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Abstract: Three new 1D cyanido-bridged 3d-4f coordination polymers, {[Gd(L)(H2O)2Fe(CN)6]·H2O}n

(1GdFe), {[Dy(L)(H2O)2Fe(CN)6]·3H2O}n (2DyFe), and {[Dy(L)(H2O)2Co(CN)6]·H2O}n (3DyCo), were
assembled following the building-block approach (L = pentadentate bis-semicarbazone ligand result-
ing from the condensation reaction between 2,6-diacetyl-pyridine and semicarbazide). The crystal
structures consist of crenel-like LnIII-MIII alternate chains, with the LnIII ions connected by the
hexacyanido metalloligands through two cis cyanido groups. The magnetic properties of the three
complexes have been investigated. Field-induced slow relaxation of the magnetization was observed
for compounds 2DyFe and 3DyCo. Compound 3DyCo is a new example of chain of Single Ion Magnets.

Keywords: heterometallic complexes; cyanido-bridged complexes; coordination polymers; single
molecule magnets; lanthanides

1. Introduction

The discovery of slow relaxation of the magnetization phenomena for discrete metal
complexes (Single Molecule Magnets, SMMs) and 1D coordination polymers (Single Chain
Magnets, SCMs) has stimulated the development of an intensive interdisciplinary research
field. Beyond their relevance in fundamental Physics and Chemistry, spectacular applica-
tions in quantum computing and high-density information storage from these molecules
are expected [1]. Although the field of SMMs was initially dominated by transition metal-
based-systems, the focus of research shifted to lanthanides, which increase the energy
barriers of SMMs [2,3]. The lanthanide ions (especially TbIII, DyIII, and HoIII), bring large
magnetic moments and high uniaxial magnetic anisotropy, which are essential prerequisites
for the observation of slow relaxation of the magnetization. While SMMs can be mono- and
oligonuclear (homo- and heteronuclear) complexes, most of the SCMs are constructed from
two different spin carriers (e.g., 3d-3d′, 3d-4f, 2p-3d, and 2p-4f) [4]. Homospin SCMs are
rare and rather serendipitously obtained [5,6]. Examples of lanthanide-based Single-Chain
Magnets are also limited, and most of them result from the association of lanthanide ions
with nitronyl-nitroxide (paramagnetic) ligands [7,8]. Lanthanide ions can be linked to other
paramagnetic metal ions through small bridging ligands, which facilitate the exchange
interactions. The building-block approach, relying on the employment of metalloligands,
represents an excellent strategy to generate heterometallic coordination compounds [9].
Anionic cyanido complexes are very popular in this respect. The self-assembly processes
between [M(CN)6]3− metalloligands and cationic LnIII complexes led to a rich variety of
structural architectures. The assembling complex cations are either solvated LnIII species
or heteroleptic complexes, containing chelating ligands and weakly coordinated anions or
solvent molecules, which can be easily replaced by the cyanido bridge. The dimensionality
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of the resulting coordination polymers is dependent on the number of accessible positions
at the lanthanide ions. For example, nitrogen donor blocking ligands attached to LnIII ions,
such as 1,10-phenanthroline, 2,2′-bipyridine, 2,2′:6′,2′ ′—terpyridine, 2,4,6-tri(2-pyridyl)-
1,3,5-triazine, favor the aggregation of 1D coordination polymers, employing [M(CN)6]3−

as metalloligands [10–18]. When the reactions between the lanthanide salts and the hexa-
cyanido building block occur in dimethylformamide (DMF) or dimethyl sulfoxide (DMSO),
depending on the experimental conditions, discrete species, 1D, 2D, or even 3D coordina-
tion polymers have been obtained [19–24]. By decreasing the number of cyanido groups
within the metalloligand, the formation of low-dimensionality coordination polymers is
favored [25]. Most of these 3d-4f cyanido-bridged complexes show interesting physical
properties, mainly magnetic [26–28] and optical [29–31], and in some cases combined slow
magnetic relaxation and light emission were revealed [32,33].

