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Abstract: In this study, we grew pristine and Ni-doped vertically aligned zinc oxide nanowires (NWs)
on a glass substrate. Both the doped and pristine NWs displayed dominant 002 peaks, confirming
their vertical alignment. The Ni-doped NWs exhibited a leftward shift compared to the pristine
NWs. TEM measurements confirmed the high crystallinity of individual NWs, with a d-spacing of
~0.267 nm along the c-axis. Ni-doped NWs had a higher density, indicating increased nucleation sites
due to nickel doping. Doped NW films on glass showed enhanced absorbance in the visible region,
suggesting the creation of sub-gap defect levels from nickel doping. Magnetization vs. magnetic field
measurements revealed a small hysteresis loop, indicative of soft ferromagnetic behavior. Current
transient plots demonstrated an increase in current with an applied magnetic field. Two-terminal
devices exhibited a photo response that intensified with magnetic field application. This increase
was attributed to parallel grain alignment, resulting in enhanced carrier concentration and photo
response. In the dark, transport properties displayed negative magnetoresistance behavior. This
magneto-transport effect and enhanced photo response (under an LED at ~395 nm) were attributed
to giant magnetoresistance (GMR) in the aligned NWs. The observed behavior arose from reduced
carrier scattering, improved transport properties, and parallel spin alignment in the magnetic field.

Keywords: diluted magnetic semiconductors; spintronics; solution synthesis; UV detector;
magnetoresistance

1. Introduction

Spintronics, which harnesses both the charge and spin of electrons, has emerged as a
promising field for next-generation electronic and information-processing devices. While
various materials have been explored for spintronic applications, it is crucial to highlight
the unique advantages offered by ZnO films [1–3]. Firstly, ZnO is a direct wide-bandgap
semiconductor, making it well-suited for efficient charge carrier injection and transport
in spintronic devices. Moreover, ZnO exhibits remarkable optical properties, particularly
at short wavelengths, making it suitable for integration with optical functionalities in
spintronic circuits [4].

Compared to traditional spintronic materials such as YIG, ZnO films present several
distinct advantages. YIG is primarily utilized for its long spin relaxation times and low
Gilbert damping, which are advantageous for spin transport. However, YIG typically
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requires complex fabrication processes and integration schemes to interface with other
materials, limiting its compatibility and scalability in device fabrication [5]. On the other
hand, ZnO films can be grown using various deposition techniques, including pulsed laser
deposition, chemical vapor deposition, and molecular beam epitaxy, enabling flexible and
scalable fabrication processes with well-controlled film properties.

Adding a spin degree of freedom in semiconductors is highly desired for multifunc-
tional devices [6]. It can be achieved by doping magnetic ions in the host semiconductors,
which leads to an exchange interaction between the itinerant sp-band electrons or holes and
the d-electron spins localized at the dopant ions. This exclusive approach has manifested
in diluted magnetic semiconductors (DMS) design. The DMS devices offer certain advan-
tages [6], including non-volatility, enhanced processing speed, high energy efficiency, and
increased integration densities. ZnO-based DMS systems have drawn tremendous attention
because of their pronounced optical properties at short wavelengths and robust magnetic
properties at room temperature, making them suitable for applications in electronics and
spintronics [7,8]. For device applications, the Curie temperature up to or at least at room
temperature is highly desired [9–11] to realize technological applications [12,13].

