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Abstract: A thorough investigation of the 2-D hysteresis processes under arbitrary excitations was
carried out for a specimen of innovative Fe-Si magnetic powder material. The vector experimental
measurements were first performed via a single disk tester (SDT) apparatus under a controlled
magnetic induction field, taking into account circular, elliptic, and scalar processes. The experimental
data relative to the circular loops were utilized to identify a vector model of hysteresis based on
feedforward neural networks (NNs), having as an input the magnetic induction vector B and as
an output the magnetic field vector H. Then the model was validated by the simulation of the
other experimental hysteresis processes. The comparison between calculated and measured loops
evidenced the capability of the model in both the reconstruction of the magnetic field trajectory and
the prediction of the power loss under various excitation waveforms. Finally, the computational
efficiency of the model makes it suitable for future application in finite element analysis (FEA).

Keywords: magnetic powder core; vector hysteresis; magnetic measurements; neural network
modeling; power loss prediction

1. Introduction

In recent years the development and the production of innovative technologies for soft
magnetic cores has attracted a lot of scientific interest. On the one hand, iron-based alloys
available in form of laminations still constitute a suitable solution for the manufacturing
of electrical machines and magnetic components in the industrial and energy environ-
ment [1,2]. However, to meet the requirements of power consumption for high-frequency
applications, and the need of either reducing the size and the weight of the cores or cre-
ating complex geometries, other technologies have been proposed and explored, such as
ferrites [3–5], soft magnetic composites (SMC) [6], and more recently additive-manufactured
cores [7,8] and magnetic powder cores [9–11]. In particular, the latter one is attracting a lot
of interest since it matches good magnetic properties with high workability and suitable
mechanical and thermal properties.

Innovative cores made with iron-silicon powder have been manufactured very recently
and they are mostly registered brands. The main advantages of this technology are the
linear behavior of the B-H characteristics in a wide range of excitation, the quite high
value of the saturation induction (close to 1.5 T), the very narrow shape of the hysteresis
loop, and the high resistivity. As a consequence, Fe-Si powder-based soft ferromagnets are
mostly suitable for the production of magnetic components for power electronics such as
buck/boost inductors and smoothing chokes for inverters, but also for various types of
electrical machines for high-frequency applications. Indeed, the narrow hysteresis loops
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together with high resistivity lead to a very high energy efficiency in a wide range of
operating frequencies. Furthermore, as is highlighted in the paper, these materials are
rather isotropic and can be effectively employed as the core of rotating machines. Finally,
a minor application field is represented by wireless power transfer systems [12,13] and
magnetic shielding components in the extremely low frequency (ELF) and super low
frequency (SLF) bands, as an alternative to Ni-Fe alloys and electrical steel sheets [14].

A comprehensive characterization of the material properties and the availability
of an accurate and efficient simulation tool are of great importance for the design and
the development of electrical machines and magnetic components. Currently, the data
provided by manufacturers are almost poor and only limited to scalar hysteresis properties.
Indeed, in most of the cases, only the maximum value of the relative permeability, the
saturation induction, and the maximum power loss at f = 50 Hz, eventually for few given
induction levels, are declared. In addition, only sinusoidal supply signals are taken into
account. However, it must be evidenced that in the real operating conditions, magnetic
cores are not subjected to purely scalar excitation and the waveform of the supply signal in
general is not sinusoidal. The characterization of the material behavior under rotational
fields is not only important for rotating machines; indeed it is known that that type of
excitation is also somehow found in transformers and reactors [15,16].

With the aim to give a contribution in this field of research, the present work describes
the characterization of vector hysteresis processes under arbitrary excitation waveforms
for a sample of innovative soft magnetic material based on Fe-Si powder, produced by
Chang Sung Corporation® (CSC), Incheon, Korea. The material has not yet been settled
on the commercial market and was provided only for experimental and scientific analysis
purposes. A thorough experimental analysis was performed by means of a single disk
tester (SDT) apparatus with the scope to show the material behavior under various types
of vector excitations that may occur in practical operating conditions. For this reason,
the measurements were performed under both circular and elliptic magnetic induction
trajectories and with either sinusoidal or non-sinusoidal waveforms. The scalar hysteresis
loops were also measured along two perpendicular directions, in this case with purely
sinusoidal magnetic inductions. The experimental investigation can highlight the vector
hysteresis properties of the material with a high degree of completeness. A detailed
description of the experimental analysis, covering the characteristics of the sample and the
testing equipment as well as the set of measurements recorded, is discussed in Section 2.