In this paper, we report on a new family of 1D coordination polymers, which are as-
sembled from [LnL]3+ and [M(CN)6]3− ions (L = bis-semicarbazone ligand, M = Fe, Co). The
pentadentate bis-semicarbazone ligand, L (Scheme 1), was previously used for the synthesis
of both 3d-3d/3d-4d cyanido-bridged discrete [34] and polymeric structures [35–41].
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The new compounds have been characterized by single-crystal X-ray diffraction, and
their magnetic properties have been investigated.

2. Experimental Section
2.1. Materials and Physical Measurements

All reagents and solvents for synthesis were commercially purchased and used with-
out any further purification. The bis-semicarbazone ligand L was synthesized according to
the method reported in the literature [42].

IR spectra were recorded on a FTIR Bruker Tensor V-37 spectrophotometer (KBr pellets)
in the range of 4000–400 cm−1. Elemental analysis was performed on a EuroEA Elemental
Analyzer.

Magnetic Studies: DC magnetic susceptibility data (2–300 K) were collected on pow-
dered samples using a SQUID magnetometer (Quantum Design MPMS-XL), applying a
magnetic field of 0.1 T. All data were corrected for the contribution of the sample holder
and the diamagnetism of the samples estimated from Pascal’s constants [43,44]. The field
dependence of the magnetization (up to 5 T) was measured between 2.0 and 5.0 K. AC
magnetic susceptibility was measured between 2 and 7 K with an oscillating field magni-
tude of Hac = 3.0 Oe and frequency ranging between 1 and 1488 Hz in presence of a dc
field up to Hdc = 4000 Oe. Fitting of the variable parameters and estimation of errors was
performed with lsqcurvefit solver in MATLAB, and jacobian matrix was used to generate
95% confidence intervals on the fitted parameters. Typical examples of this analysis are
presented in Figures S3–S6.

X-ray powder diffraction data were measured on a Proto AXRD benchtop using
Cu-Kα radiation with a wavelength of 1.54059 Å in the range of 5–35º (2θ).
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2.2. Single Crystal X-ray Crystallography

X-ray diffraction data were collected at 293 K on a Rigaku XtaLAB Synergy-S diffrac-
tometer operating with Mo-Kα (λ = 0.71073 Å) micro-focus sealed X-ray tube. The struc-
tures were solved by direct methods and refined by full-matrix least squares techniques
based on F2. The non-H atoms were refined with anisotropic displacement parameters.
Calculations were performed using SHELX-2014 or SHELX-2018 crystallographic software
package [45,46]. Supplementary X-ray crystallographic data in CIF format have been de-
posited with the CCDC with the following reference numbers: 2069217 (1GdFe), 2069215
(2DyFe), and 2069216 (3DyCo). A summary of the crystallographic data and the structure
refinement for crystals 1–3 are given in Table S1.

2.3. Synthesis of Complexes

The three compounds are synthesized following the same general procedure: LnCl3·6H2O
(0.06 mmol) and L (0.06 mmol) in 10 mL H2O were stirred at 80 ◦C for 30 min. The above-
cooled solution was filtered and transferred to a 30 mL test tube. Additional 5 mL of water
was layered over the aqueous solution of the mononuclear complexes, and finally, a 10 mL
H2O solution containing 0.06 mmol K3[Fe(CN)6] or K3[Co(CN)6] was then slowly layered
on top. The whole set up was kept undisturbed and slow diffusion of these two solutions
led, after 2 weeks, to single crystals. The reaction mixture was mechanically stirred and was
filtered off through frit followed by drying under vacuum to obtain a polycrystalline solid.
Single crystals required for the X-ray data collections were picked up from the crystalline
mixtures prior to mechanical stirring.

{[Gd(L)(H2O)2Fe(CN)6]·H2O}n, 1GdFe: Orange crystalline solid, mass (yield): 22 mg
(51 %). Selected IR data (KBr, cm−1): 3457 (m), 3349 (m), 3189 (m), 2147 (mw), 2121 (vs),
1677 (vs), 1629 (m), 1614 (m), 1542 (s), 1461 (mw), 1367 (mw), 1307 (mw), 1266 (mw), 1196
(s), 1174 (mw), 1138 (mw), 1106 (mw), 1004 (w), 815 (mw), 769 (mw), 705 (mw), 656 (mw),
563 (mw), 485 (mw), 417 (mw). Elemental analysis. Calcd. for C17H21N13O5FeGd: C, 29.15;
H, 3.02; N, 25.99%; found C, 29.09; H, 2.96; N, 26.01%.