First-principles calculations [6] have predicted that when ZnO is doped with tran-
sitional metal dopants (V, Cr, Fe, Co, Ni), ferromagnetic order can be achieved as these
dopants can produce a partially filled spin-split impurity band. Experimentally, ferro-
magnetic order with a Curie temperature higher than 300 K has also been reported for
Mn [6], Fe [14], Co and Fe-(codoped) [15], and Ni-doped [16] ZnO DMS. The Ni-doped
ZnO (Ni-ZnO) is considered a promising DMS system, where its optical properties (band
gap ~3.3 eV, exciton binding energy combined with room-temperature ferromagnetic or-
der due to Ni, make it an attractive candidate for potential monolithic optical integrated
circuit applications in a short-wavelength field. However, the preparation of Ni-ZnO is
challenging due to a significant driving force for phase segregation into NiO and ZnO;
consequently, only a few studies have been reported until now. Wakano et al. [17] reported
ferromagnetism below 30 K in Ni-doped films grown by pulsed laser deposition. Singh
et al. [18] reported ferromagnetism with Curie temperature above 300 K in films grown
by the solgel technique. In the PLD-grown ZnO films, Liu et al. [16] reported an intrinsic
ferromagnetism that decreased with Ni-doping. Variations in the microstructure related to
the growth techniques could be a reason for different magnetic properties, wire geometry,
and density [19]. To further delve into the structural properties of ZnO-based films, recent
studies have explored advanced characterization techniques. There are numerous reports
both on theoretical and experimental approaches exploring the optical, optical, structural
and magnetic properties of ZnO [20–23]. For instance, Guermat et al. (2021) employed
high-resolution transmission electron microscopy (HRTEM) to investigate the crystal struc-
ture and morphology of ZnO films [24]. Their findings revealed well-defined wurtzite
phase structures with a precise control over the film thickness. In addition, the study
by Tiwari et al. (2022) employed X-ray diffraction (XRD) analysis to examine the lattice
parameters and crystal quality of ZnO-based films grown via a chemical vapor deposition
(CVD) method, demonstrating highly crystalline films with a preferred orientation along
the (002) plane [25].

Investigating the optical properties of ZnO-based films, recent research has focused on
understanding their bandgap energies and light absorption capabilities. A study by Soumya
et al. (2023) investigated the bandgap engineering of ZnO films through precise doping
strategies [26]. By varying the doping concentrations of transition metal ions, they observed
a redshift in the optical absorption spectra, demonstrating the tunability of bandgap
energies in ZnO-based films. Furthermore, Benhaliliba et al. (2021) utilized spectroscopic
ellipsometry to study the optical absorption properties of ZnO-based films [27]. Their
research revealed an enhanced light absorption in the ultraviolet (UV) region, attributed to
the presence of defect states and surface plasmon resonance effects.

These recent studies highlight the advancements in understanding the structural and
optical properties of ZnO-based films. By incorporating these findings, our manuscript
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aims to contribute to the existing knowledge by providing a comprehensive overview of the
important characteristics of ZnO-based films, including their crystal structure, morphology,
and optical properties.

In this paper, we studied the structural, magnetic, magneto-optical, and magneto-
transport properties (at room temperature) of Ni-doped ZnO NWs. The Ni-doping in ZnO
imparts magnetic response, a red shift in the optical band gap, and negative magnetoresis-
tance. In the presence of an external magnetic field, the localized magnetic moments align
in the direction of the field, reduce the scattering of the carriers, and give rise to a negative
magnetoresistance.

2. Materials and Methods

Chemicals: Analytical reagents zinc acetate dehydrates (ZnA), Zn (CH3COO), and
NaOH were used as precursor sources for the preparation of ZnO nanoparticles (NPs). The
hexamethylenetetramine (HMTA) C6H12N4 and zinc nitrate hexahydrate (ZnN) Zn(NO3)2·6H2O
were used to grow the ZnO NWs. Nickel nitrate hexahydrate Ni(NO3)2·6H2O was added
as a dopant in ZnO NWs. All mentioned materials were purchased from Sigma Aldrich (St.
Louis, MO, USA) and used without further purification.

