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Abstract: Power management strategies have impacts on fuel economy, greenhouse gasses (GHG)
emission, as well as effects on the durability of power-train components. This is why different off-line
and real-time optimal control approaches are being developed. However, real-time control seems to
be more attractive than off-line control because it can be directly implemented for managing power
and energy flows inside an actual vehicle. One interesting illustration of these power management
strategies is the model predictive control (MPC) based algorithm. Inside a MPC, a cost function
is optimized while system constraints are validated in real time. The MPC algorithm relies on
dynamic models of the vehicle and the battery. The complexity and accuracy of the battery model
are usually neglected to benefit the development of new cost functions or better MPC algorithms.
The contribution of this manuscript consists of developing and evaluating a high-fidelity battery
model of a plug-in hybrid electric vehicle (PHEV) that has been used for MPC. Via empirical work
and simulation, the impact of a high-fidelity battery model has been evaluated and compared to
a simpler model in the context of MPC. It is proven that the new battery model reduces the absolute
voltage, state of charge (SoC), and battery power loss error by a factor of 3.2, 1.9 and 2.1 on average
respectively, compared to the simpler battery model.

Keywords: vehicle and battery modeling; model predictive control (MPC) application; plug-in hybrid
electric vehicle (PHEV) application

1. Introduction

To reduce fuel consumption, greenhouse gasses (GHG) emission or to improve battery
lifetime, advanced power management strategies have been studied [1,2]. To achieve these goals,
different off-line and real-time optimal control approaches are being developed. Model predictive
control (MPC, see Figure 1 [3]) is a promising example. MPC is an advanced control methodology that
was originally used in the process industries for power plants and oil refineries since the 1980s [4,5].
MPC is capable of predicting future events, in a finite-horizon, and is able to take controlled actions to
optimize a cost function. Proportional, integrator, and derivative (PID) and linear quadratic regulator
(LQR) controllers do not have this predictive ability. However, the prediction of MPC is usually
computed for a relatively short time horizon in the future due to its computational cost. In recent years,
MPC has been used for hybrid electric vehicle (HEV) and plug-in HEV (PHEV) applications, as shown
in the comprehensive survey of power management topics [6]. In [6], dynamic programming-based
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strategies are introduced as the most conventional off-line approaches while MPC-based algorithms,
and equivalent fuel consumption minimization strategy (ECMS)-based [7-9] are defined as the primary
on-line methods. The former has been of interest in many works. For example, using a MPC, an overall
power efficiency is maximized, instead of fuel consumption minimization, for a series HEV [10]. In [11],
based on the price of gas and electricity in the United States, a MPC minimizes the cost of the vehicle’s
energy use for a series PHEV. In another research report, engine transient characteristic is incorporated
in a MPC for parallel HEV [12]. In other publications [13,14], the goal of MPC is to reduce the CO,
emissions. To implement a fast MPC, the authors in [14] proposed to compute the entire control law
off-line. A global optimization-based MPC is developed, and experimental validation is provided
on the test bench in [15]. Stochastic MPC with learning is proposed and validated by simulation
in [16]. The MPC-based control strategy is also applied to solve the energy management problem
of a series [9,17] and power-split HEVs in [18] and to analyze the potential benefits of integrating
ultracapacitors (UC) in the energy storage system (ESS) unit of a power-split HEV in [19-22]. Using the
Pontryagin’s minimum principle (PMP), the MPC of fuel cell hybrid vehicles (FCHVs) optimizes
battery lifetime while reducing battery energy loss, fuel consumption, and powertrain cost in [23,24].

Predicted System
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Figure 1. Block diagram of a model predictive control (MPC) controller [3].

MPC relies on dynamic models of the vehicle, most often linear empirical models obtained by
system identification [25]. In the references cited above, the significance of a MPC controller for
HEV applications has been highlighted. In this literature review, the authors mainly focus on the
influence of a new cost function, but they do not deal with the benefit of a high accuracy battery model.
Their models are far simpler than the one introduced in papers [26-28] for automotive applications.
For instance, their impedance battery model is limited to an internal resistance impedance model,
as shown in Figure 2. Developing a high-fidelity battery model for a HEV is a key opportunity to
improve the global performance of a MPC. This is why the main contribution of this manuscript is
developing and evaluating a high-fidelity battery model of a PHEV that has been used for a MPC.
In Section 2 of this paper, a Matlab model based on a real PHEV is presented. It provides an overview
of the PHEV model and helps to understand the role of the battery model. Then, Section 3 is entirely
devoted to the description of the high accuracy battery model for a MPC. It precisely simulates the
battery voltage response through one resistance in series with a two resistances/capacitors (RC)
network, and replicates the battery aging phenomenon. Finally, in Section 4, the impact of the
high-fidelity battery model has been evaluated through empirical work and simulation and compared
to the simple internal resistance battery model in the context of MPC.
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Figure 2. Equivalent battery model for MPC controller design [18].
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2. Vehicle Model