{[Dy(L)(H2O)2Fe(CN)6]·3H2O}n, 2DyFe: Orange crystalline solid, mass (yield): 27 mg
(60 %). Selected IR data (KBr, cm−1): 3457 (m), 3348 (w), 3236 (mw), 1676 (m), 1631 (m),
1609 (m), 1542 (m), 1461 (m), 1371 (m), 1309 (s), 1267 (s), 1196 (s), 1136 (vs), 1105 (m), 816
(m), 769 (mw), 704 (m), 654 (mw), 570 (mw), 507 (mw), 487 (mw). Elemental analysis. Calcd.
for C17H25N13O7DyFe: C, 27.53; H, 3.40; N, 24.55%; found C, 27.25; H, 3.37; N, 24.69%.

{[Dy(L)(H2O)2Co(CN)6]·H2O}n, 3DyCo: White crystalline solid, mass (yield): 22 mg
(51 %). Selected IR data (KBr, cm−1): 3458 (s), 3349 (s), 3238 (s), 3189 (mw), 2917 (mw),
2849 (w), 2362 (mw), 2165 (mw), 2148 (mw), 2132 (vs), 2091 (w), 1677 (vs), 1631 (m), 1614
(m), 1542 (vs), 1464 (m), 1368 (m), 1309 (mw), 1268 (mw), 1199 (ms), 1174 (mw), 1138 (m),
1107 (m), 1005 (w), 816 (mw), 770 (m), 708 (mw), 656 (mw), 556 (mw), 495 (m), 478 (m),
459 (mw), 422 (m). Elemental analysis. Calcd. for C17H21N13O5CoDy: C, 28.80; H, 2.99; N,
25.69%; found C, 28.64; H, 2.98; N, 25.45%.

3. Results and Discussion
3.1. Synthesis and Structures of the Complexes

The three compounds, {[Gd(L)(H2O)2Fe(CN)6]·H2O}n, 1GdFe, {[Dy(L)(H2O)2Fe(CN)6]·
3H2O}n, 2DyFe, and {[Dy(L)(H2O)2Co(CN)6]·H2O}n, 3DyCo, have been obtained via slow
diffusion of water solutions containing [Ln(L)(H2O)4]Cl3-K3[M(CN)6] in 1:1 molar ratio.
All complexes show C=O and C=N IR absorption peaks in the range of 1654–1657 cm−1,
which indicate the presence of the semicarbazone ligand. The split bands at 2200–2100 cm−1

are assigned to both the monodentate and bridging cyanido groups [47]. The crystalline
phase purity of the samples was confirmed by the good agreement between the PXRD
patterns and the ones simulated using single-crystal data (Figure S1). The FTIR spectra are
displayed in Figure S2.

Complexes 1GdFe and 3DyCo are isostructural, and they crystallize in the orthorhom-
bic space group Pbca with one crystallization water molecule/formula unit. Complex
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2DyFe crystallizes in the monoclinic system, space group P21/c, with three lattice water
molecules/formula unit. In all complexes, the metal ions have similar coordination environ-
ments, and the topology of the heterometallic chains is identical.

Compounds 1GdFe and 3DyCo consist of heterometallic chains with alternating distri-
butions of the 3d and 4f metal ions. Since the two compounds are isostructural, we will
describe only the crystal structure of the compound 1GdFe. The general appearance of the
chains is crenel-like, due to the fact that the [Fe(CN)6]3− metalloligand acts as a bridge
trough two cis cyanido groups and the two neighboring connecting [Fe(CN)6]3− moieties are
placed on the same side of the organic ligand coordinated to the lanthanide ion (Figure 1).
One of the two water molecules coordinated to the lanthanide ion is involved in intra-chain
hydrogen interaction with a cyanido group from a [Fe(CN)6]3− metalloligand coordinated
to a neighboring lanthanide ion. The chains are running along the crystallographic a axis.
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Figure 1. Perspective view of the 1D coordination polymer in compound 1GdFe (symmetry codes: ′ =
−0.5 + x, 0.5 − y, 1 − z; ′ ′ = 0.5 + x, 0.5 − y, 1 − z).

