last

possibility is discarded due to the large cobalt(II)–cobalt(II) separation (shortest intra- and intrachain
values of ca. 11.7 and 13.4 Å, respectively).
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Consequently, the magnetic data of 1 were analyzed through the Hamiltonian of Equation (1):

H = −αλLCoSCo + ∆[Lz,CoSCo − L(L+1)/3 ] + βH(geSCo − LCo), (1)

in which the three parameters α, λ and ∆, have the same meaning as in our previous papers [72,96].
It deserves to be highlighted that considering the isomorphism of T and P terms L(T1g = −AL(P) [97],
one can use L = 1 and S = 3/2, αλ-being the coupling parameter. The following best-fit
parameters and a well-match of the experimental data of 1, in the 300-2 K temperature range,
were obtained through the VPMAG package [98]: λλ=−136.1(5) cm−1, α =1.431(4), ∆ = 699(8) cm−1

and TIP = 997(25) × 10−6 cm3 mol−1 with F = 2.7 × 10−6 (F is the agreement factor defined
as Σ[Pexp − Pcalcd]2/Σ[Pexp]2 where P is the physical property under study). The values of λ,
α and ∆ are close to those resulted for other examples of six-coordinate high-spin cobalt(II)
complexes [64,72,97,99–101].

An alternative phenomenological approach to spin-orbit coupling (SOC) Hamiltonian, introduced
through the T-P isomorphism, to analyze the magnetic data in 1, is based on the zero-field splitting
(zfs) of an S = 3/2 and is expressed in Equation (2):

Hzfs+Zeeman = D[Sz
2
− S(S+1)] + E(Sx

2
− Sy

2) + βH[g//|Sz + g⊥(Sx + Sy)] (2)

where S, D and E are the ground spin state and axial and transverse anisotropies, respectively, β is
the Bohr magneton and H is the applied dc field. If E = 0, 2D for 1 corresponds to the energy gap
between the ±1/2 and ±3/2 doublets arising from the 2nd order spin-orbit coupling of the quartet
ground state of the distorted octahedral cobalt(II) ion. In this respect, the fact that the M vs. H/T
curves for 1 in the temperature range 2.0–10 K quasi collapse (see inset of Figure 3), is indicative of
a large value of D. The simultaneous analysis of the variable-temperature magnetic susceptibility
measurements and the magnetization data under different applied dc fields and temperatures of 1
through the VPMAG package [98] led to the following set of best-fit parameters: D = +53.7(5) cm−1,
E/|D| = 0.012(9), g// = 2.007(4), g⊥ = 2.524(6) and TIP = −1010(30) × 10−6 cm3 mol−1 with F = 2.4 × 10−5.
The calculated curves well-fitted the experimental ones in the whole investigated temperature range.
Moreover, when starting with a negative value of D gave no reasonable results. Then, this system can
be considered as a doublet at low temperatures. Both approaches used in the analysis of the magnetic
data in 1 were validated by the similar values for the energy gap between the ground and the first
excited Kramers doublets (ca. 124.9 and 107.4 cm−1 for SOC and zfs approaches, respectively).
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Figure 4 shows the χMT vs. T plot for 2 (χM is the magnetic susceptibility per CoIII
2FeII unit).

At room temperature, χMT is 3.29 cm3 mol−1 K, a value which is in agreement with the presence
of a high-spin iron(II) ion (SFe = 2 with a gFe value largely above that for the free electron in this
compound), the cobalt(III) being diamagnetic. Upon cooling, although this value slightly decreases,
it remains practically constant until ca. 40 K and it further decreases to 2.14 cm3 mol−1 K at 1.9 K.
No maximum of the magnetic susceptibility is observed in the whole temperature range explored.
The decrease of χMT in the low temperatures domain can be due to first-order spin-orbit coupling (SOC)
or zero-field splitting (zfs) effects together with intra-/interchain magnetic interactions. Because of the
large iron···iron separation (shortest intra- and interchain distances of ca. 11.8 and 13.5 Å, respectively),
these last interactions are ruled out.
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Since the magnetic properties of magnetically isolated six-coordinate high-spin iron(II) complexes
are usually controlled by a 1st order SOC, the use of the SOC Hamiltonian introduced through the
T-P isomorphism is an appropriate option to analyze its magnetic properties. The presence of a 5T2g

term that does not mix with the other ones validates this approach. Consequently, the magnetic
susceptibility data of 2 were treated through the Hamiltonian of Equation (3):