In this section, the architecture of the reference car is shown in Figure 3. It provides an overview
of the vehicle model and helps to understand the role of the battery model. The vehicle is a series
PHEV. The arrows in Figure 3 indicate the possible direction of the energy flow inside the power-train.
An electric generator, an ESS composed of a lithium-ion battery, and an electric motor are connected to
a DC bus. During acceleration, the generator or the ESS provide power to the DC bus for the motor
while, during regenerative braking, the motor works as a generator and provides power to the ESS
through the DC bus. Except for cranking the engine at the very start of a drive, there is no energy
transfer from the battery to the engine through the generator while the car is running. Consequently,
the energy flow in this situation is minimal and considered as negligible compared to the total energy
consumption. This is why the arrows between engine and generator, and between generator and
battery are uni-directional. Table 1 summarizes the specifications of the power-train components.
The size of the ESS has been selected based on a parametric study on the available size of high energy
density modules from A123 (Livona, MI, USA) to minimize fuel consumption [26]. High energy
density modules are preferred to high power density modules because the ESS of a PHEV is usually
sufficient to meet the power requirements of the vehicle power-train. Therefore, the ESS should be able
to store more energy to increase the all-electric range and, as a result, to reduce the fuel consumption
of the vehicle. However, the available space inside the concept vehicle test platform (Subaru BRZ
2015) constrains the maximum ESS size. The size of the engine has been selected based on the reduced
size engine concept to achieve maximal fuel economy as explained in [29]. A motor unit power has
been chosen to keep the acceleration performance of this new PHEV close to its original performance.
The unit includes two independent motors for both rear wheels.
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Figure 3. Series hybrid electric vehicle (HEV) block diagram of the Subaru BRZ 2015. ICE: internal
combustion engine; SoC: state of charge; SOH: state of health; LFP: lithium iron phosphate (LiFePOy);
UDDS: urban dynamometer driving schedule; and HWFET: highway fuel economy test.

The characteristics of the vehicle model are given in Table 1 and Figure 3. The equations describing
the vehicle dynamics, the electric motor and generator, and the engine are included in the Appendix A.

Table 1. Specification of power-train components. ESS: energy storage system; and PHEV: plug-in
hybrid electric vehicle.

Power-Train Component Name Characteristics
. . Capacity = 39.2 Ah; nominal voltage = 340 V;
ESS LFP prismatic cells from A123 nominal energy = 13.3 kWh; configuration: 7x15s2p.
Engine Model MPES850 from Weber 41 kW, 2 cylinders, 850 cc.
Generator Model YASA-400 93 kW, axial flux permanent magnet.
Motors Unit Model GVK210-100L6 from Linamar 2 x 80 kW, unit ratio = 8.49.

Drag coefficient = 0.28; frontal area = 1.9695 m?;

Vehicle dynamics 2015 Subaru BRZ Limited PHEV mass = 1300 kg; wheel radius = 0.3 m.
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3. Battery

3.1. Impedance

To capture the battery dynamic accurately, an internal series resistance and a two RC
network, as shown in Figure 4, are commonly used to design battery impedance for EV and HEV
applications [30-32]. The value of each resistance and capacity are based on [28,33]. Indeed, the battery
used in the vehicle is the same as the one used in [28,33]: A123 LiFePO, prismatic module with its
own battery management system (BMS). Only the configuration changes: from 5x22s3p in [28,33] to
7x15s2p in the Subaru BRZ 2015. Table 2 summarizes the characteristics of the battery impedance
obtained at laboratory ambient temperature.

Voltage-Current Characteristics

R Series RTmnsient_S RTmnsient_L
ot "A"A "% st AAY NMN——
+
Cre's Crransient L
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<+> /1 VRatt
% -
> |
E Batt
O

Figure 4. Impedance model of the battery [32].

Table 2. Characteristic of the battery impedance.