The lanthanide ions are nine-coordinated by the pentadentate organic ligand (O1,
O2, N3, N4, and N5), two nitrogen atoms arising from the cyanido bridges (N8, N13′;
symmetry code: ′ = −0.5 + x, 0.5 − y, 1 − z), and two aqua ligands (O3, O4). The Ln-N
bond lengths with the organic ligand are in the range of 2.584(6) − 2.598(6) Å for 1GdFe
and 2.562(2) − 2.574(2) for 3DyCo, respectively, while for the cyanido groups are Gd1-N8 =
2.534(6), Gd1-N13′ = 2.566(6), respectively, Dy1-N8 = 2.519(3) and Dy1-N13′ = 2.544(3). The
Ln-O bond lengths are slightly longer with the organic ligand than aqua ligands: Gd1-O1
= 2.423(5), Gd1-O2 = 2.406(5), Gd1-O3 = 2.330(5), Gd1-O4 = 2.375(5), Dy1-O1 = 2.398(2),
Dy1-O2 = 2.382(2), Dy1-O3 = 2.308(2), Dy1-O4 = 2.3518(19) Å. The coordination geometry
of the gadolinium ion can be described as spherical capped square antiprism, according to
the calculations made with SHAPE software (Table S2) [48].

The O3 aqua ligands are further connected by hydrogen bonding to neighboring chains
generating a 2D supramolecular architecture in the crystallographic ac plane (Figure 2). The
distances for the hydrogen interactions are: (O3)H1O···N9′ ′ = 1.85 and (O3)H2O···N11′ ′ ′ =
1.93 Å, while the corresponding angles are: O3-H1O···N9′ ′ = 173.4 and O3-H2O···N11′ ′ ′ =
170.6º (symmetry codes: ′ ′ = 0.5 + x, 0.5 − y, 1 − z; ′ ′ ′ = x, 0.5 − y, −0.5 + z).

The extension of the supramolecular architecture to 3D is also mediated by hydrogen
bond interactions involving the second aqua ligand, the crystallization water molecules
and cyanido groups of the anionic metalloligand (Figure 3). Each O4 coordinated water
molecule is involved as donor in hydrogen interactions with two crystallization water
molecules. Each crystallization water molecule is acceptor for two hydrogen interac-
tions with two coordinated water molecules from neighboring layers and donor for two
cyan groups also from the two neighboring layers. The distances for these hydrogen
interactions are: (O4)H4O···O5 = 1.95, (O4)H3O···O5i = 1.92, (O5)H5O···N10 = 2.18 and
(O5)H6O···N12ii = 2.14 Å, while the corresponding angles are: O4-H4O···O5 = 166.7, O4-
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H3O···O5i = 161.8, O5-H5O···N10 = 158.7 and O5-H6O···N12ii = 169.7º (symmetry codes:
i = 1 − x, −y, 1 − z; ii = 1.5 − x, −0.5 + y, z).
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Compound 2DyFe consists also of heterometallic chains running in this case along the
crystallographic b axis, and crystallization water molecules. The 1D chains are formed
in a similar manner by connecting [Dy(L)(H2O)2]3+ complex cations by the [Fe(CN)6]3−

metalloligands, which employ two cis cyanido groups for bridging (Figure 4). The DyIII

ion is nine-coordinated by the pentadentate ligand (O1, O2, N3, N4, and N5), two nitrogen
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atoms arising from the cyanido bridges (N8, N13), and two aqua ligands (O3, O4). The
coordination geometry of the dysprosium ion is also spherical capped square antiprism
(Table S2). The Dy-N and Dy-O bond lengths are in the range of 2.503(2)–2.553(2) and
2.3298(18)–2.3783(13) Å, respectively. The two Dy-N bond distances (nitrogen atoms arising
from the bridging cyanido groups) are Dy1-N8 = 2.556(2) and Dy1-N13′ = 2.533(2) Å
(symmetry code: ′ = 1 − x, −0.5 + y, 1.5 − z). The FeIII ions show a slightly distorted
octahedral geometry with Fe1-C bond lengths ranging from 1.929(3) to 1.957(3) Å. Each
{Dy(L)(H2O)2} module links two {Fe(CN)6} fragments in cis positions (the Dy···Fe···Dy
angle is 95.78◦), and each {Fe(CN)6} metalloligand connects two DyIII ions, resulting in a
crenel-like chain structure.
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Figure 4. Perspective view of the 1D coordination polymer in compound 2DyFe. The inset shows a detail of the coordination
environment of the DyIII ion (symmetry codes: ′ = 1 − x, −0.5 + y, 1.5 − z; ′ ′ = x, −1 + y, z).