In addition to the experimental verification, a computationally efficient vector hys-
teresis model based on feedforward neural networks (NNs) was utilized to reproduce the
behavior of the test sample and to predict power losses. The use of neural networks in
simulating hysteresis phenomena has been extensively studied in the literature, mostly
for scalar problems [17–23]. Indeed, NN-based approaches are computationally efficient
simulation tools and can be easily formulated in either direct (H input–B output) or inverse
(B input–H output) form. These features make them particularly adequate for matching
with finite element analysis (FEA), thus allowing the simulation of magnetic devices in the
time domain [24].

Some of the proposed approaches are actually coupled models, in which the total
magnetization is given as the sum of a memoryless component (reversible) computed by the
neural network, and an irreversible component determined by exploiting other hysteresis
models, such as the Preisach model [17–19]. However, other authors used a standalone
feedforward neural network to reproduce the hysteresis phenomenon with satisfactory
results in one dimension (1-D) [20–22]. In most cases the memory storage mechanism is
taken into consideration, exploiting feedback algorithms such that the previous value of the
model output (or some other information about the “past history”) is also given as an input.
Other strategies to account for the memory storage property are based on the recurrent
NNs, with increased model complexity, as reported in [23], but they are not considered
in this work.
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Despite the large amount of papers dealing with the reproduction of the scalar hystere-
sis phenomenon via NN-based models, the same approaches for vector hysteresis problems
have been less explored [25]. The application of a neural system consisting of an assembly
of feedforward networks was proposed in [26] to reproduce vector magnetization patterns
for Fe-Si laminated steels, but the comparison with the experimental data only covered the
rotational loops under circular magnetic induction with sinusoidal waveforms. In addition,
the problem of power loss prediction has not been examined. The characterization of vector
magnetization processes under elliptical B was recently studied in [27] for electrical steel,
as well as the modeling of the material behavior via the NN approach, but again with
purely sinusoidal waveforms.

The second scope of the work is therefore to deal with hysteresis modeling and power
loss estimation, taking into account generic supply conditions. The vector NN model,
similar to the one introduced in [26] and also discussed in [28], was implemented in a
Matlab® computing environment and is presented in Section 3. It is seen that the model can
be opportunely identified only by exploiting the rotational loops with circular magnetic
induction trajectories, whereas the other measured processes can be used as test cases
for validation.

The results of the model identification and the comparison between simulated and
measured data are properly shown and discussed in Section 4.

2. Experimental Investigation

The material examined in this work is an innovative and performing Fe-Si magnetic
powder alloy with distributed air gaps provided by Chang Sung Corporation® for scientific
purposes. The main features declared by the manufacturer are very low power losses,
especially for high-frequency applications, and a considerably wide region of linearity, i.e.,
the range of applied magnetic fields such that the material response can be considered
linear. The aforementioned properties make the material adequate to meet the requirements
found for several fields of usage, primarily the filtering inductors and the power reactors,
the design of which via conventional laminated materials requires a careful design and
calibration of controlled air gaps in the core. The material composition is 70% FSiCr and
30% CIP, where:

• FSC = iron 90% + silicon 8% + chromium 2% (by weight)
• CIP = carbonyl iron powder

The specimen under test was produced with a disk shape with a diameter of
D = 68 mm and a thickness of d = 0.98 mm, and the density declared by the manufacturer
was ρ = 6300 kg/m3. The final preparation of the sample, carried out in our laboratory,
consisted of creating two perpendicular sensing coils for the measurements of the in-plane
components of the magnetic induction vector, according to the Faraday–Neumann–Lenz
law. The sensing coils, with three turns each, were fixed to the surface by applying a layer
of transparent and insulating varnish.

The disk sample, shown in Figure 1a, was finally attached to a wood support and
mounted on the single disk tester machine, the core of which is a stator of a single-phase
induction motor with two perpendicular excitation windings, thus allowing the generation
of arbitrary 2-D magnetic field excitations. The magnetic field probe consists of an array of
three equally spaced bi-axial hall sensors, allowing the estimation of the field at the sample
surface by compensation of the demagnetizing effect, similar to the one presented in [29].
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Figure 1. Experimental measurements: (a) test sample after preparation and (b) block scheme of the testing apparatus: PC,
DAQ HW, and power amplifiers A1 and A2 feeding the stator coils.

