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Abstract: This paper reports the syntheses, crystal structures and magnetic properties of Mn(III) hex-
adentate Schiff base complexes [Mn(4-OH-sal-N-1,5,8,12)]NO3 (1) and [Mn(4-OH-sal-N-1,5,8,12)]ClO4

(2), where (4-OH-sal-N-1,5,8,12)2− (4,4′-((1E,13E)-2,6,9,13-tetraazatetradeca-1,13-diene-1,14-diyl)bis(3-
methoxyphenol) is a new hydroxyl-substituted hexadentate Schiff base ligand. The introduction of
the (4-OH-sal-N-1,5,8,12)2− ligand induces more hydrogen bonding interactions, in addition to pro-
moting the formation of intermolecular interactions among the cations. However, the close-packing
structures of both complexes lead to their stabilization in the high-spin state in the temperature range
of 2−300 K.

Keywords: spin crossover; manganese(III); hydrogen bonding; crystal structure

1. Introduction

Spin crossover (SCO), which is a hot topic in modern materials science [1–6], occurs in
octahedral transition metal complexes with electron configurations of 3d4−3d7. The phe-
nomenon between a low-spin (LS) and a high-spin (HS) state may be triggered by the use
of external stimuli, such as light, heat, magnetic field, and pressure [7–11].

Schiff bases are used widely because they are readily derivatized and generally easy to
prepare. As versatile ligands, they can stabilize a wide range of geometries and oxidation
states in transition metal complexes. This great diversity may permit the design of Schiff
bases with a suitable ligand field strength to obtain Mn(III) SCO complexes. Notably,
the first SCO d4 system [Mn(pyrol)3tren] with a hexadentate N6 Schiff base ligand was
designed in 1981 by Sinn and Sim [12], breaking the conventional wisdom that it was too
difficult to generate an amenable ligand-field strength to stabilize an LS state in Mn(III)
complexes. Later, the prototypic gradual SCO phenomenon of a Mn(III) hexadentate N4O2
Schiff base complex was reported in 2006 by Morgan et al. [13] Subsequently, another
ligand system, a tridentate Schiff base N2O ligand provided the third example of Mn(III)
SCO compounds [14].

Mn(III) hexadentate Schiff base compounds with N4O2 donor sets are extensively
studied [13,15–30] from various aspects such as ligand substitution [31], the nature of
counter anions [32–34], and the cocrystallized solvent molecules [35–38]. The chemical
influences affect intermolecular interactions like crystal packing and hydrogen bonding,
which offer more possibilities for cooperative SCO behaviors. In previous reports, we
reported a series of Mn(III) hexadentate Schiff base compounds [Mn(sal-N-1,5,8,12)]Y
(Y = Cl−, PF6

−, AsF6
−, SbF6

−, and NO3
−) [25] to confirm that the counter anion effects are

clearly related to the SCO behavior. Moreover, cocrystallized solvent molecules affect the
SCO profoundly. For instance, the complexes [Mn(3,5-diBr-sal-N-1,5,8,12)]ClO4·C2H5OH
and [Mn(3,5-diBr-sal-N-1,5,8,12)] ClO4·0.5CH3CN show different SCO behaviors [19].
The ethanol solvate has a more complete SCO while the latter persists in the LS state
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over a considerable temperature range. Besides, the analysis of Mn(III) complexes with
various hexadentate Schiff base ligands, such as (3-OMe-sal-N-1,5,8,12)2− [22], (5-OMe-
sal-N-1,5,8,12)2− [24,30], (5-Br-sal-N-1,5,8,12)2− [18] and (naphth-sal-N-1,5,8,12)2− [29],
has emphasized the impact of the substituent effects.

In addition, the report on the 4-position of salicylaldehyde of hexadentate Schiff base
ligands is rare; however, a series of Mn(III) SCO compounds [Mn(4-R-sal-N-1,5,8,12)]Y
(R = OC6H13, OC12H25, OC18H37) with gradual and uncompleted SCO behavior were
reported by Albrecht and his co-workers [16]. Under this circumstance, we study to
obtain complexes that can provide strong cooperation interactions and more complete SCO
behaviors. Therefore, the complexes [Mn(4-OH-sal-N-1,5,8,12)]Y (Y = NO3

− and ClO4
−)

(Scheme 1) were selected with the following main goals: increase the number of hydrogen
bonds through the hydroxyl group, in order to strengthen the connection between anions
and cations and improve the cooperativity of the system.
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Scheme 1. Structural unit of the cation [Mn(4-OH-sal-N-1,5,8,12)]+.