Name Value Unit

Rseries 0.1094 Ohm (QY)
Rransient_s 0.1111 Ohm ()
Cransient S 0.4227 kilo Farrad (kF)
Reansient L 0.1115 Ohm ()

CTransient L 10.196 kilo Farrad (kF)

3.2. Power, Voltage and Current

The power provided or received by the battery is computed as follows:

nbatt[Pm_elec(t) - Pg_elec(t)+Pa] if [Pm_elec(t) - Pg_elec(t)+Pa] <0 (1)
Poaee(©) = | [Pm_etec(t) — Pgetec(t)+P.
o [ m_elec o Boec a] if [Pm_elec(t) - Pg_elec(t)‘l'Pa] 20 (2)
att

In Equations (1) and (2), the battery is charging when Py, is negative and is discharging when
Ppait is positive. The battery current is then computed as follows:

Pbatt(t)
I =
batt(t) Vbatt(t _ 1)

Then, new voltage is computed using the impedance model of the battery in a discrete time

®)

domain as follows:

o 1 _ Ibatt(t B 1)
RTransient_S CTranSient_S CTransient_S

(4)

VTransient_S(t) = VTransien’f_S<t - 1) 1
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1 I t—1
VTransient_L(t) = VTransient_L(t - 1) 1— R C - CI:) att( ) (5)
Transient_L “Transient_L Transient_L
Vbatt(t) = VOC (t) - RSeries Ibatt(t) + VTransient_S(t) + VTransient_L(t) (6)

The open circuit voltage of the battery, Voc, is an eight-order polynomial equation varying over
state of charge (SoC) representing the SoC-V ¢ curve shown in Figure 5. The data and polynomial
order are extracted from [34].
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Figure 5. Open circuit voltage over battery SoC.

Here, it is noted that [,,,;(f) is computed by using Vi, (f — 1) whereas, in theory, Viau(t) is
necessary. It is carried out this way because, at this stage, Vpay(t) is unknown. The error induced
by this approximation should be small considering that the voltage fluctuates slowly. However,
this error exists and a simple recursive algorithmic method has been developed to minimize it. Indeed,
once Vip,u(t) is computed by Equations (4)-(6), it is possible to recompute the value of I, (f) using
Equation (3) by replacing Vi (t — 1) with Vo (f). Then, a new value of Vi,a(t) is also recomputed
using Equation (4)—(6) again. Then, the same set of instructions can be repeated as many times as
desired. The purpose of this algorithm is to reduce the error due to the approximation implied by
Equation (3). This recursive algorithm only stops when W < ¢ with ¢ a value as
small as wanted. Figure 6 summarizes the current and voltage coma}t)tutation recursive algorithm.

Phare(t)

I t) = —m4——
ba®) =5~ & D

Vhﬂ:(t) = Voc(t) = Rseries I () + VTﬂnsient_s(tJ + V‘l’ranslent_.l’.(t)
il Tyare(t — 1)
Rrransient s CTransient_s] - Crransient s
. 1 Tpan(t—1)
RTﬂnslent_L c‘l’nndem_i.]

Phaee(t) VTransIent_S{t) — FTransI!nt_S(.t - 1) [1 =
pban(t)

Tpar(t) =

VTnnsi:nt_l.(t] - V'l'nnsi:nt_l.(t -1) [1

‘:Tran sient L

|Ppace (L

Figure 6. Current and voltage computation algorithm.
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3.3. State of Charge

The SoC of the battery is computed by the coulomb counting Equation (7) in the discrete
time domain.
Ibatt<t) At

SOC(t+1) = SOC() = 3650 = Qe (1) Comn

@)

3.4. State of Health

The battery state of health (SoH) is represented by the capacity fade of the battery over cycling.
Equations (8)—(13) simulate this phenomenon as a function of the cumulative SoC variation, C-rate,
and temperature. Those formulas are extracted from [34] because their tested batteries have the same
chemistry and come from the same manufacturer as the battery used in this work, which is the A123
LiFePOy battery. This is why it is assumed that the aging characteristic of the large-format battery
pack is similar to the cells tested in [35] despite the fact that the battery pack is composed of seven
modules of 15 prismatic cells in series and two in parallel and not one cylindrical cell. For example,
this assumption was accepted as a correct battery aging model for a causal optimal control-based
energy management strategy for a parallel HEV using a lithium ion battery pack in [35]. The following
equations explain how the SoH is computed in a discrete domain time.