H = −κλLFeSFe + ∆[Lz,Fe − L(L+1)/3] +E(Lx
2
− Ly

2)+ βH(−κLFe + geSFe) (3)

In this Hamiltonian,λ is the spin-orbit coupling, κ stands for the reduction of the orbital momentum
(L) caused by the delocalization of the unpaired electrons, and ∆ is the energy gap between the 5B2g

and 5Eg levels arising from the splitting of the 5T2g ground state through an axial distortion of the
Oh symmetry. The E parameter accounts for the splitting of the 5Eg level caused by the molecular
low-symmetry bound to the rhombicity of the coordination sphere. Although this additional parameter
can lead to an overparameterization, it will be still essential in the present case, as shown below by
the theoretical study. The inclusion of the magnetic rhombicity (E) slightly improves the results and
affects mainly to the ∆ value, which in any case is large and positive. Least-squares best-fit parameters
though the VPMAG package [98] on the magnetic susceptibility are the following for the whole model:
κ = 0.997(6), λ = −109(3) cm−1, ∆ = +1660(30) cm−1, E/∆ = 0.1109(4), TIP = 126(7) × 10−6 cm3 mol−1 and
F = 1.2 × 10−5. The values of κ and λ do not reveal the presence of an important covalent reduction,
despite it being a common feature in complexes with 3d transition metal ions. However, these two
values lie in the range of those previously reported for mononuclear high-spin six-coordinate iron(II)
complexes [52,102]. Moreover, the large value of ∆ and a non-negligible rhombicity (E/∆ ≈ 0.11) agree
with the different electronic nature of the ligands building the six-coordination at the iron(II) ion.
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Owing to the unquenched angular momentum in the ground state of the high-spin iron(II)
complexes by the ligand field, the resulting “in state” SOC can lead to a sizable axial zfs parameter D.32

In this respect, the large value of ∆ supports a strong splitting of the 5T2g ground state into the 5B2g

and 5Eg levels. In fact, the M vs. H/T curves for 2 in the temperature range 2.0–10 K does not collapse
(see inset of Figure 4), a feature that rules out a null or a very large value of D, indicating instead a
relatively moderate zero-field splitting. Besides, the different nature of the ligands in the equatorial
plane at the metal center (two cyanide-nitrogen atoms and two methanol molecules) allows describing
a rhombic distortion through two different directions from the trans arrangement of these ligands,
leading to a splitting of the low-lying 2Eg level. Given that this splitting is large enough, the three
states arising from the 5T2g ground state are well separated from each other, and they do not present
any orbital momentum. CASSCF/NEVPT2 calculations (see below) show that the two excited levels are
1600 and 1966 cm−1 above the ground level. Having this in mind, a phenomenological zfs approach
summarized in the Hamiltonian of Equation (2) should be appropriate.

Consequently, the simultaneous analysis of the magnetization at different applied dc fields and
temperatures and the variable-temperature magnetic susceptibility data of 2 through this approach led
to the following best-fit parameters: D = −5.1(3) cm−1, E/|D| = 0.227(7), g// = 2.193(3), g⊥ = 2.045(5)
with F = 3.8 × 10−5. A positive D value should lead to a vanishing of the χMT product at a very low
temperature, but the observed trend to reach a value close to 2.0 cm3 mol−1 at 0 K agrees with an
easy-axis of the magnetization (D < 0). This negative sign is also supported by the EPR spectroscopy and
partially by the ab initio CASSCF/NEVPT2 calculations on the real geometry of 2 (see discussion below).
The uniaxial anisotropy is thus confirmed for the iron(II) ion in 2 and its magnitude is comparable
with those of previous magneto-structural reports on six-coordinate iron(II) complexes [52,103–105].

2.4. EPR Spectroscopy and Theoretical Calculations of 1 and 2

The Q-band EPR spectra on a crushed sample of 1 in the temperature range 4.0–20 K exhibits an
increase of the intensity of the signals as far as the temperature decreases unambiguously supporting
a positive value of D (Figure 5). Due to the large value of D in this compound, only the low-lying
Kramers doublet will be thermally populated at low temperatures, and its EPR spectra will correspond
only to this low-lying Kramers doublet.
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2 and an anisotropic spin S = 3/2
respectively (see text). Inset: The thermal evolution of the EPR spectra from 20 (red) to 4.0 K (blue).

