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Abstract: In this study, a novel computational method capable of reproducing hysteresis loops of
hard magnetic materials is proposed. It is conceptually based on the classical Preisach model but
has a completely different approach in the modeling of the hysteron effect. Indeed, the change in
magnetization caused by a single hysteron is compared here to the change in velocity of two disk-shaped
solids elastically colliding with each other rather than the effect of ideal geometrical entities giving
rise to so-called Barkhausen jumps. This allowed us to obtain a simple differential formulation for the
global magnetization equation with a significant improvement in terms of computational performance.
A sensitivity analysis on the parameters of the proposed method has indeed shown the capability
to model a large class of hysteresis loops. Moreover, the proposed method permits modeling of the
temperature effect on magnetization of neodymium magnets, which is a key point for the design of
electrical machines. Therefore, application of the proposed method to the hysteresis loop of a real NdFeB
magnet has been proven to be very accurate and efficient for a large temperature range.

Keywords: hard ferromagnetic materials; magnetic hysteresis modeling; neodymium magnets;
permanent magnets; Preisach model

1. Introduction

Increasing needs in the electromechanical industry are pushing the boundaries of
research in magnetochemistry towards the development of innovative hard ferromagnetic
materials. In fact, permanent magnets (PMs) are crucial for many applications spanning
from brushless electric motors to hard disk drives and magnetic fasteners [1]. Among
these, neodymium magnets (also known as NdFeB) are nowadays the most widely used for
industrial purposes [2,3].

When designing a PM, knowledge and characterization of its hysteretic behavior is of
paramount importance and having a good mathematical model capable of reproducing
this behavior is important as well. Such mathematical models are intended to provide the
functional relationship linking magnetization M (or magnetic flux density B) to the applied
magnetic field H.

To date, a large number of hysteresis models have been proposed and applied in
computational electromagnetics. A wide bibliography on the identification procedures
and on the experimental-numerical results is reported in [4], while Ivànyi has made
comparisons and evaluations of several models [5]. Among these, the Preisach model is the
most common in electromagnetic analysis due to its accuracy, efficiency, and ability to fit a
large class of hysteresis loops [6]. It was first published by Preisach in 1935 [7], and during
the next decades, it attracted great research interest [8]. Starting from the original idea of
connecting independent relay hysterons, Mayergoyz then provided an in-depth analysis of
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this model in [9] and proposed the discrete formulation of the Preisach model to make it
suitable in numerical computation [10].

The classical Preisach model was born as a static scalar model; however, many exten-
sions and modification attempts have been made in the past years [11–16]. For instance,
Della Torre included the dynamic effect and proposed a moving Preisach model [11], while
an extension to a vector model was provided in [12–16]. An important application of the
latter class of models is their usage in magnetic design tools for optimization of PM-based
components [17–20].

The Preisach model is usually considered a phenomenological method, unlike the also
known Jiles–Atherton (JA) model that is considered to be based more closely on the physics
of magnetism [21]. However, from a computational point of view, the Preisach model
provides great advantages compared to JA, as reported by Philips in [22]. Other important
models, such as the Stoner and Wohlfarth one [23] and the Hodgdon method [24], are not
as popular as the Preisach or JA models. This may be due to their limitations of generality
or computation speed.

In this study, a novel computational method, which allows a simple ordinary differen-
tial equation (ODE) to be obtained for the global magnetization as a response to the input
magnetic field, is presented. It is still based on the Preisach model but conceptually has a
completely different approach in the modeling of the hysteron effect. More specifically, the
change in magnetization caused by a single hysteron is compared here to the change in
velocity of two disk-shaped solids elastically colliding with each other [25,26], while in the
classical Preisach model, the hysterons are mainly modelled as ideal geometrical entities
giving rise to so-called Barkhausen jumps under certain conditions [13,14]. Since the ar-
rival and collision directions of the moving disk-shaped solids are statistically sampled
from a suitable ODE distribution, the global effect of the whole hysterons population is
linked to the average change in magnetization. After some manipulations, it is possible to
analytically derive the average change in magnetization for some particular probability
distribution functions (e.g., normal) [27,28]. This allows a simple ODE for the global mag-
netization equation rather than a complicated integrodifferential one to be obtained, with a
significant improvement in terms of computational performance. In fact, Preisach-based
models generally require the numerical solution of integrodifferential equations describing
the hysterons distribution and their effect on magnetization.