The O3 aqua ligand is also involved in intra- and interchain hydrogen bonding gen-
erating an analogous 2D supramolecular architecture in the ab crystallographic plane
(Figure 5). The distances for the hydrogen interactions are: (O3)H1O···N12′ ′ = 1.88 and
(O3)H2O···N10′ ′ ′ = 2.05 Å, while the corresponding angles are: O3-H1O···N12′ ′ = 172.4 and
O3-H2O···N10′ ′ ′ = 167.9º (symmetry codes: ′ ′ = x, −1 + y, z; ′ ′ ′ = 2 − x, −0.5 + y, 1.5 − z).
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The main differences between crystals 1GdFe and 2DyFe appear in hydrogen interactions
established between the supramolecular layers. Compound 2DyFe has two more crystal-
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lization water molecules per unit comparing with the crystals 1GdFe and 3DyCo. The O4
coordinated water molecule is also involved as donor in hydrogen interactions with two
crystallization water molecules, O5 and O5i, (Figure 6). Each of these crystallization water
molecules is acceptor for two hydrogen interactions with two coordinated water molecules
from neighboring layers and acts as donor for only one cyanido group (O5 is donor for N11i

atom). The other two crystallization water molecules are involved in hydrogen bonding
with one NH2 group and one cyanido group (O6), respectively, and two cyanido groups
(O7). The distances for the hydrogen interactions are: (O4)H4O···O5 = 1.91, (O4)H3O···O5i =
2.02, (O5)H5O···N11i = 2.28, (N7)H5N···O6 = 2.16, (O6)H8O···N12iii = 2.28, (O7)H9O···N9ii

= 2.15, and (O7)H10O···N10i = 2.20 Å, while the corresponding angles are: O4-H4O···O5 =
174.4, O4-H3O···O5i = 171.4, O5-H5O···N11i = 146.7, N7-H5N···O6 = 162.3, O6-H8O···N12iii

= 166.1, O7-H9O···N9ii = 153.9, and O7-H10O···N10i = 148.8 º (symmetry codes: i = 1 − x, 1
− y, 1 − z; ii = 1 − x, −0.5 + y, 1.5 − z; iii = x, 1.5 − y, −0.5 + z).
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The shortest intramolecular Fe···Gd distances in 1GdFe are 5.513 and 5.557 Å, while the
intramolecular Dy···Fe distances in 2DyFe are 5.542 and 5.494 Å. Selected bond distances
and angles for compounds 1–3 are listed in Table S3.

3.2. Magnetic Properties of the Complexes

Static magnetic characterizations. The magnetic susceptibility data for compounds 1–
3 were measured on polycrystalline samples in the temperature range of 2–300 K as shown
in Figure 7, in the form of χMT vs. T curves. The observed χMT values at 300 K for 1GdFe,
3DyCo, and 2DyFe are of 8.265, 15.454, and 16.305 cm3 mol−1K, which are slightly higher
than the expected values for a non-interacting spin system of one GdIII (7.88 cm3 mol−1 K,
S = 7/2, 8S7/5, g = 2.00), DyIII (14.17 cm3 mol−1 K, S = 5/2, 6H15/2, g = 4/3) [49], and one
low-spin S = 1