Synthesis of ZnO NWs Films: Pure and Ni-doped ZnO NWs were hydrothermally
grown on seeded glass or Si substrates. Using a magnetic stirrer, 0.01 M of ZnA weighing
43.87 mg was dissolved in 20 mL of methanol and stirred at 60 ◦C for 30 min on a hot plate.
A 0.09 M NaOH solution weighing 72 mg was produced in 20 mL of methanol and stirred
at room temperature for 30 min. To keep the temperature of the ZnA solution constant, a
reducing agent called NaOH solution was heated at 60 ◦C for 5–7 min. Afterwards, the
NaOH solution was added dropwise to the ZnA solution which was stirred with a stir
with a magnetic stirrer at 60 ◦C for 2 h to prepare the stabilized ZnO NPs. The synthesis of
these ZnO nanoparticles or nanoseeds is schematically described in steps in the electronic
Supplementary Information (ESI) Figure S1. The cleaned Si and glass substrates were
spin-coated with the ZnO nanoparticle suspension solution. Using acetone, ethanol, and
distilled water (DI water), in that order, both substrates were cleaned ultrasonically for
12 min each. Following coating, the substrates were annealed in a furnace at 300 ◦C. Then,
an equimolar solution of ZnN and HMTA in DI water was created and stirred for two h
at room temperature to create a homogenous solution. The substrates coated with ZnO
nanoseeds were positioned upside down in the beaker containing the precursor solution.
Afterwards, the beaker was wrapped in aluminum foil and put in a convection oven that
was kept at 95 ◦C for 6 to 8 h. In the solution, HMTA released OH¯ ions, which built
up on the positive polarity sidewalls of ZnO NWs and prevent sidewall growth while
promoting vertical growth solely. The same HMTA and zinc nitrate solution were used for
Ni-doping, and equimolar nickel nitrate hexahydrate was added to the ZnN solution. In
order to remove any organic contaminants and enhance the crystal quality of ZnO NWs, the
substrates were taken out of the solution, washed with DI water, and annealed at ambient
conditions under an argon flow at 350 ◦C for 30 min in the furnace.

Morphological and Structural properties: The morphology of the samples was ana-
lyzed by scanning electron microscope (SEM), while the structural studies were carried out
using an X-ray diffraction (XRD) D8 Bruker advanced X-ray diffractometer with a Cu k
radiation (λ = 1.54 ) and a transmission electron microscope (TEM, ZEISS); we were able to
analyze the sample’s crystal structure and growth direction.

Optical Characterizations: A twin-beam UV-visible spectrometer employing the Hi-
tachi U-3900H, Berlin, Germany (measurement taken at Department of Physics, The Uni-
versity of Azad Jammu and Kashmir, Muzaffarabad-13100, Azad Kashmir, Pakistan) was
used to record the optical absorption spectra of the samples in the 250–800 nm range. At
room temperature, photoluminescence (PL) spectra of the samples were taken using a
5 mW He-Cd laser with an excitation wavelength of 325 nm. A 60-second laser exposure
time was chosen. It was decided to use a diffraction grating with 1200 lines/mm for the
PL measurements. The elemental content and oxidation state of the produced samples
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were determined using X-ray photoelectron spectroscopy (XPS) on a ULVAC Quantera
II, Tokyo, Japan (measurements taken at MIMOS, Malaysia) with an Alk monochromatic
source (1486.6 eV).

Magnetic Studies: A superconducting quantum interference device (SQUID) magne-
tometer (model: M355 Quantum Design, Inc., New York, NK. USA) was used to measure
the DC magnetization for a range of temperatures down to 4 K and magnetic fields up to
50,000 Oe.

Device Fabrication and Magneto-transport Measurement: A two-terminal device was
fabricated with aluminum foil as a metal electrode attached to ZnO NW film on the glass
substrate; the length of the device, i.e., electrode spacing, was ~2 mm and its width was
7 mm. The substrate was put on a neodymium permanent magnet with a strength of ~0.2 T
for the electrical characterization in the dark and under the illumination of a UV (395 nm)
LED with and without the application of a magnetic field. The Al contacts were attached
tightly using scotch tape, and the electrodes were connected to a Keithley 2400, Beijing,
China (measurement taken at Department of Physics, The University of Azad Jammu and
Kashmir, Muzaffarabad-13100, Azad Kashmir, Pakistan) source meter through crocodile
clip wires.

3. Results and Discussion

Through a series of comprehensive characterizations and measurements, we explored
the structural, magnetic, and magneto-transport behavior of the nanowires. Our study
aimed to shed light on the influence of Ni doping on the properties of ZnO nanowires,
particularly focusing on the manifestation of soft magnetic behavior and its implications
for potential spintronic applications. We begin by discussing the structural analysis, high-
lighting the morphology and crystalline structure of the nanowires. Subsequently, we delve
into the magnetic properties, elucidating the room-temperature ferromagnetic behavior
observed in the Ni-doped ZnO nanowires. Furthermore, we present the magneto-transport
measurements, showcasing the negative magnetoresistance and its correlation with the
magnetic behavior. The comprehensive analysis in this section contributes to our under-
standing of the unique properties of Ni-doped ZnO nanowires, opening avenues for their
potential applications in spintronics and magnetic devices.