The main advantage of the proposed computational method is in the analytical sim-
plicity of the ODE describing global magnetization, still allowing a precise estimation of
hysteresis loops by the fitting parameters needed to analyze the hysteretic behavior of real
materials, such as NdFeB. Furthermore, the proposed method permits modeling of the
temperature effect on the magnetization of NdFeB, which is a key aspect in the design of
PM-based components subjected to temperature variations, such as electrical machines or
particle accelerators [29,30].

2. Materials and Models
2.1. Hard Ferromagnetic Materials

Ferromagnetism is the basic mechanism for which certain materials, such as iron, form
or are attracted by magnets [31]. Commercial magnets are made of hard ferromagnetic or
ferrimagnetic materials with very large magnetic anisotropy, such as alnico and ferrites,
which have a very strong tendency for the magnetization to be pointed along one axis of
the crystal, the “easy axis” [32].

PMs are very important components for electric motors and power generators. Key
properties of PMs, especially coercivity and remanent magnetization, are strongly depen-
dent on their microstructure. Understanding metallurgical processing, phase stability, and
microstructural changes are essential for designing and improving PMs. Widely used PM-
based components for the traction motor in electric vehicles and for the power generator
in wind turbines contain rare earth elements (REE), such as neodymium and dysprosium,
due to their high maximum energy product. Dysprosium is usually employed to sustain
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NdFeB coercivity at higher temperature. Due to the high supply risk of REE, these elements
are listed as critical materials by the U.S. Department of Energy and other international or
European institutes.

Compared to rare earth PMs, non-rare earth (non-RE) PMs typically have lower
maximum energy products. However, given their small supply risks and low costs, they are
largely investigated for less-demanding applications. The main goal for the development
of non-RE PMs is to fill in the gap between the more cost-effective but lower performing
hard ferrite magnets and the more expensive but higher performing RE PMs. In the past
few years, great progress has been made toward improving the microstructure and physical
properties of non-RE PMs. Several new candidate-material systems have been investigated,
and some have shown realistic potential for replacing RE PMs for some applications [33].

Neodymium Magnets

Neodymium magnets were independently developed in 1984 by General Motors
and Sumitomo Special Metals [34,35]. They are made of an alloy containing neodymium,
iron, and boron to form the Nd2Fe14B tetragonal crystalline structure, which makes them
the strongest type of PM commercially available [2]. Because of different manufacturing
processes, they are divided into two subcategories, namely sintered NdFeB magnets and
bonded NdFeB magnets [36].

Sintered NdFeB magnets are prepared by raw materials melted in a furnace, cast into a
mold, and cooled to form ingots. The ingots are pulverized and milled; the powder is then
sintered into dense blocks. The blocks are then heat-treated, cut to shape, surface treated,
and magnetized.

Bonded NdFeB magnets are instead prepared by melt spinning a thin ribbon of the
NdFeB alloy. The ribbon contains randomly oriented Nd2Fe14B nano-scale grains. Then, it
is pulverized into particles, mixed with a polymer, and either compression- or injection-
molded into bonded magnets.

The neodymium magnet data hereby considered are taken from [30]. In fact, a char-
acterization of the hysteresis cycles for this alloy was performed there for temperatures
ranging between 27 ◦C and 200 ◦C. Therefore, the effects of temperature on PM performance
and, thus, on the hysteresis fitting have been investigated.

2.2. Hysteresis Models
2.2.1. Vector Preisach Hysteresis Model

The Vector Preisach hysteresis model (VPHM) is based on decomposition of the system
into several elementary hysteretic entities called hysterons. Each of them is defined by a
closed critical surface in the magnetic field plane and its magnetization state is defined by
the unitary and dimensionless vector m, as schematically illustrated in Figure 1.