So, considering a Seff = 1
2 , the simulation of the EPR spectra of 1 was achieved with the following

parameters: g1 = 5.25, g2 = 4.35 and g3 = 2.02. This set of values of the Landé factor agree with a positive
value of the D parameter after the Bencini’s study on EPR spectroscopy of cobalt(II) complexes [106],
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such as those obtained through the simultaneous fit of the magnetic susceptibility and reduced
magnetization data. These values for 1 also indicate a significant rhombicity, a feature which is
corroborated by the occurrence of multiple peaks. The analysis of the EPR spectra of 1 through an
S = 3/2 model could be achieved only with D > 0 and a small value of E/D quotient: g// = 2.04, g⊥ = 2.40
and E/D = 0.06. The great value of D and the slight deviation of the octahedral geometry of the cobalt(II)
environment in 1 accounts for the small value of the E/D quotient for this compound.

Compound 2 is EPR silent, a feature which is as expected because of the relatively large and
negative value of D for the high-spin iron(II) complex of this compound.

To further confirm the validity of the experimental results of 1 and 2, we carried out theoretical
calculations by CASSCF/NEVPT2 (Tables S2(1) and S3(2)). These calculations support the experimental
results found for 1 and 2. The absolute values of D for both compounds (+68.1 (1) and +6.9 cm−1

(2)) agree with those obtained by magnetometry. According to the octahedral environment of the
six-coordinate cobalt(II) ion in 1, D is positive, and the values of the g-factors of the ground quartet
(gx = 2.717, gy = 2.427 and gz = 1.985; g⊥ = 2.597 and g// = 1.99) and Kramers doublet states (g’x = 6.597,
g’y = 3.508 and g’z = 1.988) agree with those from magnetometry and EPR spectroscopy. The moderate
rhombicity observed in the EPR study of 1 (E/D = 0.06) is more pronounced in the theoretical result
(E/D = 0.18), but the greatest difficulty to estimate it in an accurate and quantitative way from
quantum chemical methods is well-known. The origin of the axial anisotropy in 1 mainly lies on the
contributions from the low-lying quintet states (DQ = +56.6 cm−1) and particularly from the first two
ones (+51.9 cm−1), which together with the ground state make up the 4T1g ground term in an ideal
octahedral geometry. The remaining excited states are well above in energy (≥7900 cm−1) and therefore,
their contribution to D is much lower or negligible.

In the case of 2, the origin of the uniaxial anisotropy mainly comes from the contributions of the
low-lying quintet states (DQ = +5.7 cm−1), those from the triplet states being practically negligible
(DT = +1.3 cm−1). Among the states that contribute to the D parameter in 2, those arising from the
5T2g term are the dominant ones (see Table S3). Although apparently there is in 2 an inconsistency
in the sign of D obtained from the theoretical calculations and the absence of signals in the EPR
spectrum, this is not real since the high rhombicity found both from magnetometry (E/D = 0.227) and
theoretical calculations (0.29 and 0.33 from effective and 2nd-order SOC Hamiltonians, respectively),
which are close to 1/3, prevent setting unambiguously the sign of D. Therefore, a negative value of
D is reasonable for 2, and it would justify both the experimental and theoretical results. Anyway,
an analysis of the NEVPT2 energies found for the first fifteen Mj levels (0.0, 2.4, 14.3, 29.0, 30.6, 1561.8,
1563.9, 1634.2, 1653.7, 1671.2, 2021,9, 2023.6, 2061.3, 2102.1 and 2106.8 cm−1) can provide information
on the parameters that define the 1st-order SOC. The splitting of some Kramers doublets supports
the inclusion of the rhombicity into the model through the E parameter. Considering the standard
deviation, while D and E were determined with precision, this was not possible for the remaining
parameters. However, all of them (κ = 0.987, λ = −108.4 cm−1, ∆ = 1784 cm−1 and E/∆ = 0.098) agree
with those obtained from the temperature dependence of magnetic susceptibility.