Figure 1 shows the surface morphology of the grown nanowires studied by using
SEM. Figure 1a shows pure ZnO NWs while Figure 1b shows Ni-doped ZnO NWs grown
on a glass substrate. It is observed that after Ni-doping, the nanowires have become denser
as well as vertically aligned compared to pure ZnO NWs. Thus, it can be suggested that
Ni doping results in an improved vertical alignment. The doping of transition-metal ions
can dramatically affect the microstructure. In Figure 1c, a high-resolution image shows
the top view of vertically grown Ni-ZnO NWs on a glass substrate; hexagonal top facets
can be observed. The frequency distribution diagram of the Ni-ZnO NWs is shown in
Figure 2d, which yields an average diameter (with a lognormal fit) of ~322.7 nm, while in
our previous reports, we observed that the average diameter of pure ZnO NWs was about
~86 nm [10,28].
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thesis; (a) pure ZnO NWs; (b) Ni-ZnO NWs; (c) high-resolution image showing the top view (hex-
agonal) of NWs; (d) SEM cross-section image of ZnO NWs grown on a silicon substrate under the 
same conditions as these on the glass substrate; (e) frequency distribution graph of Ni-ZnO NWs. 

The vertical growth of nickel-doped ZnO NWs by the hydrothermal method is ex-
plained as follows. The Zn(OH)2 gel dissolves into the OHି ion-supersaturated solution. 
It draws ions and creates a growth unit, as seen below: 

Zn(OH)2 + 2H2O = Zn2+ + 2OHି + 2H2O = Zn(OH)42− + 2Hି   (1) 

Then, because of the heat convection, the ions spread, and the movement of ions and 
molecules declines. The dehydration of the growth units leads to the formation of ZnaOb 
(OH)c(c+2b2a) clusters. The ZnO nucleus is produced as shown in Equations. (2) and (3) as 
the particle size of the cluster ZnaOb(OH)c(c+2b2a) − gets closer to a particular value. 

Zn(OH)4 2− + Zn(OH)4 2− = Zn2(OH)6 4− + H2O                              (2)  

ZnaOb(OH)c (c+2b−2a)− (nucleus) + Zn(OH)42− = Zna+1Ob+1(OH)c +2(c+2b+2)− +H2O     (3)  

Figure 1. Surface morphology of nanowires grown on glass substrate by using a wet chemical
synthesis; (a) pure ZnO NWs; (b) Ni-ZnO NWs; (c) high-resolution image showing the top view
(hexagonal) of NWs; (d) SEM cross-section image of ZnO NWs grown on a silicon substrate under
the same conditions as these on the glass substrate; (e) frequency distribution graph of Ni-ZnO NWs.
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Producing such a high crystalline structure using a simple solution process is very desir-
able for device  

The XRD spectra of pure and Ni-ZnO NWs shown in Figure 3 revealed a hexagonal 
crystal structure for both pure and doped ZnO NWs. The observed peaks confirmed the 
formation of the wurtzite crystal structure of ZnO and the growth of NWs with a high 
crystallinity along the c-axis. The θ−2θ scans showed no detectable impurity phases in the 
ZnO matrix. Due to the difference in the size of ionic radii of Ni+2 and Zn+2, a lattice dis-
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sizes from the FWHM for the 002 peaks were ~ 61 nm and ~116 nm, respectively, for the 
ZnO and Ni-ZnO NWs film on a glass substrate.  

Figure 2. Microstructure of a single Ni-ZnO nanowire (a) TEM image, and (b) HRTEM image with
inset showing the diffraction pattern. (c) Diffraction spectra from HRTEM measurements.

The vertical growth of nickel-doped ZnO NWs by the hydrothermal method is ex-
plained as follows. The Zn(OH)2 gel dissolves into the OH− ion-supersaturated solution.
It draws ions and creates a growth unit, as seen below:

Zn(OH)2 + 2H2O = Zn2+ + 2OH−+2H2O = Zn(OH)42− + 2H− (1)
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Then, because of the heat convection, the ions spread, and the movement of ions and
molecules declines. The dehydration of the growth units leads to the formation of ZnaOb
(OH)c

(c+2b2a) clusters. The ZnO nucleus is produced as shown in Equations (2) and (3) as
the particle size of the cluster ZnaOb(OH)c

(c+2b2a)− gets closer to a particular value.