2 FeIII ion or one diamagnetic CoIII ion [44]. Upon cooling, the χMT values
stay almost constant in the high temperature region, while at low temperatures, the χMT
values show a rapid decrease and reach the values of 6.833, 12.722, and 11.210 cm3 mol−1 K,
respectively, at 2.0 K. In the case of 1GdFe, the decrease in χMT with temperature may be
associated with FeIII-GdIII antiferromagnetic interactions along the heterometallic alter-
nating chain. The possible presence of intermolecular interactions can also contribute to
this decrease. The expected ferrimagnetic behavior (i.e., the characteristic minimum on the
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χMT vs. T curve) is not observed, probably due to the small magnitude of the exchange
interactions along the chain. The evolution of the temperature dependence of the magnetic
susceptibility for 3DyCo is exclusively defined by the presence of strongly anisotropic DyIII

ions, which are isolated by diamagnetic low spin CoIII ions. The decrease in χMT with
the temperature is due to the depopulation of MJ (Stark) sublevels of the DyIII centers in
3DyCo [50]. This effect is certainly present in the case of compound 2DyFe. Additionally, a
FeIII-DyIII magnetic coupling along the chain can be expected. In the case of 2DyFe, the evo-
lution of χMT shows a more important slope compared to compound 3DyCo (Figure 7), with
a lower value of susceptibility at 2.0 K (11.210 cm3 mol−1 K). This indicates the presence of
some antiferromagnetic impact, which contributes to the observed decreasing χMT values.
For 2DyFe, the existence of magnetic interactions similar to those in 1GdFe also suggests the
formation of a ferrimagnetic chain, which, associated with strong magnetic anisotropy,
could lead to a Single Chain Magnet. Unfortunately, as in the case of 1GdFe, the increase
in χMT at low temperatures and the characteristic minimum were not detected for 2DyFe
(Figure 7). This behavior is probably due to the very small antiferromagnetic interactions
along the chain. The magnetization measurements (Figure S3) support the presence of an
important magnetic anisotropy in 2DyFe and 3DyCo.
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Figure 7. Temperature dependence of χMT vs. T for complexes 1GdFe, 2DyFe, and 3DyCo.

Dynamic magnetic characterizations. Dynamic magnetic properties of the compounds
1GdFe, 2DyFe, and 3DyCo were studied by measuring the temperature and field dependence
ac (alternative current) magnetic susceptibility. Compound 1GdFe does not have any mani-
festation of the out-of-phase component (χ′ ′ac) of the ac magnetic susceptibility at 2 K and
zero dc (direct current) field. After applying small dc field (2000 Oe) no modification was
observed in χ′ ′ac component of ac susceptibility.

For 3DyCo, no signal was observed under zero dc field at 2.0 K, in χ′ ′ac component of ac
susceptibility. After applying of small dc fields (up to 4000 Oe), a frequency dependent out-
of-phase signal appears (Figure 8b) and has a rich evolution in function of the field. Such
behavior is consistent with presence of strongly anisotropic paramagnetic centers DyIII

and indicates the presence of field-induced slow magnetic relaxation. The intensity of the
out-of-phase signals gradually increases till about 2000 Oe, and then, it slightly decreases.
To investigate the nature of slow magnetic relaxation, additional ac susceptibility data were
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collected under fixed dc field (2000 Oe) and stable temperatures between 2.0 and 5.0 K (with
a 0.2 K increment)—Figure 8d–f. The temperature sweeping of the ac susceptibility shows
the important evolution of the χ′ ′ac component and supports the presence of field-induced
slow magnetic relaxation in 3DyCo. Since the CoIII ion is diamagnetic, compound 3DyCo can
be described as being a chain of Single Ion Magnets.
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Figure 8. Field dependence (left, a,b) and temperature dependence (right, d,e) of ac susceptibility (Hac = 3.0 Oe) and
Cole–Cole plots, (c,f), for 3DyCo at the indicated temperatures and fields. The solid lines represent the best fits according to
the generalized Debye model for two relaxations processes (Equations (S1) and (S2)).

A similar strategy of measurements was used in the dynamic analysis of 2DyFe. As
in the case of 3DyCo, at T = 2.0 K and zero dc field, no signal was detected in the out-of-
phase component of the ac susceptibility. The signals appear when a small magnetic dc
field was applied and has similar evolutions as in the case of 3DyCo (Figure S8a–c). A dc
field of 3000 Oe was used to perform the temperature sweeping measurements of the ac
susceptibility in the case of 2DyFe (Figure S8d–f).