2.5. Dynamic (ac) Magnetic Properties of 1 and 2

Alternating current (ac) magnetic susceptibility measurements were performed for 1 and 2 below
12 K to probe their magnetization dynamics. Interestingly, even though the relatively large and
negative value of D in 2 indicates an intrinsic spin-reversal energy barrier of Ueff = S2|D| = 20.4 cm−1,
no out-of-phase signals (χM”) were observed for this compound down to 2.0 K, either in the lack or
in the presence of non-zero applied dc magnetic fields. It deserves to be noted that in a previous
report concerning the first example of a mononuclear six-coordinate high-spin iron(II) complex with
an FeO6 chromophore behaving as SIM [52], blocking temperatures below 4.0 K were observed under
the explored applied dc fields, the value of D being −11.7 cm−1. In the present example with a FeO4N2

chromophore having a smaller value of D (ca. −5.1cm−1), out-of-phase signals might be possible at
very low temperatures which are not accessible in our susceptometer. In the case of 1, the incipient
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frequency-dependent of χM” below 12 K under a 0 G static field turned into maxima under Hdc = 1000
(Figure S6) and 2500 G (Figure 6).Magnetochemistry 2020, 6, x 10 of 20 

 

 
Figure 6. Thermal dependence of χM” (bottom) for 1 under an applied static field of Hdc = 2500 G with 
a ±5 G oscillating field at frequencies in the range 0.30-10 kHz. 

The Cole–Cole plots of 1 in the temperature range 2.0–7.0 K under applied dc fields of 1000 
(Figure S7) and 2500 G (Figure 7) give almost perfect semicircles which can be fitted by the 
generalized Debye model. The values of α (the parameter which is related to the width of the 
distribution of the relaxation times and that takes values between 1 (pure spin-glass) and 0 (single 
relaxation process)) vary between ca. 0.08 (at 6.5 K) and 0.11 (at 3.5 K) under both 1000 and 2500 G 
(see Table S4), most likely because of the arising of additional relaxation processes. 

 

Figure 7. Cole–Cole plots in the temperature range 3.5–7.0 K for 1 under an applied static field Hdc = 
2500 G. The solid lines are the best-fit curves. 

The values of the relaxation time for 1 were calculated from the maximum of χM” at a given 
frequency (χM” vs. T, τ−1 = 2πν) and the corresponding Arrhenius plots were built on the basis of these 
data (see Figure 8 (Hdc = 2500 G) and Figure S8 (Hdc = 1000 G)). Among the approaches used to analyze 
the Arrhenius plots (for example Orbach, Raman, direct and quantum-tunneling processes), our 

Figure 6. Thermal dependence of χM” (bottom) for 1 under an applied static field of Hdc = 2500 G with
a ±5 G oscillating field at frequencies in the range 0.30–10 kHz.

The Cole–Cole plots of 1 in the temperature range 2.0–7.0 K under applied dc fields of 1000
(Figure S7) and 2500 G (Figure 7) give almost perfect semicircles which can be fitted by the generalized
Debye model. The values of α (the parameter which is related to the width of the distribution of the
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because of the arising of additional relaxation processes.
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The values of the relaxation time for 1 were calculated from the maximum of χM” at a given
frequency (χM” vs. T, τ−1 = 2πν) and the corresponding Arrhenius plots were built on the basis of
these data (see Figure 8 (Hdc = 2500 G) and Figure S8 (Hdc = 1000 G)). Among the approaches used to
analyze the Arrhenius plots (for example Orbach, Raman, direct and quantum-tunneling processes),
our experimental data are best described through a combination of direct and Raman (Equation (4)) as
shown in Figure 8 and Figure S8.