The two perpendicular windings of the stator are fed by two programmable linear
4-quadrant power amplifiers with frequency band DC—20 kHz and nominal voltage
gain Av = 5. A data acquisition board (DAQ), working in generation/acquisition mode
was programmed in Matlab® to generate the input signals of the amplifiers and simul-
taneously detect the signals for the evaluation of H and B and for the control of the
measurement system.

The complete list of the signals generated and measured, as well as the corresponding
I/O analog ports configured on the DAQ hardware, are reported in Table 1. The two analog
outputs (AO0, AO1) serve to transmit the applied voltage waveforms to the input of the
power amplifiers. The maximum peak-to-peak voltage that can be generated by the DAQ is
20 V. The analog inputs AI0 and AI1 are connected to the sensing coils for the measurement
of the magnetic induction components. The currents on the stator (excitation) coils are
sensed at analog input ports AI2 and AI3 by means of two active current monitors, whereas
the voltages applied to the stator are measured on ports AI4 and AI5 by means of two active
differential voltage probes. Finally, the magnetic field components are measured by the
three bi-axial hall sensors connected to analog input ports AI6 to AI20. The analog output
(AO) ports are ground referenced single-ended connections, whereas all the analog input
(AI) ports are configured as “floating,” i.e., differential sense to maximize the signal-to-
noise ratio. The block diagram of the SDT testing frame is shown in the Figure 1b, whereas
the apparatuses used, with their corresponding models, are reported in the Table 2.

Table 1. Signals generated and measured by the DAQ in the single disk tester apparatus.

Signals Symbol DAQ Ports

Input voltage to power amplifiers vx(t), vy(t) AO0, AO1
Electro-motive force on B sensing coils emx(t), emy(t) AI0, AI1

Current on stator windings Ix(t), Iy(t) AI2, AI3
Applied voltage on stator windings Vx(t), Vy(t) AI4, AI5

Magnetic field sensor VHx,i(t), VHy,i(t) i = 1, 2, 3. From AI6 to AI20
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Table 2. Instrumentation adopted in the SDT testing frame: apparatuses and corresponding models.

Equipment Model

Power amplifier Kepco BOP 36-5
Current probe Rhode & Schwarz RT-ZC03

Data acquisition module NI USB 6363 BNC Type
Magnetic field sensor Sentron 2SA-10

Voltage probe Micsig DP 10013

The core of the computer program that manages the generation/acquisition process is
a digital feedback algorithm that allows the magnetic induction vector to be controlled. In
particular, the operator defines the reference waveforms of the magnetic induction Bx,ref(t)
and By,ref(t), the maximum percentage error between measured and reference signals, and
the maximum number of iterations. The computer program automatically adjusts at each
jth iteration of voltages vj

x(t) and vj
y(t) to be applied to the amplifiers in order to let the

waveforms of the magnetic induction components converge towards reference ones. The
voltage signals applied for the successive iteration, vj+1

x (t) and vj+1
y (t), are given from the

ones applied in the previous iteration by adding the time-dependent incremental terms
∆j+1

x (t) and ∆j+1
y (t), which are proportional to both the difference between the reference

and measured magnetic induction and the difference between their time derivatives:
∆j+1

x (t) =
max

{
vj

x(t)
}

max{Bx,ref(t)} ·ξ·(α·∆Bx + (1− α)·
.

∆Bx)

∆j+1
y (t) =

max
{

vj
y(t)

}
max{By,ref(t)} ·ξ·(α·∆By + (1− α)·

.
∆By)

(1)

where α and ξ are adjustable constants.
All the measurements reported in this work were performed at the frequency of 1 Hz

and the input data were acquired at the sample rate of 360 samples/s. The frequency was
set small enough that eventual dynamic effects were negligible and the loops could be
considered quasi-static. The parameters used for the convergence of the feedback algorithm,
optimized empirically during the calibration stage, were α = 0.97 and ξ = 0.75, whereas
the maximum deviation tolerated between the reference and measured waveforms of the
magnetic induction was err_rel_max = 1.9%.

Four sets of experiments were performed, consisting of a family of hysteresis loops
under given magnetic induction waveforms. Finally, for each set, the matrices of Hx, Hy,
Bx, and By were recorded and the specific energy loss (energy per unit of mass) relative to
each cycle was computed from the area enclosed by the Bx–Hx curve and By–Hy curve.
The voltages applied to the stator coils, as well as the current absorbed by them, were only
monitored throughout the measurement process.