Zn(OH)4
2− + Zn(OH)4

2− = Zn2(OH)6
4− + H2O (2)

ZnaOb(OH)c
(c+2b−2a)− (nucleus) + Zn(OH)4

2− = Zna+1Ob+1(OH)c+2
(c+2b+2)− +H2O (3)

The number of Zn2+, O−, and OH− atoms in the crystal are indicated by the subscripts
a, b, and c in the abovementioned equations. The ZnO formation mechanism makes it clear
that the dehydration of the OH− ligands results in the growth unit’s incorporation into the
crystal lattice [29]. Because of the OH− ligands on the interfaces, the ZnO crystal formation
is related to them. Every time a hydrothermal reaction occurs in a different solution, a piece
of the OH− ligands on the surface of the clusters ZnaOb(OH)c

(c+2b2a)− may be protected by
other ions in the medium, creating a cationic interface with the water or other ions present
in the structure. As a result, the crystal’s development pattern is closely related to the
reaction media. The impact of the external conditions at the interfaces on the OH− ligands
is low when we have a neutral medium. Thus, the interior structure has a significant impact
on the crystal habit. Out of all the crystal faces, the (001) face grows the quickest. The OH−

ions concentration that HMTA ejected decreases when the Ni concentration is raised. The
NWs develop radially as a result of these diminished OH- ions. The thermodynamic barrier
that is created when Ni is added to ZnO reduces both the nucleation process and the growth
of the primary nuclei. The modest alteration in the structure of NWs can be attributed to the
possibility that the Ni may produce a type of hydroxide complex during the growth process
that hinders the reaction between OH− and Zn2+ and changes the nucleation development
as a whole. Instead of causing a vertical expansion, this process may drive a horizontal
growth. NWs become larger as a result [30]. The following describes a potential reaction
process for the deposition of ZnO from Zn(NO3)2 and the HMTA precursors at 65 ◦C.

Here, HMTA breaks down when heated into formaldehyde and ammonia, as shown in
Equation (4). Ammonia and water interact in the second stage, as depicted in Equation (5).
The insoluble ZnO then crystallizes as a result of this process (Equations (6) and (7)). When
a substrate is added to the mixture, it precipitates both non-uniformly and uniformly.
According to our research, Zn(OH)2 may develop before ZnO growth. Then, it spreads
through a mechanism of dissolution and re-precipitation, with Zn(OH)2 acting as a zinc
reservoir. The pH of the solution, which the HMTA ions supply, causes ZnO to be produced
as a final product. The ZnO morphology is very much dependent on the experimental
conditions, particularly the Zn2+ ions that alter the rate at which the hydroxylation occurs,
as shown in Equations (6) and (7), allowing ZnO to modify its growth pattern. The dehy-
dration reaction primarily uses the precursor solution with a low Zn2+ content. Therefore,
once Zn(OH)2 is created, it might be changed into ZnO. Consequently, Zn(OH)2 might
be changed to ZnO after being created. Due to the anisotropic growth of the hexagonal
wurtzite structure in the (0001) direction, it results in the development of 1D ZnO NWs, as
seen in SEM images Figure 2a–c.

(CH2)6N4 + 6H2O→ 6HCHO + 4NH3 (4)

NH3 + H2O↔ NH4 + OH− (5)

2OH− + Zn2+ ↔ Zn(OH)2 (6)

Zn(OH)2 → ZnO + H2O (7)

Because the hydroxylation reaction proceeds relatively more quickly due to the high
concentration of Zn2+ ions, the Zn(OH)2 dehydration is delayed as the number of precursors
increases. Two-dimensional structures may result as a result of this. Because of this, the
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quantity of Zn2+ ions produced as a result of the precursors will also grow at very high
precursor concentrations. The growth of nanostructures becomes extremely dense because
of the increased nucleation sites and aggregation. It can be seen that the density of NWs in
the Ni-doped sample is large as compared to the pristine NWs, as shown in Figure 1a–c.
This occurred because of the precipitation of extra Ni atoms during the formation of NWs.
This phenomenon suggests that when doping Ni in ZnO NWs, the NWs’ density and aspect
ratio increase. The high doping of nickel (10%) creates more nucleation sites, resulting in
the dense growth of NWs, as evident from Figure 1a–c.

