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Abstract: Electrodeposition under magnetic fields (magnetoelectrodeposition; MED) can induce
surface chirality on copper films. The chiral signs of MED films should depend on the magnetic field
polarity; namely, the reversal of the magnetic field causes the opposite chiral sign. This represents
odd chirality for the magnetic field polarity. However, odd chirality was broken in several MED
conditions. This paper makes a survey of breaking of odd chirality in the MED conditions such as low
magnetic fields, specific adsorption of chloride ions, micro-electrode, and cell rotation. These results
indicate that the ordered fluctuation of magnetohydrodynamic micro-vortices induces the breaking
of odd chirality and that the random fluctuation results in the disappearance of surface chirality.

Keywords: electrodeposition; magnetic field; surface chirality; micro-MHD vortex; symmetry breaking;
fluctuation

1. Introduction

The imposition of magnetic fields on electrochemical cells causes magnetohydrody-
namic (MHD) flows in electrolytic solutions [1–12]. One of the most remarkable effects of
MHD flows is to induce spiral and helical structures of metals [13–23], metal silicates [24,25],
and conducting polymers [26,27] in magnetoelectrodeposition (MED). The chirality of these
structures depended on the magnetic field polarity, namely, the reversal of imposed mag-
netic field brought about the opposite chirality of electrodeposits. This relation represents
“odd chirality” for the magnetic field polarity [28].

The above chiral structures were on macroscopic scales of mm and cm. Chiral struc-
tures on molecular scales have been explored in the MED methods [29–32]. We found
that the MED of metal films induces the surface chirality of silver [33,34] and copper
films [35,36], which recognized the molecular chirality of glucose [33], amino acids [35],
and tartaric acid [37].

The chiral surface formation in the MED processes takes place at the configuration
where the imposed magnetic field is perpendicular to the working electrode surface.
Figure 1 shows two types of MHD flows around the electrode [38–40]. With the elapse of
time during electrodeposition, the non-equilibrium fluctuation causes bumps and pits on
the film surfaces. Micro-MHD vortices are excited at such local sites, and the adjoining
vortices have opposite directions to each other, forming symmetrical self-organized states.
The MED film surfaces have circular or network structures reflecting the micro-MHD
vortices [35,38,41]. On the other hand, another macroscopic flow is excited around the
electrode edge, where the ionic currents are not parallel to the magnetic field. This is termed
a vertical MHD flow, which affects the micro-MHD vortices. The vertical MHD flow makes
the cyclonic vortices stable, whereas it makes anticyclonic ones unstable [42,43]. There exist
a number of screw dislocations on the film surfaces of electrodeposits of copper [44], which
could be a chiral site. The micro-MHD vortices affect the formation of screw dislocations.
The vertical MHD flow breaks the symmetry of the self-organized state of micro-MHD vor-
tices, leading to chiral surface formation [39]. The direction of vertical MHD flow depends
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on the magnetic field polarity; thus, the MED film surfaces should have odd chirality for
the magnetic field polarity.

B

Micro-MHD vortex

Electrode

Vertical MHD flow
i

i i

Figure 1. Self-organized state of micro-MHD vortices under the vertical MHD flow in a MED process
with vertical magnetic fields B.

In the MED studies of copper films, the odd chirality has been observed at a high
magnetic field of 5 T with a usual size (3 mm) electrode [35,45]. The rigid self-organized
states of micro-MHD vortices under the vertical MHD flows can be formed in such a
condition. Breaking of odd chirality has been found in the MED with an additive of potas-
sium chloride even at 5 T [45]. The specific adsorption of chloride ions on the copper film
surfaces disturbs the rigid formation of the micro-MHD vortices. This result suggests that
the fluctuation of micro-MHD vortices could play a significant role in the breaking of odd
chirality. This paper reviews the odd chiral behaviors of MED films in various conditions
disturbing the micro-MHD states; low magnetic fields [46], chloride additives [45], micro-
electrodes [47,48], and cell rotation [49,50]. The overview of MED conditions causing the
breaking of odd chirality would lead to intrinsic factors for the chiral symmetry breaking.