Herein, we report the synthesis, X-ray crystal structures, and magnetic properties
of two isostructural compounds with the general formula [Mn(4-OH-sal-N-1,5,8,12)]Y
(Y = NO3

− and ClO4
−). Correlations between properties and structures are discussed with

respect to the alteration of the geometry and hydrogen-bonding acceptor of the anions.

2. Experimental Section

All of the reagents and chemicals were analytically pure, purchased from commercial
sources, and were used without further purification. Although we experienced no problems
with the compounds reported in this work, the manganese perchlorate salt with the organic
ligand is potentially explosive and should be handled with great care and used in small
amounts. Elemental analyses of C, H, and N were performed on a Vario EL III elemental
analyzer. IR spectra of the solid samples (KBr tablets) in the range 400−4000 cm−1 were
recorded by an FT-IR Perkin Elmer spectrometer. The properties of the Hirshfeld surface for
complexes 1 and 2 were generated using a CrystalExplorer 17.5. The Hirshfeld surface was
generated using a high resolution and mapped with the dnorm and shape-indexed functions.
2D fingerprint plots were prepared using the same software. Magnetic susceptibility was
measured in a sweep mode upon cooling from 300 to 2 K under a 0.1 T applied magnetic
field by the use of a Quantum Design MPMS SQUID VSM magnetometer. A freshly
prepared crystalline sample was placed in a gelatin capsule holder. Magnetic data were
calibrated with the sample holder and diamagnetic corrections were estimated from Pascal’s
constants. Magnetic behavior was primarily analyzed by using variable-temperature
magnetic susceptibility measurements.

[Mn(4-OH-sal-N-1,5,8,12)]NO3 (1) 2,4-dihydroxybenzaldehyde (31.4 mg, 0.228 mmol)
and N,N-bis(3-aminopropyl)ethylenediamine (21.4 mg, 0.114 mmol) dissolved in methanol
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(6 mL), and then solid manganese(II) nitrate tetrahydrate (33.4 mg, 0.114 mmol) was added.
The resulting dark brown solution was stirred for half an hour and then filtered. Black
crystals formed upon evaporation of the solvent (56.9%). Anal. calcd for C22H28MnN5O7:
C, 49.91; H, 5.33; N, 13.23. Found: C, 49.86; H, 5.35; N, 13.16. IR (cm−1): 3550 (m, sh), 1613
(m, sh), 1338 (m, sh).

[Mn(4-OH-sal-N-1,5,8,12)]ClO4 (2) 2,4-dihydroxybenzaldehyde (45.8 mg, 0.332 mmol)
and N,N-bis(3-aminopropyl)ethylenediamine (28.9 mg,0.166 mmol) dissolved in methanol
(6 mL), and then solid manganese(II) perchlorate hexahydrate (41.9 mg, 0.166 mmol)
was added. The resulting dark brown solution was stirred for half an hour and then
filtered. Black crystals formed upon evaporation of the solvent (63.8%). Anal. calcd for
C22H28ClMnN4O8: C, 46.61; H, 4.98; N, 9.88. Found: C, 46.66; H, 4.94; N, 9.83. IR (cm−1):
3552 (m, sh), 1618 (m, sh), 1076 (st,sh), 619 (m, b).

3. Results and Discussion
3.1. Crystallographic Studies

Single-crystal X-ray diffraction data for the compounds [Mn(4-OH-sal-N-1,5,8,12)]NO3
(1) and [Mn(4-OH-sal-N-1,5,8,12)]ClO4 (2) were collected at 100 and 298 K, respectively.
Table 1 presents the most relevant parameters for single-crystal determination.

Table 1. Selected crystallographic data for complexes 1 and 2.

Formula
1 2

C22H28MnN5O7 C22H28ClMnN4O8

CCDC 2,043,724 2,043,725 2,043,722 2,043,723
T, K 100 K 298 K 100 K 298 K

Crystal system triclinic triclinic triclinic triclinic
Space group P1 P1 P1 P1

Z 2 2 2 2
a, Å 9.4195(19) 9.4904(10) 9.6692(14) 9.883(7)
b, Å 10.455(2) 10.4832(10) 10.5597(15) 10.741(7)
c, Å 12.733(3) 12.8865(13) 12.8271(18) 13.204(10)