When a generic magnetic field H is applied, the magnetic state m assumes the direction
given by the vertex of H and the center of the considered hysteron [13–16]. If the H vertex
moves following a generic trajectory, usually called an applied magnetic field path (dotted
line in Figure 1), the state m changes its orientation as described above. However, when
the H vertex enters the hysteron surface, m is in a frozen state and remains unchanged
until the applied field gets out. In such a case, as soon as H exits the hysteron, m suffers
a Barkhausen jump by rotating instantaneously from the magnetization state that it had
inside the hysteron to the radial one. For the sake of clarity, the new magnetization state is
indicated by m’ in Figure 1.

When an assembly of hysterons is considered, the resulting relative magnetization
is computed as the vectorial sum of the magnetization states of all the hysterons. There-
fore, in order to model magnetic processes of real materials, proper hysteron distribution
functions in the magnetic field plane have to be considered. For instance, assuming circu-
lar hysterons, the hysteron distribution function is represented by the so-called Preisach
function P(Hx,Hy,Hr), which indicates the probability of existence of hysterons centered in
the generic rectangular coordinates Hx, Hy of the applied magnetic field plane and with
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radius Hr [13]. Hence, given an applied magnetic field H, the magnetization M of a generic
material is computed as follows:

M(H) = Ms

∫
Ω

P(Ω)m(Ω, H)dΩ (1)

where MS is the material magnetic saturation and Ω =
{

Hx, Hy, Hr
}

is the space repre-
sented by the coordinates of the centers and by the radii of all the hysterons [13].

Finally, it is worth noticing that the VPHM can be extended also to a three dimensional
applied field space and that it is independent on the shape of the critical surface constituting
the hysterons.

Figure 1. Hysteron effect on the magnetization state given a magnetization path: the hysteron is
centered in (Hx*, Hy*), and it has radius Hr*.

2.2.2. Modified Magnetization Model for Linear Magnetization Path

The proposed method is based on an analogy between the change in magnetization
state m caused by a hysteron and the change in velocity of disk-shaped solids elastically
colliding with each other. In particular, two solids (named disk 1 and disk 2) are considered,
as schematically sketched in Figure 2. They have velocities v1 and v2 before and v1

′ and
v2
′ after the collision, respectively.

Figure 2. Two disk-shaped solids elastically colliding with each other in the x-y plane.

From classical mechanics [25,26], the velocity after collision v1′ is linked to the one
before v1 by the following formula:

v1′ − v1 = −2
w2

w1 + w2

(v1 − v2)·(r1 − r2)

|r1 − r2|2
(r1 − r2) (2)

where w1 and w2 are the masses of disk 1 and disk 2, respectively, and r1 and r2 are their
position vectors. Notice that the vectors resulting by the differences (v1 − v2) and (r1 − r2)
are scalar multiplied with each other.
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The change in velocity of disk 1 ∆v1 = v1′ − v1 can be expressed as follows:

∆v1 = a |v1 − v2| cosϕ r̂ (3)

in which a is a constant obtained by grouping the term −2w2/(w1 + w2), ϕ is the angle
between the vectors v1 − v2 and r1 − r2, and r̂ is the unit vector defining the direction of
r1 − r2. Equation (3) is further simplified by assuming|v2| = 0 m/s and |v1| = 1 m/s. In
this case, the angle ϕ corresponds to the angle ϕ* shown in Figure 2.

Establishing the analogy between the change in magnetization (Barkhausen jump)
caused by a hysteron ∆m = m′ −m and the change in velocity of disk 1 (velocity jump)
yields the following:

∆m = b cosϕ r̂ (4)

where b is a suitable constant. Then, by assigning a proper statistical distribution to the
angle ϕ, it is possible to evaluate the expected change in magnetization state E[∆m]. Thus,
according to statistical considerations, it can be stated that the material magnetization
change is directly proportional to E[∆m].