The microstructure of a single Ni-ZnO nanowire detached from the substrate was
studied and is shown in Figure 2. In contrast to the phase segregation or clusters reported in
the literature, the Ni incorporated in the ZnO matrix. The interlayer spacing was ~0.267 nm,
as shown in the HRTEM image in Figure 2b, which was is comparable with our previous
report, where a TEM analysis yielded an interlayer spacing of 0.26 nm for pure ZnO
NWs [10,11,31,32]. A slight difference in interlayer spacing of Ni-ZnO compared with ZnO
NWs is due to the slight difference of ionic radii of Ni2+ (1.36 Å) and Zn2+ (0.74 Å), leading
to a strain in ZnO matrix. The clear lattice fringes indicate a high-quality crystal structure
of ZnO NW with a uniform surface area along the c-axis in the direction of the (002) plane.
Producing such a high crystalline structure using a simple solution process is very desirable
for device.

The XRD spectra of pure and Ni-ZnO NWs shown in Figure 3 revealed a hexagonal
crystal structure for both pure and doped ZnO NWs. The observed peaks confirmed
the formation of the wurtzite crystal structure of ZnO and the growth of NWs with a
high crystallinity along the c-axis. The θ–2θ scans showed no detectable impurity phases
in the ZnO matrix. Due to the difference in the size of ionic radii of Ni2+ and Zn2+,
a lattice distortion was observed in the Ni-ZnO NWs. Bragg’s law and Debye Sherer
formula [11,33–36] were used to calculate the structural parameters and crystalline size. The
crystallite sizes from the FWHM for the 002 peaks were ~61 nm and ~116 nm, respectively,
for the ZnO and Ni-ZnO NWs film on a glass substrate.
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The UV—visible absorbance vs. wavelength spectra of the pure and Ni-ZnO NWs
films on glass substrates is shown in Figure 4a. The doped films have an enhanced
absorbance in the visible region, indicating the introduction of sub-gap defect levels due to
doping, causing the sub-bandgap absorbance [37]. The (αhν)2 vs. energy Tauc plot for a
direct-bandgap semiconductor for pure and Ni-doped ZnO NW films on a glass substrate
is shown in Figure 4b. The absorbance edge is observed to be redshifted for the doped
samples. The absorption edge for the pure and Ni-doped ZnO NWs film came out to be
2.96 eV and 1.94 eV, respectively. The red shift is most probably due to the introduction of
sub-gap defect states due to doping. This also indicates the incorporation of Ni in the host
lattice of ZnO. Ni-doping has also been reported in the literature to decrease the band gap
of the ZnO [38–40]. Since the doping has red-shifted the absorption edge, the band gap of
the films was calculated using the following Tauc’s equation:

αhν = A
(
hν− Eg

) 1
2 (8)

ln(αhν) = lnA +
1
2

ln
(
hν− Eg

)− (9)

d[ln(αhν)]
d[hν]

=
1

2
(
hν− Eg

) (10)

Here α is the absorption coefficient (=2.303 Absorbance
Thickness of film ), Eg, is energy bandgap.

Therefore, after plotting a graph between d[ln(αhν)]
d[hν] and hν, there must be a discontinuity at

hν = Eg. This derivative plot is shown in Figure 4c, where the energy gap for the pure film
is 3.27 eV, and that of Ni-10%:ZnO was calculated as 3.22 eV. Consequently, the bandgap
has been reduced due to the Ni doping, which is quite understandable as the Ni-doping
might have introduced the deep or shallow sub-gap states responsible for this band gap
reduction.
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The magnetization vs. magnetic field (M−H) curve measured at 300 K for the Ni-ZnO
NWs is shown in Figure 5a. The magnetization saturates at almost ±0.2 T, and there is a
small hysteresis which is an indication of a soft ferromagnetic material. While pure ZnO
NWs have been reported to be diamagnetic or weak ferromagnetic at room temperature,
this weak ferromagnetism diminishes over time due to oxidation [11,31,32].
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Figure 5. (a) Magnetization curve of a Ni-10%:ZnO NW film on a glass substrate, (b) schematic of the
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diagram showing the effect of the application of a field on the spin alignment.