α, deg 93.434(5) 93.556(2) 93.505(3) 94.021(15)
β, deg 106.356(4) 106.793(2) 107.134(3) 108.463(17)
γ, deg 107.143(5) 106.914(2) 105.371(3) 104.578(16)
V, Å3 1135.7(4) 1159.3(2) 1192.9(3) 1269.4(15)

Dcalc, g cm−3 1.548 1.517 1.578 1.483
µ, mm−1 0.637 0.624 0.722 0.679

F(000) 552 552 588 588
hkl range −11 ≤ h ≤ 11 −8 ≤ h ≤ 11 −12 ≤ h ≤ 10 −11 ≤ h ≤ 9

−8 ≤ k ≤ 12 −12 ≤ k ≤ 11 −14 ≤ k ≤ 13 −12 ≤ k ≤ 12
−15 ≤ l ≤ 15 −15 ≤ l ≤ 15 −16 ≤ l ≤ 17 −14 ≤ l ≤ 15

Collected 7306 7846 10719 7399
Parameters 333 333 336 339

Goodness-of-fit 1.033 1.075 1.022 1.081
R1[I>2σ(I)] 0.0525 0.0310 0.0291 0.1847

wR2[I>2σ(I)] 0.1328 0.0917 0.0722 0.0614
max./min. [e Å−3] 0.99/−0.91 0.63/−0.51 0.38/−0.44 0.56/−0.91

At both temperatures (100 and 298 K), the two isomorphic complexes crystallized
in the triclinic P1 space group. The asymmetric unit of 1 contained one [Mn(4-OH-sal-
N-1,5,8,12)]+ cation and one NO3

− counter anion (Figure 1), while one [Mn(4-OH-sal-
N-1,5,8,12)]+ cation and one ClO4

− anion were observed in the structure of 2 (Figure 2).
In these compounds, the Mn3+ ion was coordinated pseudo-octahedrally by trans-O (O1
and O2) donors in the axial position and pairs of cis-imine (N1 and N4) and cis-amine (N2
and N3) in the equatorial plane. The Mn-Nimine (N1 and N4) (2.075–2.135 Å), Mn-Namine
(N2 and N3) (2.233–2.291 Å), and Mn-O (1.864–1.880 Å) bond lengths at 100 K were in
greatagreement with those observed in other HS Mn(III) hexadentate Schiff base complexes.
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Moreover, the bond lengths of the complexes at 298 K had no significant change compared
with those at 100 K (Table 2).
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50% probability level. Hydrogen atoms were omitted for clarity.

The octahedral distortion parameters Σ and θ can intuitively reflect the changes of
the Mn(III) coordination sphere. For complex 1, θ was from 292.38◦ at 100 K to 291.98◦

at 298 K, while the change in Σ was small, with values of 79.59◦ and 79.41◦, respectively.
Both parameters, with a little change, further demonstrate that there was no SCO behavior
in complex 1. The central Mn3+ ion of compound 2, which is similar to complex 1, was
furnishing a distorted octahedral geometry (θ = 289.93◦ and Σ = 77.66◦ at 100 K; θ = 294.06◦

and Σ = 78.90◦ at 298 K).



Magnetochemistry 2021, 7, 12 5 of 12

Table 2. Selected bond distances (Å), angles (◦), and octahedral distortion parameters (◦) for com-
plexes 1 and 2.

1 2

T, K 100 K 298 K 100 K 298 K

Bond distances

Mn1-N1 2.121(3) 2.1194(16) 2.0839(13) 2.148(3)
Mn1-N2 2.233(3) 2.2375(17) 2.2912(13) 2.267(3)
Mn1-N3 2.273(3) 2.2747(18) 2.2369(13) 2.310(3)
Mn1-N4 2.075(3) 2.0852(16) 2.1346(13) 2.116(3)

Mn1-Nav 2.1755 2.1792 2.18665 2.210
Mn1-O1 1.864(2) 1.8688(12) 1.8797(11) 1.894(3)
Mn1-O4 1.872(2) 1.8748(13) 1.8742(11) 1.903(3)