• SET 1 is a family of rotational loops under circular magnetic induction obtained with
sinusoidal Bx(t) and By(t) waveforms at the amplitudes of B0 = 10 mT, 50 mT, 100 mT,
200 mT, 300 mT, 400 mT, 500 mT, and 600 mT.

• SET 2 is a set of three families of hysteresis loops under elliptic magnetic induction
obtained with the following reference waveforms:{

Bx,ref(t) = B0 cos(2πf0t)
Bx,ref(t) = AR·B0 cos(2πf0t)

(2)

Each family was obtained at the same values of B0 as the ones applied in the previous
set, with a constant value of the aspect ratio (AR). The three values of the aspect ratio were
AR = 0.25, 0.50, and 0.75. Actually, SET 1 can be described by Equation (2) with AR = 1.

• SET 3 is a family of rotational loops measured with two-tone reference waveforms of
the magnetic induction components, which consists of the sum of a fundamental tone
at 1 Hz and a fifth-order harmonic, according to:
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{
Bx,ref(t) = B0 cos(2πf0t) + m·B0 cos(10πf0t)
Bx,ref(t) = B0 cos(2πf0t) + m·B0 cos(10πf0t)

(3)

where m = 0.15 is the modulation index.
The family of loops was determined for the same values of B0, hence the peak value

of the magnetic induction ranged from 11.5 mT to 690 mT.

• SET 4 consists of two families of scalar hysteresis loops, one measured along the x-axis
and the other along the y-axis of the specimen. In the first case Bx(t) is sinusoidal and
By(t) = 0, whereas in the second case By(t) is sinusoidal and Bx(t) = 0. The amplitudes
considered of the sinusoidal waveform B0 were equal to the ones from SET 1.

3. Numerical Modeling

The NN-based model of vector hysteresis presented here is a suitably trained neural
system (NS) that computes the kth sample of magnetic field components Hx(k) and Hy(k)
as a function of the kth sample of magnetic induction components Bx(k) and By(k). We
chose the “inverse form” because it is more suitable for an eventual matching with Finite
Element (FEM) solvers, according to the scalar potential formulation.

It turns out that a single feedforward neural network is not sufficient to reproduce
magnetic hysteresis over a wide range of excitation with acceptable accuracy. For this
reason, we proposed subdividing the computational domain (Bx–By plane) into regions
with circular symmetry.

The domain of the magnetic induction vector is subdivided into a number of n regions
with a circular crown shape defined by Bj

min ≤ B < Bj
max with j = 1, . . . , n, and a couple

of two-input single-output feedforward neural networks with one hidden layer with N
artificial neurons are assigned to each circular crown, one for the computation of the x
component and the other for the y component of the magnetic field, as a function of both
Bx(k) and By(k). The jth couple of sub-networks is enabled for the computation of the
magnetic field vector only if the magnetic induction vector belongs to the jth circular crown.
The shape of the regions is suggested by the types of excitations used to train the neural
networks: the quasi-static rotational loops with circular vector B.

The working principle of the NS can be schematized according to the block diagram
shown in Figure 2.
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An input de-multiplexer assigns the magnetic induction vector (Bx, By) to the input of
both feedforward neural networks pertaining to the proper circular crown. The components
of the magnetic field, computed by the couple of NNs, are collected by the multiplexer Mj
and finally sent to the output. The vector model was inspired by the one proposed in [23],
however, it differs in terms of the architecture and formulation of the single sub-networks.

The most critical issues in reproducing hysteresis phenomena via neural network
approaches are mostly the numerical stability and the robustness, which are related in a
complex manner to the characteristics of the input, the formulation of the model and the
feedforward neural networks, and the training procedure. Hence, the number of circular
crowns, their amplitudes, and the number of neurons of the scalar NNs were carefully
optimized with the aim of minimizing the model complexity and the computational
resources to be allocated. The only magnetization processes involved in the definition of
the model architecture and in the training procedure are the rotational loops measured
under circular magnetic inductions of SET1, described in the previous paragraph. The
following results were obtained:

• Number of circular crowns: n = 4.
• Amplitudes: 0 ≤ B < 90 mT; 90 ≤ B < 290 mT; 290 ≤ B < 490 mT; B ≥ 490 mT.
• Number of neurons for each scalar net: N = 20.