Chiral surfaces could be used as a chiral catalyst, which plays an indispensable role in
the pharmaceutical industry. In the early stage of earth, chiral surfaces of minerals could
serve as catalytic reaction fields for the formation of amino acids in the molecular evolution
toward the origin of life [51]. Therefore, it is of great significance to study the chiral surface
formation and the breaking of chiral symmetry. The MED processes provide attractive
experimental cases for such studies.

2. Materials and Methods
2.1. Experimental Methods of MED

The basic method of MED for chiral surface formation is depicted in Figure 2. The
electrochemical cell was placed at the bore center of a solenoidal cryocooled supercon-
ducting magnet (Sumitomo Heavy Industries Ltd., Tokyo, Japan), which can generate
magnetic fields of up to 5 T in a 220 mm room-temperature bore. The magnetic fields (B)
were imposed perpendicularly to the working electrode surface, and they are parallel (+B)
or antiparallel (−B) to the ionic currents. The temperature within the magnet bore was
thermoregulated at 25 ◦C by water circulation.
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Figure 2. Configuration of an electrodeposition cell in a superconducting magnet in the MED
experiments [35]. WE: a working electrode, CE: a counter electrode, and RE: a reference electrode.

The surface chirality was studied in the MED films of copper. The electrodeposition
cell consisted of three electrodes: a working electrode was a polycrystalline platinum disc
with a diameter of 3 mm (ALS Co., Ltd., Tokyo, Japan). A counter electrode was a copper
plate, and a reference one was a Ag|AgCl|3 M (M = mol dm−3) NaCl electrode. When
the effects of micro-electrodes were examined, platinum micro-discs with diameters of 100
and 25 µm (ALS Co., Ltd., Tokyo, Japan) were used as a working electrode. The electrolytic
solution was a 50 mM CuSO4 + 0.5 M H2SO4 aqueous solution. When the effects of chloride
additives were examined, KCl was added to the electrolytic solution with concentrations of
0.10–0.26 mM.

The MED of copper films was conducted on a galvanostatic mode with constant
currents of 5–40 mA cm−2. The total passing charge was always 0.4 C cm−2, then the film
thickness was approximately 150 nm. The MED films prepared in +5T, for instance, were
termed +5T films.

2.2. Experimental Methods of Rotational MED (RMED)

The cell rotation in the MED process is one of the most efficient methods for chiral
surface formation. The electrodeposition cell was rotated in the magnet bore by a geared
motor system with a bevel gear and a non-magnetic stainless-steel shaft. The detailed
schematic is reported in the previous paper [50]. The rotational manners were 0.5–6 Hz
frequencies and the clockwise (CW) or anticlockwise (ACW) directions. To suppress the
influence of vertical MHD flows, the copper working electrode was embedded in a tube
wall. The RMED was conducted on a potentiostatic mode at a constant potential of −0.45 V
(vs. Cu) with various rotational frequencies. The RMED films prepared in ±5T with the
CW and ACW 6 Hz rotations, for instance, are termed {5T,6 Hz} films.

2.3. Estimation of Surface Chirality

The surface chirality of MED films was estimated by the voltammetric measurements
of the enantiomers of alanine on the MED film electrodes [52–55]. The voltammograms
of 20 mM L- and D-alanines were measured in a 0.1 M NaOH aqueous solution with a
potential sweep rate of 10 mV s−1 just after the MED film preparation.
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The enantiomeric excess (ee) ratio, which serves as a chirality index, was defined as
Equation (1) in terms of voltammetric parameters [45].

ee = (ipL − ipD)/(ipL + ipD), (1)

where ipL and ipD represent the peak currents of L- and D-alanines, respectively. The
positive and negative signs of ee ratios stand for L- and D-activity of the MED films,
respectively.