In case of linear magnetization, i.e., considering an applied magnetic field H laying
along the x-axis and considering the angle ϕ to be normally distributed with zero mean and
variance σ2, the expected change in magnetization state E[∆m] is given by the following:

E[∆m] = b e−
σ2
2 r̂x (5)

in which r̂x is the unit vector along the x-axis. Being the instantaneous change in magneti-
zation proportional to E[∆m] via a constant c, it can be written as follows:

dM
dt

= Γ e−
σ2
2 r̂x (6)

where Γ = bc is a proportionality constant.
It is now assumed that the instantaneous change in magnetization is caused by an

applied time-varying magnetic field H(t) with a time-harmonic behavior:

H(t) = H cos (ωt) r̂x (7)

where H is the applied field amplitude and ω is its angular frequency. Therefore, it
appears reasonable to hypothesize that the variance σ2 and the coefficient Γ appearing
in Equation (6) have similar time-harmonic behaviors. In particular, we assume time-
dependent values of σ2(t) and Γ(t) given by the following expressions:

σ2(t)/2 = αcos2(ωt + β) (8)

Γ(t) = γsin(ωt + β) (9)

in which α, β, and γ are three parameters and their values depend on the ability of the
material of instantaneously change its magnetization.

Combining Equation (6) with Equations (8) and (9) yields the following:

dM(t)
dt

= γsin(ωt + β) e−αcos2(ωt+β) r̂x (10)

The amplitude of magnetization M can be computed as follows:

M(t) = M0 +
∫ t

0
f (s)ds (11)
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where s is the local integration variable, M0 is the initial magnetization, and the function
f (t) is given below:

f (t)= γsin(ωt + β)e−αcos2(ωt+β) (12)

Finally, it should be emphasized that the shape of the hysteresis loop curve at generic
time t (H(t), M(t)) is affected by the choice of the three parameters α, β, and γ. In particular,
the latter affects the amplitude of the magnetization time derivative dM/dt, resulting in a
steeper and more extended curve along the vertical axis of the H−M plane for increasing
values of γ. Instead, the parameter β quantifies the phase shift of the function f (t) with
respect to the input field H(t), while α influences the slope of the time derivative of M(t)
and thus of the obtained hysteresis loop.

3. Results and Discussion
3.1. Sensitivity Analysis

The analytical method defined in the previous section can be applied to model a
large class of hysteresis loops. In order to demonstrate its accuracy and generality, a
sensitivity analysis is carried out, focusing on the effect of parameters α, β, and γ appearing
in Equation (12). With this purpose, different normalized hysteresis loops have been
computed in the H′ −M′ plane.

At first, the effect of α is investigated for fixed values of β = 0.25 and γ = 1. In particular,
Figure 3a shows different normalized loops for α values ranging between 5 and 125, while
Figure 3b reports the corresponding functions f (ωt). It is worth noticing that α affects
neither the coercivity nor the saturation of the hysteresis loops but that it has a strong
influence on the saturation remanence.

Figure 3. Effect of α on normalized hysteresis loops (a) and corresponding functions (b).
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Secondly, the influence of β is assessed while keeping α and γ fixed to the values
of α = 10 and γ = 1. Specifically, Figure 4a,b shows different normalized loops and the
considering functions f (ωt), respectively. Unlike α, it can be seen that β has a strong
influence on the coercivity and on the magnetic energy while it has no effect on the
magnetic saturation of the material. Instead, functions f (ωt) are horizontally shifted when
β increases, as expected from the role of β as the phase shift of the periodic functions in (12).

Figure 4. Effect of β on normalized hysteresis loops (a) and corresponding functions (b).

Finally, a totally different influence is exercised by the third parameter γ. In fact, small
variations in γ correspond to big variations in the magnetic saturation of the resulting
normalized hysteresis loops, as can be observed in Figure 5a, comparing the cycles obtained
with γ = 1, γ = 2.5, and γ = 5 and fixing α = 10 and β = 0.25. The corresponding functions
f (ωt), reported in Figure 5b, are affected only in their maximum amplitudes.

Hence, it can be concluded that a proper selection of parameters α, β, and γ allows for
modeling a large class of hysteresis loops, characterized by a variety of magnetic energy,
coercivity, and saturation remanence levels.

Figure 5. Cont.
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Figure 5. Effect of γ on normalized hysteresis loops (a) and corresponding functions (b).