The NS was identified by only eight patterns in a two-by-two subdivision in each
circular crown region. The trajectories of the magnetic induction field, applied to the input
of the NS, are displayed in Figure 3.
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Figure 3. Circular trajectories of the magnetic induction vector measured for SET 1 utilized to train
the NS.

The generic jth couple of sub-feedforward NNs (NETX_j, NETY_j) that can be viewed
as a 2-D vector network NET_j were trained with the rotational loop data belonging to
the jth circular crown plus the adjacent first neighbors. The loops of SET 1 involved in the
training of each one of the four vector networks are listed properly in Table 3. The subsets
were partially overlapping each other to stabilize the response of the networks near the
boundary between regions.
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Table 3. Loops for NS identification subdivided into partially overlapping sets for the training of
single couples of NNs.

Loop ID 1 2 3 4 5 6 7 8

Amplitude 10 mT 50 mT 100 mT 200 mT 300 mT 400 mT 500 mT 600 mT

NET_1 x x x

NET_2 x x x x

NET_3 x x x x

NET_4 x x x

Let us conclusively specify that the training of each couple of scalar feedforward
neural networks was performed with 15,000 epochs using the Levemberg–Marquardt
algorithm. The number of samples used to train a single feedforward neural network is
2nloopSPP, where SPP = 360 (samples per period) and nloop is the number of loops that is
either equal to 3 for the couple of NNs of NET_1 and NET4, or equal to 4 for the couple of
NNs of NET_2 and NET_3, according to Table 3.

The accuracy of the identification stage was validated by the comparison of the
computed trajectories of the H field with the measured ones. This comparison is illustrated
in Figure 4 for some of the rotational loops of SET 1.
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Figure 4. Comparison between the computed (blue solid line) and the measured (red dots) trajectories
of H relative to the rotational loops of SET 1, where B = 10 mT (a), B = 100 mT (b), B = 400 mT (c),
and B = 600 mT (d).

It can be observed that the trajectories of the magnetic field were not precisely circular
and therefore the response of the material was not exactly isotropic. Indeed, if we consider
the major loop, measured for B = 600 mT with a maximum error of 1.9%, the modulus of
the magnetic field vector varies from a maximum value of 16.66 kA/m and a minimum
value of 11.68 kA/m. The maximum value, found close to the x axis, identifies the hard
magnetization direction, whereas the minimum value, found close to the y axis, identifies
the easy magnetization direction. Since the NS was trained to reproduce the distorted
H-field trajectories produced by the circular B-field trajectories, the effects of the magnetic
anisotropy should have been correctly modeled.
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4. Discussion

The NS, opportunely trained via the rotational loops, was validated by the reproduc-
tion of the magnetic field trajectories and the prediction of energy losses, under various
types of supply conditions. In the test cases described hereafter, the sequences Bx(k) and
By(k) applied to the input of the NS were directly taken from the measurements.

4.1. Elliptic Magnetic Induction

The first test case consisted of the simulation of the families of concentric elliptic loops
for each one of the considered values of the aspect ratio. The measured trajectories of
the magnetic induction, applied as input to the NS, are displayed in Figure 5. On the
other hand, the measured and the simulated trajectories of the magnetic field vector on the
Hx–Hy plane relative to the elliptic loops with AR = 0.25 are represented in Figure 6 for
some values of the corresponding amplitude of Bx (major axis of the ellipse), covering the
entire range examined. The same kind of magnetic field curves but relative to the other
values of the aspect ratio are illustrated in Figures 7 and 8.
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The reconstructed curves were rather close to the measured ones for all the values
of the aspect ratio examined. It must be noticed that when the input de-mux changes
the couple of scalar feedforward neural networks for the calculation of Hx(k) and Hy(k)
throughout the magnetization process, some discontinuities of the derivative to the curve
traced by the H-field vector may occur. With the aim of reducing the probability of having
such discontinuities, the rotational loops adjacent to the circumference that separated
regions j and j + 1 were involved in the identification of both NET_j and NET_j+1 (where
j = 1, 2, 3). For this reason, the computational flaw derived from the sample-by-sample
selection of the active NNs was found only for Bx = 100 mT and did not significantly affect
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either the accuracy in the magnetic field reconstruction or the computational stability of
the model.