τ−1 = AT + BTn (4)
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The best-fit parameters through Equation (4) for 1 are A = 185 K−1 s−1, B = 0.160 K−n s−1 and
n = 5.9 (Hdc = 1000 G) and A = 1200 K−1 s−1, B = 0.240 K−n s−1 and n = 6.2 (Hdc = 2500 G). Although
values for n covering the range 1–8 can be considered reasonable, the common ones for a Raman
process would take values between 6 and 8. Alternatively, the insets of Figure 8 and Figure S8
show how the calculated values of τ for 1 in the high-temperature range follow the Arrhenius law
characteristic of a thermally activated Orbach process, τ−1 = τ0

−1 exp(−Ea/kT). The deviation of the
linearity observed at low temperatures is probably due to other relaxation processes. The values of τ0

and Ea are 7.70 × 10−8 s and 33.19 cm−1 (Hdc = 1000 G) and 1.89 × 10−7 s and 23.0 cm−1 (Hdc = 2500 G),
given that the values of Ea are well below that of a possible energy barrier 2D (ca. 107 cm−1 with
E = 0) assuming a negative value of D. But, as D > 0 for 1, any energy barrier associated to the zfs is
prevented. In such a case, a relaxation of the magnetization obeying a single Orbach process should be
ruled out. Then, the combination of a direct and one Raman process seems to be the more appropriate
analysis for the dynamic magnetic behavior of 1.

3. Experimental

3.1. Materials and General Methods

All reagents and solvents were purchased from commercial suppliers and used without further
purification. The organic 2,5-dpp ligand and the (PPh4)2[Co2(µ-2,5-dpp)(CN)8]·2H2O complex were
prepared according to the literature [91,107]. Elemental analyses (C, H, N) were performed with a Perkin
Elmer 2400 analyzer. IR spectra were carried out with a FTIR Bruker Tensor V-37 spectrophotometer
using KBr pellets in the range 4000–400 cm−1. Thermal measurements were done on a Netzsch STA
449 F1 Jupiter Simultaneous Thermal Analyzer in dynamic air (30 mL/min) with a heating rate of
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5 ◦C min−1 spanning the temperature range 25–1000 ◦C and using alumina crucibles covered with
pierced alumina lids.

Caution! The high toxicity of the cyanides implies great caution when using them. The syntheses
were carried out at mmol scale, in a well-ventilated hood. The waste was treated with solutions of
NaClO and NaOH to transform the cyanide into cyanate.

3.2. Preparation of the Complexes

3.2.1. Synthesis of [CoII(CH3OH)2(DMSO)2(µ-NC)2Co2
III(µ-2,5-dpp)(CN)6]n·4nCH3OH (1)

A DMSO solution (15 mL) of (PPh4)2[Co2(µ-2,5-dpp)(CN)8]·2H2O (127 mg, 0.1 mmol) was layered
on a methanolic solution (10 mL) of Co(NO3)2·6H2O (51 mg, 0.4 mmol), in a test tube of 2.5 cm diameter
and 20 cm height. X-ray quality crystals of 1 were obtained after one week on standing under ambient
conditions. Yield: ca. 50%. Anal. calcd. For C32H46Co3N12O8S2 (1): C, 39.72; H, 4.79; N, 17.37.
Found: C, 39.64; H, 4.76; N, 17.34%. IR (KBr/cm−1): 3404(vs), 2923(w), 2171(m), 2140(s), 1632(m),
1443(s), 1195(s), 1028(s), 782(s).

3.2.2. Synthesis of [FeII(CH3OH)2(DMSO)2(µ-NC)2Co2
III(µ-2,5-dpp)(CN)6]n·2nCH3OH (2)

The same procedure was used for the synthesis of 2, replacing Co(NO3)2·6H2O by Fe(BF4)2·4H2O.
X-ray quality crystals of 1 were obtained after several days. Yield: ca. 60%. Anal. calcd.
For C32H46Co2FeN12O8S2 (2): C, 39.84; H, 4.80; N, 17.42. Found: C, 39.79; H, 4.77; N, 17.38%.
IR (KBr/cm−1): 3334(s), 2922(s), 2167(m), 2136(m), 1640(w), 1469(s), 1029(s), 795(w).