Mn1-Oav 1.868 1.8718 1.87695 1.8985

Bond angles

O4-Mn1-N1 92.22(10) 92.31(6) 91.53(5) 91.79(13)
O1-Mn1-N1 86.86(10) 86.84(6) 88.35(5) 86.85(13)
O4-Mn1-N4 87.88(10) 87.91(6) 86.93(5) 88.51(13)
O1-Mn1-N4 91.43(10) 91.29(6) 91.42(5) 91.17(13)
N1-Mn1-N4 116.80(10) 116.81(6) 116.38(5) 116.84(13)
O4-Mn1-N3 95.42(10) 94.46(6) 93.77(5) 96.33(13)
O1-Mn1-N3 85.86(9) 85.79(6) 86.95(5) 85.30(13)
N4-Mn1-N3 83.15(10) 83.17(7) 82.65(5) 83.18(15)
O4-Mn1-N2 86.35(10) 86.53(6) 85.33(5) 86.68(12)
O1-Mn1-N2 94.76(10) 94.67(6) 96.54(5) 94.16(13)
N1-Mn1-N2 82.87(10) 82.88(7) 83.60(5) 82.33(13)
N3-Mn1-N2 78.07(10) 78.01(7) 78.18(5) 78.48(15)
O4-Mn1-O1 178.46(9) 178.42(5) 178.10(4) 178.29(10)
N1-Mn1-N3 158.93(10) 158.85(7) 160.52(5) 158.64(14)
N4-Mn1-N2 159.72(10) 159.75(7) 158.77(5) 160.39(13)

Mn-Mn distance

interchain 6.709(1) 6.749(6) 6.740(8) 6.841(4)
intrachain 8.337(1) 8.349(7) 8.335(9) 8.431(4)

Octahedral distortion parameters

θ 292.38 291.98 289.93 294.06
Σ 79.59 79.41 77.66 78.90

In Figure 3, a pair of [Mn(4-OH-sal-N-1,5,8,12)]+ cations form a centrosymmetric dimer
through the N–H···O hydrogen bonds between the amino nitrogen atoms and peripheral
hydroxy oxygen atoms. Moreover, weak edge-to-edge π···π contacts exist between the two
sets of C(1)–C(2) atoms (Figure 4), and stabilize the dimer structure.

The anions connected cationic dimers located in chains via the O–H···O hydrogen
bonds (Figure 3). The supramolecular chains were relatively independent and extended
infinitely in the bc-plane. With the increase of the temperature, there was no significant
change in the strength of the hydrogen bonds (Table 3). The intrachain Mn-Mn separation
was 8.337 Å at 100 K and 8.349 Å at 298 K. However, the formation of dimers resulted in
the short interchain Mn···Mn distance, which was 6.709 Å at 100 K and 6.749 Å at 298 K,
respectively. The close Mn–Mn distance gave the [Mn(4-OH-sal-N-1,5,8,12)]+ cation less
space to change the coordination geometry.

As for complex 2, increasing the size of the anion from planar NO3
− to tetrahedral

ClO4
− resulted in more intricate interconnections, but there was no change in crystal

packing. Moreover, the formations of supramolecular dimers indicate the close contacts
between the [Mn(4-OH-sal-N-1,5,8,12)]+ cations. The existence of O(2)–H(2)···O(7), O(7)–
H(27)···O(3) and O(6)–H(27)···O(3) hydrogen bonds contributed to the close stacking
between the anions and cations, which hindered the flexibility of the whole ligand and
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prevented the distortion of the Mn(III) coordination geometry (Figure 5). In addition, the
interchain Mn-Mn separation changed from 6.841 at 298 K to 6.740 Å at 100 K because of
its bigger anion size. However, this did not give the Mn(III) cation enough space to change
its conformation to meet the structural requirements of SCO.
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Table 3. Hydrogen bond distances and parameters for the complexes of 1 and 2 (Å, ◦).

1

100 K 298 K

D-H···A D-H H···A D···A angle D-H···A D-H H···A D···A angle
N2-H12···O2 i 0.78(5) 2.32(5) 3.091(4) 170(4) N2-H12···O2 iv 0.87(2) 2.25(3) 3.108(3) 171(2)
O2-H2···O7 ii 0.72(5) 1.96(5) 2.677(4) 175(4) O2-H2···O5 v 0.71(4) 2.01(4) 2.711(3) 177(3)

O3-H27···O6 iii 0.80(4) 2.04(5) 2.796(4) 158(4) O3-H27···O6 vi 0.79(3) 2.06(3) 2.807(3) 158(3)

2

100 K 298 K

D-H···A D-H H···A D···A angle D-H···A D-H H···A D···A angle
N3-H17···O3 i 0.88(2) 2.34(2) 3.1779(19) 159.2(18) N2-H12···O2 vii 0.89(6) 2.34(6) 3.206(6) 165(5)
O2-H2···O7 vi 0.84 2.03 2.8420(18) 163 O2-H2···O5 ii 0.82 2.11 2.922(8) 171
O3-H27···O6 0.84 1.95 2.784(2) 174 O3-H27···O8 viii 0.71(5) 2.18(5) 2.861(8) 163(6)
O3-H27···O7 0.84 2.674 3.248(2) 126.79 O2-H2···O8 0.821 2.658 3.272(9) 132.9