3.2. Hysteresis Loop Modeling

The computational method described in the previous section was applied to model
the hysteresis loop of real NdFeB alloy samples at an environmental temperature. With
this purpose, experimental data taken from [30] were considered. Through an iterative
procedure, it has been found that the best numerical fitting was obtained, imposing α = 20
and β = 1.02, while γ was set equal to the measured magnetic saturation value MS.

Figure 6 shows the hysteresis loop measured by Ghezelbash et al. in [30] and the one
computed by means of Equation (11). As can be noted, the computed and experimental
loops almost overlap, meaning that the derived model is very suitable for modeling
permanent magnets like NdFeB alloys.

Figure 6. Hysteresis loop of a real NdFeB alloy sample measured at 27 ◦C in [30].

3.3. Temperature Influence on Hysteresis Loop

It has been observed in [29,30] that the variations of sample temperature strongly affect
the magnetic properties. Therefore, an in-depth understanding of the temperature effect on
magnetization is crucial, especially when such materials are required to operate at different
external conditions or overheating, as usually happens for common electric engines.

The hysteresis loops of a real NdFeB employed in [30] and measured at different
temperature ranging from 27 ◦C up to 200 ◦C was hereby extrapolated as a good exercise
for the fitting parameters. In the following, the temperature variations were assumed to
not affect hysteron shape but only functions f (ωt), specifically the values of parameters α
and β while γ was set equal to the measured magnetic saturation value at the considered
temperature. Therefore, each hysteresis loop was modeled through a proper choice of
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parameters α and β and identified through an iterative procedure. In particular, Figure 7a
shows the comparison of experimental and computed data, Figure 7b shows the corre-
sponding functions f (ωt), while Figure 7c,d shows the values of α and β as functions of
the temperature, respectively.

Figure 7. Cont.



Magnetochemistry 2021, 7, 10 10 of 12

Figure 7. Hysteresis loop of a real NdFeB alloy sample measured in [30] and modeled at different
temperatures (a), the corresponding functions f (ωt) (b), and the values of α (c) and β (d) as functions
of the temperature.

From Figure 7a, it is evident that all the experimental loops can be nicely simulated
through the use of the proposed model with a very good accuracy since, for all the con-
sidered temperatures, there is an almost perfect agreement between the experimental
and measured data. Furthermore, observing Figure 7c,d, it is also evident that α and β
depend on temperature as two decreasing exponential functions, as confirmed by the
computed correlation coefficient R2 greater than 0.86. This behavior is quite common in
thermodynamics and confirms the validity of the proposed approach.

In particular, the coefficients α and β were fitted with the following functions:

α(T) = 18.77 e−T/44.17 + 10.46 (13)

β(T) = 1.806 e−T/44.17 (14)

It is worth noticing that the two exponential terms have the same characteristic exponent.

4. Conclusions

In this paper, a novel computational method capable of reproducing hysteresis loops
of hard magnetic materials was proposed. This method is conceptually based on the
Preisach model but has a completely different and innovative approach in modeling
the hysteron effect. While in the classical Preisach model the hysterons were modelled
as ideal geometrical entities giving rise to so-called Barkhausen jumps, i.e., changes in
the magnetization states caused by hysterons, in this study, the Barkhausen jumps are
compared to the velocity jumps of rigid disk-shaped solids elastically colliding with
each other. This allowed us to obtain a simple differential formulation for the global
magnetization equation rather than a complicated integrodifferential one, with a significant
improvement in terms of computational performance.

The proposed computational method was tested first for a wide range of ideal hys-
teretic materials and then for a real NdFeB magnet. A sensitivity analysis on the model
parameters showed the capability to model a large class of hysteresis loops, while applica-
tion of the proposed method to the hysteresis loop of a real NdFeB magnet proved the high
accuracy and efficiency for a large temperature range.

Finally, the identification procedure for temperature-dependent hysteresis loops
showed a specific dependence on the temperature of the model parameters. More precisely,
it has been shown that they follow an exponential decay with an increase in temperature.
Therefore, the proposed method permits modeling of the temperature effect on magneti-
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zation of hard magnets, which is a key aspect in the design of electrical components and
machines usually subjected to temperature variations.
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