In order to make the model suitable for future implementation in FEM-based solvers,
the prediction of the energy loss was also an important issue that deserved to be investi-
gated comprehensively. For this reason, the energy loss per unit of mass as a function of
the amplitude of Bx was determined from both the measured and the simulated loops. The
comparison is displayed in Figure 9 for each value of AR.
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Figure 9. Comparison of the simulated and measured energy-loss curves for different value of the
aspect ratio.

The case AR = 1 is relative to the rotational loops and the agreement between the
simulated and the measured curves reflects mostly the accuracy of the training procedure.
However, it must be specified that the loop area, and consequently the energy loss, was not
involved in any way during the training of the model. The loss prediction for the other
values of AR is even more interesting, since the field trajectories under elliptic B were
not taken into account for NS identification. As one can view in Figure 9, the computed
loss curves were very close to the measured ones. We computed the error as the absolute
difference between the measured and simulated values of the energy loss. The absolute
deviation averaged over all the curves was 7.9 mJ. The maximum deviation was found for
AR = 0.75 and Bx = 600 mT, where the NN model tended to overestimate the energy loss
by 29 mJ, corresponding to 13% of the measured value.

Finally, it is interesting to point out that the relationship between the energy lost
and the aspect ratio was almost linear if the fixed level of the magnetic induction was
higher than 300 mT. Indeed, the progression of the measured energy lost at the induction
of 600 mT, here indicated with Wm

600, for AR = 0.25, 0.5, and 1 was 81.0 mJ/kg, 156.9 mJ/kg,
and 315.2 mJ/kg, respectively. Similarly, the progression of the simulated energy lost
at 600 mT, indicated similarly with Wm

600 for the same values of the aspect ratio, was
78.0 mJ/kg, 157.0 mJ/kg, and 344 mJ/kg, respectively. Similar values can be found if one
considers other levels of Bx higher than 300 mT. For lower levels of induction, the behavior
of the energy loss versus the aspect ratio was less regular, because the shape of the curves
W(Bx) slightly changed with AR.
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4.2. Two-Tone Magnetic Induction

The second test case investigated dealt with the analysis of vector hysteresis processes
obtained with a distorted magnetic induction, which was characterized by a fifth-order
harmonic added to the fundamental tone. The experimental characterization under non-
sinusoidal supply signals aimed to show the material response emulating the working
conditions that are found in several application fields, such as inverter-driven devices and
filtering inductors. In addition, the capability of the NS to reproduce the material behavior
under distorted excitations was also checked by comparison with measured data. This
validation example was important for verifying and stressing the computational stability,
the accuracy, and the robustness of the model.

The trajectories of the magnetic induction vector relative to the concentric loops of SET
3 are displayed in Figure 10, whereas the comparison between the simulated and measured
trajectories of the magnetic field is shown in Figure 11.
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Figure 11. Comparison between simulated and measured trajectories of the H field relative to the
rotational loops under two-tone magnetic inductions for different values of the amplitudes of the
fundamental component B0 = 10 mT (a), B0 = 100 mT (b), B0 = 400 mT (c), and B0 = 600 mT (d).
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The H-field curves simulated by the NS model were quite close to the measured ones
in the entire range of excitations examined, but the modulus of the computed magnetic
field was most of the time slightly higher than the measured one. Furthermore, the
computational flaw observed in the previous test case seemed to no longer occur.

The specific energy loss was evaluated as a function of the peak value of the magnetic
induction modulus from both the measured and the simulated data. The comparison
between the curves computed from the simulated loops and those computed from the
experimental ones is illustrated in Figure 12.
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Figure 12. Comparison of the simulated and measured energy-loss curves relative to the two-tone
magnetic inductions (SET 3).

The energy losses predicted by the NS model were very close to the ones measured
up to Bpk = 345 mT. Above that value the NS tended to overestimate the measured losses
and the maximum percentage deviation found for Bpk = 575 mT was 22%.

4.3. Scalar Magnetic Induction

As final step of our investigation, scalar hysteresis processes were also simulated
by the NS. Since the physical phenomena that take place are actually different respective
to those involved in rotational hysteresis mechanisms, the accurate reproduction of the
scalar loops needed to be modeled separately, for instance by using a dedicated sub-routine
that needs a separate identification procedure. However, it is shown in the following that
some interesting features of the scalar loops, such as the first magnetization curve and the
relative permeability, could be obtained by the standalone neural system. We simulated
the scalar hysteresis loops along the x- and the y-axes setting the sequences of the magnetic
induction Bx(t) and By(t) recorded for SET 4 as input to the NS separately.