3.3. Physical Measurements

Direct current (dc) magnetic susceptibility measurements (1.9–300 K) under applied dc magnetic
fields of 5000 G (T ≥ 50 K) and 100 G (1.9 ≤ T ≤ 50 K) and variable-field (0–5 T) magnetization
measurements (2.0–10 K) on crushed crystals of 1 and 2 (mixed with grease to avoid the crystallite
orientation) were carried out with a Quantum Design SQUID magnetometer. Variable-temperature
(2.0–12 K) alternating current (ac) magnetic susceptibility measurements under different applied
dc magnetic fields in the range 0–2500 G were performed for 1 and 2 by using a Quantum Design
Physical Property Measurement System (PPMS). The magnetic susceptibility data of both compounds
were corrected for the diamagnetism of the constituent atoms and the sample holder (a plastic bag).
Q-band EPR spectra (4.0–20 K) on powdered samples of 1 and 2 were carried out with a Bruker ER 200
spectrometer equipped with a helium continuous-flow cryostat. The EPR spectra were fitted through
the version 5.2 of the EasySpin software [108]. Powder X-ray diffraction (XPRD) measurements were
done on a PANalytical Empyrean X-ray diffractometer using Cu-Kα radiation (α = 1.5418 Å), in which
the X-ray tube was operated at 40 kV and 30 mA ranging from 5 to 30◦.

3.4. Computational Details

To evaluate the parameters which determine the axial (D) and rhombic zfs, calculations based on
the second order N-electron valence state perturbation theory (CASSCF/NEVPT2) applied on the wave
function, which was previously obtained from complete active space (CAS) calculation, were carried
out on the real cobalt(II) and iron(II) environments in 1 and 2, respectively. The calculations were
performed with the version 4.0 of the ORCA program [109] using the TZVP basis set proposed by
Ahlrichs [64,99–101,110] and the auxiliary TZV/C Coulomb fitting basis sets [111–114]. The contributions
to zfs from ten quartet and twenty doublet excited states [Co(II) in 1] and from five quintets and
thirty triplet excited states [Fe(II) in 2] generated from an active space with seven [Co(II) (1)] and six
electrons [Fe(II) (2)] in five d orbitals were included using an effective Hamiltonian. The g-tensors were
calculated for the ground Kramers pair [Co(II)] using Multireference Configuration Interaction (MRCI)
wavefunctions with a first-order perturbation theory on the SOC matrix [115]. The RIJCOSX method
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was used combining resolution of the identity (RI) and “chain of spheres” COSX approximations for
the Coulomb and exchange terms, respectively [116,117].

3.5. X-ray Data Collection and Structure Refinement

X-ray quality single crystals of 1 and 2 were measured on an Oxford Diffraction XCALIBUR E CCD
diffractometer equipped with graphite-monochromated Mo-Kα radiation (λ = 0.71073 Å). The crystals
were positioned 40 mm from the CCD detector. The determination of the unit cell and data integration
were performed by using the CrysAlis package of Oxford Diffraction [118]. The structures were solved
by direct methods using Olex2 software [119] with the SHELXS-2014 structure solution program and
refined by full-matrix least-squares on F2 with SHELXL-2014 [120] with anisotropic displacement
parameters for the non-hydrogen atoms. All hydrogen atoms attached to carbon were introduced
in idealized positions (dC-H = 0.96 Å) using the riding model with their isotropic displacement
parameters fixed at 120% of the riding atom. The structural images were obtained with the Diamond 4
program [121]. The unit cell parameters and refinement conditions for 1 and 2 are given in Table 3.
CCDC- 2042057 (1), 2042058 (2).

Table 3. Crystal data and structure refinement for 1 and 2.

1 2

Formula C32H46Co3N12O8S2 C32H46Co2FeN12O8S2
Fw 967.72 964.64

Crystal system Triclinic Triclinic
Space group P–1 P–1

a/Å 8.1229(5) 8.0375(5)
b/Å 11.7399(15) 11.7698(10)
c/Å 13.3534(16) 13.5147(12)
α/◦ 112.879(12) 113.669(9)
β/◦ 104.710(8) 103.380(7)
γ/◦ 91.336(8) 91.737(6)

V/Å3 1124.1(2) 1128.21(18)
Z 1 1

Dc/g cm−3 1.430 1.420
T/K 180.1(2) 180.00(10)
µ/mm−1 1.244 1.194
F(000) 499 498

Refl. Collected 8027 3978
Refl. indep. [R(int)] 3957 [0.0614] 3067 [0.0515]

Data/restraints/param. 3957/3/272 3978/10/266
Goodness-of-fit on F2 (S) c 1.112 1.096