3. Results and Discussion
3.1. Odd Chirality and Effects of Low Magnetic Fields

The formation of the self-organized state of micro-MHD vortices in Figure 1 depends
on the magnetic field. The rigid self-organized state can be formed in 5 T on a usual size
(3 mm diameter) electrode, exhibiting the odd chirality of 5T films [45]. Figure 3a shows the
voltammograms of L- and D-alanines on the +5T film electrodes prepared at the deposition
current of 20 mA cm−2. Both voltammograms show current peaks around 0.7 V, where
alanine molecules are oxidized on the copper film electrodes [56]. The +5T film surfaces
recognize the molecular chirality of alanine and exhibit the difference in peak currents. The
greater peak current of L-alanine represents the L-activity of the film surface, meaning that
the number of L-active sites is greater than that of D-active sites. On the other hand, the
−5T film exhibits the D-activity, as shown in Figure 3b.
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Figure 3. Voltammograms of alanine enantiomers in a 0.1 M NaOH aqueous solution on the MED
film electrodes: (a); +5T films and (b); −5T films. Adopted from [46].

The ee ratios of MED films were plotted as a function of deposition current (ee ratio
profile). Figure 4a,b show the ee ratio profiles of the +5T and −5T films, respectively. The
+5T films show the D-activity at the low current region and L-activity at the high current
one. On the contrary, the −5T films show the L-activity at the low current region and D-
activity at the high current one. These facts can be described as Equation (2) and represent
clear odd chirality for the magnetic field polarity.

ee(B) ≈ −ee(−B). (2)

As the magnetic field decreases, the weaker Lorentz force causes the fluctuation of
micro-MHD vortices and disturbs the rigid formation of the self-organized micro-MHD
state. Figure 4c,d show the ee ratio profiles of the +2T and −2T films, respectively [46].
Both films exhibit D-activity around 9 mA cm−2, and this result represents the breaking of
odd chirality. Similar broken odd chirality was observed in the 2.5T films [46]. When the
magnetic field was lower, the micro-MHD vortices could not be excited enough to form the
self-organized state; thus, the surface chirality disappeared in the 1T films.
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films. Blue and red curves are a guide for the eyes. Adopted from [46].

3.2. Effects of Chloride Additives

Chloride ions are a typical inorganic additive in the electroplating of copper films
for the formation of flat and smooth surfaces through the specific adsorption on the film
surfaces [57–60]. Such adsorption can be expected to disturb the self-organized micro-MHD
state, as shown in Figure 5, and affect the surface chirality of MED films.
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Figure 5. Schematic of the specific adsorption of chloride ions and the fluctuation of micro-MHD
vortices on copper film surfaces.

The previous paper [45] reported the influence of chloride additives on the chiral
behaviors of 5T films at the chloride concentration of 0.1–0.26 mM. The 5T films showed
odd chirality at 0.10 mM, breaking of odd chirality at 0.13 and 0.20 mM, and achirality at
0.26 mM.

Here we show the combined effects of chloride additives and low magnetic fields
on the chiral behaviors of MED films. Figure 6 shows the ee ratio profiles of 5T, 3T, and
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2T films at the chloride concentration of 0.10 mM. The +5T films show D-activity in the
whole current region (Figure 6a), and the −5T films show the L-activity (Figure 6b). This
represents clear odd chirality. With decreasing magnetic field, the +3T films show D-activity
in the low current region and L-activity in the high region (Figure 6c), whereas the −3T
films show almost achirality (Figure 6d). Thus, the 3T films represent the breaking of odd
chirality. At the lower magnetic field, both +2T and −2T films show achirality (Figure 6e,f).
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for eyes.

Similar MED experiments were conducted at the chloride concentration of 0.2 mM. The
5T films showed breaking of odd chirality, and the 4T, 3T, and 2T films showed achirality.
The chloride adsorption induces the fluctuation of micro-MHD vortices and disturbs odd
chirality even in the 5T films. The superimposed effects of low magnetic fields and chloride
adsorption led to the random fluctuation of micro-MHD vortices, resulting in achirality in
the 4T, 3T, and 2T films.