For both compounds (2DyFe and 3DyCo), the visual analysis of the out-of-phase suscep-
tibilities, as well of the χ′ ′ac vs. χ′ac plots (Cole–Cole plots), suggests the presence of at least
two distinct relaxation processes. In consequence, the ac susceptibility data (field sweeping
and temperature sweeping measurements) for 3DyCo and 2DyFe were evaluated with gener-
alized (extended) Debye equations combining two-relaxation processes [51–53]. The two
relaxation times (τ1, and τ2,) and two distribution parameters (α1, and α2) occur along with
two isothermal susceptibilities (χT1 and χT2) and one common adiabatic susceptibility (χs)
(see Equations (S1) and (S2)). The deconvolution of two relaxations process is presented in
Figures S4–S7. Variable parameters derived from the best fits of the ac susceptibility are
shown in Figures S9–S12.

In both compounds, the first relaxation process LF (Low Frequency) is well defined,
while the second HF (High Frequency) process has large errors on the variable parameters.
The distributions of relaxation times for the LF process are rather broad (α1 = 0.3 ÷ 0.5). The
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extracted temperature and field dependence of relaxation times for 2DyFe and 3DyCo can be
modulated based on four relaxation mechanisms according to the following equation [54–58]:

τ−1
T/H(T, H) =

Q1

1 + Q2H2 + τ−1
0 exp

(
−

Ue f f

kT

)
+ AH4T + CTn. (1)

The first term represents the Quantum Tunneling of Magnetization (QTM), the sec-
ond term corresponds to Orbach, the third to Direct, and the last one to Raman process;
moreover, H = applied dc magnetic field and T = temperature. In order to constrain the
variable parameters and avoid the overparameterization problem, temperature and field
dependence of relaxation times were fitted simultaneously [56] (vector of data: τ−1 in s−1,
T in Kelvin, and H in kOe). Only LF signals will be discussed below, as the second process
(HF) is poorly defined. Different combinations of the four mechanisms of relaxation have
been used in order to simulate the evolution of the relaxation times. For the LF signals,
with both compounds, the contribution of Quantum Tunneling of Magnetization (QTM)
is indispensable to simulate the relaxation data. The continuous decreasing trend of τ−1

vs. applied field (H) excludes the presence of significant contribution of Direct relaxation
mechanism. The other contributions in relaxation times can be Raman and/or Orbach,
which have the same increasing evolutions with temperature variation [57]. In this re-
stricted range of temperature, it is difficult to separate these two components. In order to
have some information regarding the manifestation of these mechanisms, the comparative
fits on the temperature dependence of relaxation time for 2DyFe and 3DyCo have been done
(Figures S13–S15). Both mechanisms can reproduce the time of evolution. The quality of
the Orbach mechanism is slightly better. It should be mention here that the distribution
parameters (α) have important impact on uncertainties relaxation time [59] and can also
be an argument in favor of one or another mechanism. The analysis presented in Figures
S13–S15 shows the similarity in uncertainties of relaxation times for both mechanisms.
Based on this argument and a low temperature range (2–4 K) of relaxation data for 3DyCo
and 2DyFe, as well the traditional representation of relaxation phenomena in SMM, our
analysis of LF relaxation process is limited to two contributions: QTM and Orbach. The
best fit for LF relaxation processes based on the two mechanisms has been obtained for the
following sets of parameters:

3DyCo: Ueff/k = 7.1 K; τ0 = 7.5 × 10−5 s; Q1 = 121 s−1; Q2 = 1.05 kOe−2

2DyFe: Ueff/k = 10.8 K; τ0 = 5.9 × 10−4 s; Q1 = 200 s−1; Q2 = 0.05 kOe−2.

The obtained relaxation parameters are similar for compounds 2DyFe and 3DyCo. Due
to the diamagnetic CoIII ions in 3DyCo, the slow magnetic relaxation is solely associated with
the anisotropic DyIII ions. The existence of intrachain magnetic interaction in 2DyFe does
not change significantly the energy barrier of slow relaxation of the magnetization (see the
temperature dependence in Figure 9), but affects more the field dependence, which becomes
much more redistributed. This probably can be associated to redistribution/mixing the
different energy levels in the 2DyFe as a result of the small antiferromagnetic interaction
along the chain and of intermolecular (interchain) interaction. The splitting of MJ (Stark)
sublevels of the DyIII centers under variation of the magnetic field also contributes to
this redistribution. As in the case of static magnetic measurements, these competitive
interactions cannot be quantified at the reported range of temperatures.