From the measured and the simulated data we first determined the first B–H mag-
netization curves along both the 0◦ and the 90◦ directions, connecting the vertices of the
hysteresis loops along the x- and the y-axes, respectively. The first magnetization curves
are shown in Figure 13a, where the slight anisotropy character of the material, already
evidenced by the analysis of the rotational loops, was again confirmed. Indeed, the slope of
the first magnetization curve measured along the y-axis (90◦) was sensibly higher than the
slope of the fist magnetization curve measured along the x-axis (0◦). The data obtained by
the NS simulations correctly predicted the first magnetization curve without any additional
identification procedures.
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Figure 13. (a) First magnetization curve along both the x- and the y-axis computed from either the
simulated or the measured scalar hysteresis cycles. (b) Relative permeability versus the amplitude of
the magnetic induction evaluated along both the x- and the y-axis from either the simulated and the
measured scalar hysteresis cycles.

The relative permeability was then calculated as the slope of the first magnetization
curve divided by µ0 from either the measured or the simulated data along both the x and
the y directions. The results are displayed in panel (b) of the same figure, where µr was
plotted versus the amplitude of the magnetic induction. The magnetic anisotropy of the
material was confirmed by the analysis of the relative permeability, which, along the y-axis,
was up to 1.8 times higher the values found for the x-axis. In addition, the maximum value
of the relative permeability along the y-axis was found for |B| = 200 mT, whereas along
the x-axis the maximum was found for |B| = 50 mT. The substantial agreement between
measured and simulated data was again confirmed.

It has to be specified that purely scalar excitations cannot be thoroughly represented
by the NS, which would always produce an output magnetic field collinear with the input
magnetic induction, and this is not exactly true in practice. For this reason, other features
of the purely scalar hysteresis processes, such as the remanence, the coercivity, and the
energy losses, cannot be conveniently obtained by the NS alone. Nevertheless, it must be
said that in practice purely scalar excitations very rarely occur, and that in most of the cases
magnetic induction trajectories are elliptical, eventually with an aspect ratio with a small
value. These kinds of processes present a level of energy loss that is very close to scalar
ones and can be effectively simulated by the NS, as discussed in Section 4.1.

Let us finally point out that all the simulations presented in the paper were performed
on the same PC equipped with a CPU Intel® Core™ i7—2670 QM @ 2.20 GHz, with 8 GB of
RAM memory and 64 bit operating system. On this machine the computation of the couple
of output values, corresponding to the nth samples of Hx and Hy, requires about 14 millisec-
onds, and the total sample rate of the NS is 143 samples/s. The computational efficiency
could be further improved by programming the model at a lower level of abstraction, and
this is suggested for future implementation of the model in finite element solvers.

5. Conclusions

We presented a thorough vector experimental characterization for an innovative soft
ferromagnetic material based on Fe-Si magnetic powder and distributed air gaps, as well
as a dedicated technique to reproduce measured magnetization processes via a neural
network approach.
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The proposed vector hysteresis model was identified only using a family of eight
quasi-static rotational loops with circular magnetic inductions obtained by the experiments.
It turns out that the minimal training set adopted was sufficient to allow the reproduction of
the elliptic loops for different aspect ratios and other arbitrary excitations with satisfactory
accuracy. The energy losses were also correctly predicted in most of the test cases examined.
For highly distorted excitation waveforms the energy losses simulated by the neural
network-based model were a little higher than the measured ones and shall be considered
as an upper limit.

The simulation of the scalar processes, performed by the NS without any additional
identification procedure, led to the characterization of only partial features of the hysteresis
loops, such as the relative permeability function and the first magnetization curve. Never-
theless, the behavior of the material could be conveniently emulated by applying elliptical
loops with a very small aspect ratio, as usually happens in practice, allowing the thorough
computation of the field trajectories and power losses with high accuracy.

Although the material examined in this work was only weakly anisotropic, we are
confident that the proposed modeling technique, thanks to its flexibility and scalability, can
be extended to other materials with higher magnetic anisotropy or to cover a wider range
of excitations. Indeed, if more complex anisotropy patterns have to be modeled, larger
feedforward neural networks with more neurons, or more hidden layers, or both can be
adopted. In addition, the number of circular crowns can be increased to further partialize
the input domain.
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