The chiral symmetry is mapped on the axes of the magnetic field and chloride concen-
tration C, as shown in Figure 7, where [O], [B], and [A] represent odd chirality, breaking of
odd chirality, and achirality, respectively. The appearance of odd chirality is confined in a
zone at high magnetic fields and low chloride concentrations, where the rigid self-organized
state of micro-MHD vortices could be formed. The breaking of odd chirality takes place in
the outer zone of odd chirality. This zone is also confined in specific conditions of slightly
lower magnetic fields and slightly higher concentrations, where there exists the fluctuation
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of micro-MHD vortices. Such fluctuation is not random but “ordered” so that the chiral
surfaces can be formed. There is a wide zone of achirality, where both lower magnetic fields
and higher chloride concentrations cause the random fluctuation of micro-MHD vortices.
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3.3. Effects of Micro-Electrode

As the electrode size decreases to µm scales, the vertical MHD flows cover the whole
area of the working electrode (Figure 8) and have considerable influence on the micro-
MHD vortices. The chiral behaviors of MED films were examined on the electrodes with
diameters of 100 and 25 µm [47,48].
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Figure 9 shows the ee ratio profiles of 4T, 3T, and 1T films on a 100 µm electrode. Both
+4T and −4T films show L-activity in the current region of 5–15 mA cm−2 (Figure 9a,b).
This broken odd chirality is due to the strong vertical MHD flows on the micro-electrode at
4T. This effect could be reduced in the lower magnetic fields. In Figure 9c,d, the +3T films
show L-activity in the current region of 8–17 mA cm−2, and the −3T films show D-activity
in the same region, representing clear odd chirality. When the magnetic field is lower, in
the current region of 5–10 mA cm−2 in Figure 9e,f, the +1T films show L-activity, and the
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−1T film shows D-activity, representing odd chirality. On the other hand, both +1T and
−1T films show D-activity around 15 mA cm−2, representing broken odd chirality. Odd
chirality and its breaking coexist in the 1T films. This broken odd chirality is due to the
effects of low magnetic fields.
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films, (c); +3T films, (d); −3T films, (e); +1T films, and (f); −1T films. Blue and red curves are a guide
for the eyes. Adopted from [48].

Similar MED experiments were conducted on a 25 µm electrode. The 5T films showed
achirality, the 2T and 3T films showed broken odd chirality, and the 1T films showed odd
chirality. This indicates that the drastic effects of vertical MHD flows on the 25 µm electrode
cause the random fluctuation of micro-MHD vortices in the 5T films.

The chiral symmetry was mapped on the axes of magnetic field and electrode diameter
d (logarithmic scales) as shown in Figure 10, which includes the results on a 3 mm electrode
in Figure 7 (at C = 0 mM). Odd chirality appears on a confined zone, which is a diagonal
area on the map. Breaking of odd chirality takes place in the outer zones of odd chirality.
There are two types depending on the origin of fluctuation in the micro-MHD vortices:
the red-B is induced by the vertical MHD flows on the micro-electrodes, and the pink-B is
induced by the low magnetic fields. Achirality is in the outer zones of broken odd chirality.
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3.4. Effects of Cell Rotation

The rotation of electrodeposition cells in magnetic fields brings about the precession of
micro-MHD vortices through the Coriolis force, as shown in Figure 11, and such precessions
are asymmetric between the clockwise and anticlockwise vortices. Thereby, the rotational
MED (RMED) can produce chiral surfaces, and their chiral signs depend on both the
magnetic field polarity and the rotational direction [50].
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Figure 11. Effects of cell rotation on the micro-MHD vortices.

Figure 12 shows the voltammograms of alanine enantiomers on the {4T, 2 Hz} film
electrodes. The two CW films show L-activity (Figure 12a,c), and the two ACW films show
D-activity (Figure 12b,d). This means that the chiral signs of {4T, 2 Hz} films are controlled
by the rotational direction, namely, they exhibit odd chirality for the rotational direction.
On the other hand, the chiral signs of {3T, 6 Hz}, {2T, 4 Hz}, and {2T, 6 Hz} films also showed
[2L + 2D] active patterns, but they exhibited odd chirality for the magnetic field polarity.
This fact indicates that the vertical MHD flows penetrate into the tube around the electrode
and affect the micro-MHD vortices. In several films, for example {2T, 0.5 Hz}, {5T, 6 Hz},
etc., both effects of rotation and vertical MHD flows were superimposed, then [3L + D] or
[L + 3D] active patterns were observed. Thus, these films exhibit odd chirality for both
rotational direction and magnetic field polarity.
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Figure 12. Voltammograms of alanine enantiomers in a 0.1 M NaOH aqueous solution on the RMED
film electrodes: (a); +4T films, CW 2 Hz, (b); +4T films, ACW 2 Hz, (c); −4T films, CW 2 Hz, and (d);
−4T films, ACW 2 Hz. Adopted from [50].