Final R indices a,b

[I > 2σ(I)]
R1 = 0.0868,

wR2 = 0.1852

R1 = 0.0686,
wR2 = 0.1423
wR2 = 0.1653

R indices (all data) R1 = 0.1196,
wR2 = 0.2024

R1 = 0.0953,
wR2 = 0.1549
wR2 = 0.1751

∆ρmax,min/e Å−3 0.129/−0.745 0.106/−0.640
a R1 =

∑
||Fo| − |Fc||/

∑
|Fo|. b wR2 = {[

∑
w(Fo

2
− Fc

2)2/
∑

w(Fo
2)2]}1/2 and w = 1/[σ 2(Fo)2 + (mP)2 + nP] with P = (Fo

2 +
2Fc

2)/3, m = 0.0386 (1) and 0.0997 (2), and n = 1.2291 (1) and 2.1948 (2). c S = [
∑

w(|Fo| − |Fc|)2/(No – Np)]1/2.

4. Conclusions

We recently reported a new cyanido-based binuclear complex, [Co2
III(µ-2,5-dpp)(CN)8]2−,

and investigated its ability to act as a metalloligand [91]. Based on these results, we employed
this diamagnetic species as a node in order to design low-dimensional complexes with specific
magnetic properties. The exploration of its binding ability toward the anisotropic fully solvated
high-spin cobalt(II) and iron(II) cations afforded the corresponding heterobimetallic chains CoIII

2CoII
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(1) and CoIII
2FeII (2) where the six-coordinate divalent metal ions are magnetically non-interacting.

Static (dc) and dynamic (ac) magnetic measurements show that 1 is a new example of SIM with
transversal anisotropy, the positive sign of D being confirmed by Q-band EPR spectroscopy and
substantiated by theoretical calculations. The analysis of this behavior in 1 indicates that the relaxation
of the magnetization at low temperatures in the ground state most likely occurs through a combination
of a direct and one Raman process. The magnetically isolated high-spin iron(II) ion in 2 is EPR silent
and does not exhibit any SIM behavior. Our synthetic approach is suitable to obtain low-dimensional
compounds containing anisotropic paramagnetic transition metal ions, magnetically isolated by the
diamagnetic [Co2

III(µ-2,5-dpp)(CN)8]2− nodes, that could behave as SIMs. Its use in assembling a
building block towards heavier metal ions, rare-earth cations or even magnetic clusters would provide
new examples of SIMs as well as SMMs. Further work along this line using this diamagnetic spacer as a
complexing agent towards paramagnetic metal ions aimed at obtaining tailor-made of multifunctional
magnetic systems will be developed in a near future.

Supplementary Materials: The information available online at http://www.mdpi.com/2312-7481/6/4/66/s1 is:
Figure S1: IR spectrum for 1, Figure S2: IR spectrum for 2, Figure S3: TG, DTG and DSC curves for 1 and 2,
Figure S4: View of a fragment of the chain structure of 1, along with the atom numbering, Figure S5: A view
of the hydrogen bonding pattern in 2 (the dmso molecules were omitted for clarity) [Symmetry code: (c) = x,
−1 + y, z]], Figure S6: Thermal dependence of χM” for 1 under an applied static field of Hdc = 1000 G with a
±5 G oscillating field at frequencies in the range 0–3–10 kHz, Figure S7: Cole-Cole plots in the temperature
range 3.5–7.0 K for 1 under an applied static field Hdc = 1000 G (the solid lines are the best-fit curves), Figure S8:
Temperature dependence of τ−1 (o) for 1 under Hdc = 1000 G showing the best fit (solid line) to the combination
of a direct and one Raman approach. The inset is the Arrhenius plot (o) showing the best-fit (solid line) to one
Orbach process. Table S1: Results of the SHAPE analysis of the {CoIIIC4N2} and {MIIN2O4} chromophores from
the {CoIII(DPP)1/2(CN)4}− (1 and 2) and {MII(CN)2(H2O)2(DMSO)2} fragments [M = CoII (1) and FeII (2)], Table S2:
Energy of the calculated quartet (Qi) and doublet (Di) excited states and their contributions to the D and E values
for 2 obtained from CASSCF/NEVPTZ calculations, Table S3: Energy of all calculated quintet (Qi) and triplet (Di)
excited states and their contributions to the D and E values for 2 obtained from CASSCF/NEVPT2 calculations,
Table S4: Parameters of the ac magnetic susceptibility data of 1 through the Debye model.
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