In a recent paper, Ma et al. report on a family of discrete, tetranuclear 3d-4f com-
plexes assembled from a cationic lanthanide complexes and [M(CN)6]3− metalloligands
(M = Fe, Co), the ligand attached to the lanthanide(III) ions (Tb, Dy, and Ho) being also
pentadentate [60]. The field-induced slow relaxation of the magnetization, with a low
energy barrier (11.17 K), was observed only with the [Dy2Co2] derivative. The presence of
the paramagnetic FeIII ion does not improve the SMM behavior: for the [Dy2Fe2] derivative,
the slow relaxation is not observed even by applying dc fields.



Magnetochemistry 2021, 7, 57 11 of 14Magnetochemistry 2021, 7, x FOR PEER REVIEW 12 of 15 
 

 

  
Figure 9. Field (up) and temperature (down) dependence of relaxation times for 3DyCo and 2DyFe. 
The solid lines correspond to the fit using QTM and Orbach mechanisms for the magnetic relaxa-
tion. 

4. Conclusions 
In this paper, we have shown that the pentadentate bis-semicarbazone ligand, L, gen-

erates robust cationic LnIII complexes, which are useful modules for constructing hetero-
metallic coordination polymers. The metalloligands, [M(CN)6]3−, employ two cis cyanido 
groups as bridges against the LnIII ions, resulting in a wave-like chain topology for the 
three compounds. The investigation of the magnetic properties reveals that the two DyIII-
containing coordination polymers exhibit slow relaxation of the magnetization, with ra-
ther low energy barriers. From the magnetic point of view, compound 3DyCo behaves like 
a chain of Single Ion Magnets. These results open interesting perspectives for the synthesis 
of new cyanido-bridged 3d-4f complexes, using not only homoleptic but also heteroleptic 
cyanido tectons, as well as other types of metalloligands. Further work is in progress in 
our laboratory. 

Supplementary Materials: crystallographic data (single crystal and PXRD), bond distances and an-
gles, infrared spectra; magnetic data; treatment of the ac magnetic data. 

Author Contributions:  Conceptualization, D. D. and M. A.; methodology, M. A., D. D. and G. N.;  
formal analysis, G. N. and A. M. M.; investigation, D. D., A. M. M.and G. N.; writing—original draft 
preparation, D. D. and M. A.; writing—review and editing, M. A. and G. N. All authors have read 
and agreed to the published version of the manuscript.” 

Funding:  MAGMOLMET, grant ID: 867445 

Acknowledgments: D.D. is grateful to the European Union’s Horizon 2020 research and innovation 
programme, for financial support (MAGMOLMET, grant ID: 867445). 

Conflicts of Interest:  The authors declare no conflicts of interest." 

1

10

100

1000

0 1 2 3 4 5
H (kOe)

τ-1
(s

-1
)

1

2

3

4

5

6

0.2 0.3 0.4 0.5 0.6

-ln
(τ

)

1/T (K-1)

Figure 9. Field (up) and temperature (down) dependence of relaxation times for 3DyCo and 2DyFe.
The solid lines correspond to the fit using QTM and Orbach mechanisms for the magnetic relaxation.

4. Conclusions

In this paper, we have shown that the pentadentate bis-semicarbazone ligand, L, gener-
ates robust cationic LnIII complexes, which are useful modules for constructing heterometal-
lic coordination polymers. The metalloligands, [M(CN)6]3−, employ two cis cyanido groups
as bridges against the LnIII ions, resulting in a wave-like chain topology for the three com-
pounds. The investigation of the magnetic properties reveals that the two DyIII-containing
coordination polymers exhibit slow relaxation of the magnetization, with rather low energy
barriers. From the magnetic point of view, compound 3DyCo behaves like a chain of Single
Ion Magnets. These results open interesting perspectives for the synthesis of new cyanido-
bridged 3d-4f complexes, using not only homoleptic but also heteroleptic cyanido tectons,
as well as other types of metalloligands. Further work is in progress in our laboratory.
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