Figure 13 shows the voltammograms of alanine enantiomers on the {3T, 0.5 Hz} film
electrodes. It is surprising that all four films show L-activity. This means that the {3T,
0.5 Hz} films exhibit breaking of odd chirality for both rotational direction and magnetic
field polarity. Similar broken odd chirality was observed in the {5T, 0.5 Hz} and {5T,
2 Hz} films.
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Figure 13. Voltammograms of alanine enantiomers in a 0.1 M NaOH aqueous solution on the RMED
film electrodes: (a); +3T films, CW 0.5 Hz, (b); +3T films, ACW 0.5 Hz, (c); −3T films, CW 0.5 Hz, and
(d); −3T films, ACW 0.5 Hz. Adopted from [50].
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The chiral symmetry of RMED films is mapped on the axes of the magnetic field
and the rotational frequency, as shown in Figure 14. The odd chirality is classified into
three types depending on the rotational direction (orange-O), the magnetic field polarity
(green-O), and both (yellow-O). The green-O appears in a zone of high rotational frequencies
and low magnetic fields. As the frequency decreases and the magnetic field increase, the
rotational effects become dominant; then, the orange-O appears in the {4T, 2 Hz} films. It is
noteworthy that the breaking of odd chirality appears around the orange-O in the zone of
lower frequencies and higher magnetic fields. If the rotational effects on the micro-MHD
vortices are too strong, the precessions of micro-MHD vortices could be incoherent with
each other, leading to the fluctuation of the self-organized state of micro-MHD vortices. As
observed in the MED films, such fluctuation induces the breaking of odd chirality.
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3.5. Breaking of Odd Chirality in Magnetoelectrochemical Etching

Chiral surfaces were produced by magnetoelectrochemical etching (MEE) of copper
films [61,62]. Odd chirality was observed at 5 T on 3 mm electrodes [61], whereas breaking
of odd chirality appeared in the MEE conditions with low magnetic fields [46], chloride
additives [62], and micro-electrodes [48]. The self-organized states of micro-MHD vortices
could also be formed in the MEE processes, and the fluctuation of micro-MHD vortices
induces the breaking of odd chirality. The behavior of chiral symmetry in the MEE films is
almost the same as that in the MED films. This fact implies a universal relation between the
chiral symmetry and the fluctuation of micro-MHD vortices.

4. Conclusions

This paper has surveyed the chiral symmetry of MED films prepared with chloride
additives (Figure 7), micro-electrode (Figure 10), and cell rotation (Figure 14). The mappings
of chiral symmetry prove that odd chirality exists in the confined areas, where the rigid
self-organized states of micro-MHD vortices are formed. This fact means that odd chirality
can be easily broken by disturbances, which could induce the fluctuation of micro-MHD
vortices.

In the mappings of chiral symmetry, breaking of odd chirality surrounds odd chirality,
and achirality is more outside. The relatively gentle fluctuation of micro-MHD vortices
causes the breaking of odd chirality, and the random fluctuation causes the disappearance
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of surface chirality. In the states of broken odd chirality, the fact that the MED films exhibit
the surface chirality indicates the ordered states in the fluctuation of micro-MHD vortices.
Such ordered fluctuation could be crucial for the breaking of odd chirality.

In future studies, it is of great interest to explore how the ordered fluctuation is and
how it breaks chiral symmetry. These issues would lead to hints for chiral symmetry
breaking in nature and the origin of homochirality in biomolecules.
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