Symmetry codes: i 1-x,1-y,1-z; ii 1+x,y,z; iii -1-x,1-y,-z; iv 2-x,2-y,1-z; v 1+x,1+y,z; vi -x,1-y,-z; vii 1-x,1-y,2-z; viii -1-x,1-y,1-z.
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3.2. Hirshfeld Surface Analysis

To gain deeper insight into the supramolecular contacts in 1 and 2, we undertook
Hirshfeld surface analysis using CrystalExplorer 17.5. The Hirshfeld surfaces for the cations
of complexes 1 and 2 were mapped with the dnorm function [39,40], which shows several
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red spots. For 1, the four strongest red spots were due to N–H···O and O–H···O hydrogen
bonding interactions, and the weak red spots were due to C–H···O interactions (Figure
6a). The hydrogen bond was one of the major interactions here, contributing to 17% of all
interactions in Figure 6c.
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For complex 2, owing to the change in anions, the hydrogen bond contributed to 24.8%
of all interactions (Figure 6d). This supports the discussion above and suggests that the
OH group in the (4-OH-sal-N-1,5,8,12)2− ligand is critical in linking the [Mn(4-OH-sal-N-
1,5,8,12)]+ cations together in these structures.

In order to more intuitively study the influence of hydroxyl on the hydrogen bond
interaction, we introduced Hirshfeld surface analysis on the complex [Mn(4-OC6H13-
sal-N-1,5,8,12)]NO3·H2O [16] (Figure 7). Though it crystallizes as an H2O solvate, the
hydrogen bond contributed to only 9.6% of all interactions. All in all, the OH group played
a significant role in non-covalent interactions.

From the Hirshfeld analysis, it was very clear that the hydroxyl group effectively
enhanced the hydrogen bonding interactions in both complexes. However, these non-
covalent intermolecular forces were insufficient to result in a cooperative SCO. The cation
structures were tightly packed, hindering the distortion required to undergo SCO.
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3.3. Magnetic Characterization

The temperature dependence of the product χMT (χM is the molar paramagnetic
susceptibility) versus T plots for the crystalline samples of complexes 1 and 2 is shown in
Figures 8 and 9, respectively.

Figure 8. Temperature dependence of the χMT of [Mn(4-OH-sal-N-1,5,8,12)]NO3 between 2 and 300 K.
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At room temperature, the χMT value of 1 was about 2.79 cm3 K mol−1, which is typical
of an HS Mn3+ center (S = 2) with a g value of 2.0 (Figure 7). As the temperature went down,
the χMT value was constant until 20 K, when it decreased rapidly because of the ZFS (zero
field split) effects of HS Mn3+ ions. However, within the temperature range, the χMT value
did not drop to 1.0 cm3 K mol−1. The temperature dependence of the χM

−1 of complex 1 is
shown in Figure 7. It is linear between 2 and 300 K and a linear least-squares fit yields a Curie
constant of 2.84 emu K mol−1, a Weiss temperature θ of −1.67 K, while the Curie constant
and θ value of compound 2 was 2.95 emu K mol−1 and −1.51 K (Figure 8).

The magnetic characterization of [Mn(4-OH-sal-N-1,5,8,12)]ClO4 was similar to that
of complex 1, and increasing the size of the anion from NO3

− from ClO4
− seems to have

had no effect on the magnetic behavior.

4. Conclusions

In an effort to synthesize new Mn(III) SCO complexes, we have described two new
isomorphic [Mn(4-OH-sal-N-1,5,8,12)]Y (Y = NO3

− and ClO4
−) complexes. The crystal

structure of these compounds is rich in non-covalent contacts (hydrogen bonding and π···π
interactions) between the mononuclear cations and anions. Whereas, compared with other
Mn(III) hexadentate Schiff base SCO complexes, such as [Mn(5-OMe-sal-N-1,5,8,12)]Cl and
[Mn(sal-N-1,5,8,12)]NO3, the introduction of hydroxyl groups makes the Mn(III) cations
dimerized and weakens the interactions between anions and cations. Besides, the Mn···Mn
separations are short and the connections between Mn3+ centers are extremely close. They
may limit the Mn3+ cations to change their coordination geometry.
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