The magneto-transport properties of a two-terminal device were measured using
the computer-controlled Keithley 2400 source meter. The schematics of the device with
a channel length of ~2 mm and width of ~7 mm is shown in Figure 5b. The NWs are
vertically aligned and densely packed, as is evident from the SEM images, and the XRD
spectra and the side walls of NWs are touching each other. Therefore, the current flow
in this film will be a kind of tunneling current between adjacent NWs. Figure 5c is the
transient current vs. time (I-t) properties of the device in dark conditions at a fixed bias
voltage with and without an applied magnetic field. A permanent magnet (Nd-based
magnet of ~0.2 T strength) was placed under the substrate with vertically aligned NWs
grown on it, making an out-of-plane configuration. The length and width of the permanent
magnet were kept smaller than the substrate to ensure a uniform magnetic field. The
sample referred in Figure 5c is Ni-10% doped ZnO. B = 0 (black) is the case when there is
no magnetic field applied while B = 0.2 T (red) is the first run in magnetic field. Then, we
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turned off the magnetic field i.e., B = 0 (green), and turned it on again, the magnetic field
i.e., B = 0.2 T (blue).

Usually, the time-dependent current in ZnO NW−based devices with a fixed voltage
bias decreases in the air under ambient conditions due to the bias stress effect driven by
oxidation on their surface [41]. As evident from Figure 5c, initially, the current remained
almost constant without a magnetic field but decreased slowly with time due to ambient
oxidation under the bias stress (see black curve). When applying a magnetic field, the
current increased with time, as shown in Figure 5c blue curve.

We show a schematic diagram in Figure 5d to understand these results. In the absence
of a magnetic field, spins are randomly oriented. When a magnetic field is applied, spins
align along the direction of the applied magnetic field, and as a result, the scattering of
charge carriers reduces. The increase in conductance is possibly due to crystal-field-split
Ni 3d states lying close to the conduction band minima when they hybridize with the s/p
states of the conduction/valence band [42,43]. Here the electrical contact of aluminum
is nonmagnetic, so the magnetic field’s effect is mainly the parallel alignment of electron
spins in NWs, thus enhancing the carrier transmission in neighboring adjacent NWs [44].

Finally, the UV response of the two-terminal devices was studied under the illumina-
tion of a 395 nm UV LED (8 mW/cm2) with and without an applied magnetic field. The
measured static I-V properties in linear and log scales are shown in Figure 6. Figure 6a is the
linear scale IV properties of the Al/Ni-10% ZnO/Al two-terminal device in dark conditions
and under the illumination of the UV LED with B = 0 and B = 0.2 T. This experiment was
repeated twice. The response is increased with B = 0.2 T and is evident from the linear- and
log-scale static IV properties shown in Figure 6a, and b. The photo-response of a photodetec-
tor strongly depends on the carrier mobility of the semiconducting material [41]. Here, the
transport was enhanced in the case of a parallel alignment in the nanograins or nanowires,
thus reducing the photo-carrier scattering and hence increasing photo-response. Recently,
electrocatalysis and photocatalysis have been reported to be enhanced in metal oxides
due to spin polarization [29]. The TiO2 nanoparticle photocatalytic properties have been
reported to be enhanced due to the defect-based spin polarization under the application of
a magnetic field [45].
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4. Conclusions

In conclusion, a Ni-doped ZnO NWs film was grown on a glass substrate. The XRD
and SEM measurements revealed highly crystalline vertically aligned NWs, which were
also supported by the microstructure analysis by transmission electron microscopy. The
magnetic properties measured at 300 K showed a ferromagnetic response in the Ni-ZnO
NWs. The transport properties of the film in dark conditions showed a negative magneto-
resistive behavior, and the UV photo response was also observed to increase with the
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magnetic field. This magneto transport and enhanced photo response were attributed to
the alignment of spins resulting in a reduced carrier scattering. This will ultimately open
an avenue for the next generation of spintronic and electronic devices.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/magnetochemistry9080193/s1, Figure S1: Stepwise schematic
illustration of the growth of ZnO nanoparticles and Ni-ZnO nanowires on the glass substrate through
a chemical solution route.
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