Quoss() = B(t) exp (745 ) (ASOC(1))* (®)
ASOC(t+1) = ASOC(t) + | SOC(t +1) — SOC(t)| 9)
B(t) = f(Crate(t)) (10)
Ea(t) = —31700 + 370.3 Crate(t) (11)

_ )]
Crate(t) - K (12)

According to Table 3 of Wang's paper [34], Equation (8) should normally be written this way:

Quoss() = B(t) exp(g7py ) (An)’ (13)
Ay, = cycle number x DOD x 2 (14)

Also, according to Equations (3) and (7) of the same paper [34], Equation (11) can be written and z
is equal to 0.55. Moreover, B values are a function of Crate, defined as the ratio of the absolute value
of the current to the cell capacity (Equation (12)). Wang’s paper [34] only provides B values for four
different Crate: C/2, 2C, 6C, and 10C. In this paper, by default, the B value is linearly interpolated in
function of Crate using data provided in Table 3 in [34], which leads to Equation (10).

By Equation (14) provided in Table 3 in [34], Ay, is defined as a SoC variation. Indeed, the SoC
variation of a battery can be concluded with the following Equation (15):

ASOC = 2 x cycle number x DOD = Ay (15)

Since this battery is managed by its own BMS, which includes cells balancing, it allows us to
hypothesize the following: the aging of battery cells should be roughly homogenous throughout
the pack. From this hypothesis, it can be concluded that two of the same batteries, with different
capacity, subjected to the same charge and discharge conditions (C-rate, temperature, number of cycles,
depth of discharge (DOD), etc.) should be impacted the same way by the capacity fade. In other words,
the results published in paper [34] would have been the same if they tested cells with different capacity
but with the same chemistry (LiFePO,) and manufacturer (A123).
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4. Model Validation

On the dynamometer, the vehicle has been driven over an HWFET drive cycle from full battery
charge (96% of SoC) to its complete depletion (5% of SoC). The goal of this test was to validate the
accuracy of the battery model. This is why, during this experiment, the engine and electric generator
was not used. The effects of the road slope and the wind speed have not been considered, and so those
parameters have been set to zero. The air density has been set to a constant value. At the time of the
test, the coolant system, supposed to keep the battery temperature optimal, was not present. However,
the internal BMS of the A123 LiFePOy prismatic module records the temperature of the battery and
provides an alarm response when it goes over the limits. During the experiment, it goes from 25 °C to
38.5 °C. Figure 7 summarizes the experiment.

! 1
Input i Parameters i Output
! 1
! 1
' * Rolling coefficient (Cry, Cry) '
1 . 1
! * Drag coefficient (Cp) !
' * Frontal area (A '
! 1
! * Mass of the car (M) !
H * Inertia Mass (M) :
: !
! 1
! 1
! 1
! 1
! 1
i i Battery Current >
! 1
i ' Battery Voltage >
! 1
Drive Cycle I !
HWFe) : Subaru BRZ 2015 Test Car v —
! 1
: H Motor torque >
! 1
|: i Motor speed >
! 1

Figure 7. Dynamometer testing on the Subaru BRZ 2015.

4.1. Electric Motor

During the test, the speed of the car was controlled by a human driver operating an accelerator
and brake pedal. The driver tried to follow the HWFET drive cycle as closely as possible. However,
pedal sensitivity limitation and driver reactivity cause some inaccuracy that might explain the peaks
in error between experimental and simulated motor speed and torque. This is why the vehicle speed
profile during this experiment was recorded and used as an input for the simulation.

The goal of those preliminary results is to check the accuracy of the vehicle dynamics and electric
motor models, described in Appendix A. In fact, a poor design would prevent the evaluation of the
performance of the high-fidelity battery model. However, results in Figures 8 and 9 show high accuracy
of the vehicle dynamics and motor models with a low average absolute error for the motor speed and
good precision for the motor torque (see Table 3).

Table 3. Result of the experimental and simulated motor comparison.

Electric Motor Average Absolute Error Standard Deviation Absolute Error
Speed 18 RPM 37 RPM
Torque 4.4 N.m 4.3 N.m
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Comparison between experimental and simulated motor speed
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Figure 8. Motor speed comparison between experimental and simulated data.
150 Comparison between experimental and simulated motor torque
Experimental d'ata'
100 I . Simulation
—_ I 4
Z % -* WM qf'm "rJ:' k, 'n M, \‘wf"-- I
& st Wit st Bl Bonfut ke
¢ | | [ |
S 50/ ’ l '
-100
-150! 1 1 1 | | | ]
0 500 1000 1500 2000 2500 3000
Time [s]
it Absolute error between experimental and simulated motor torque
E &0
=
'é 80+ i
5
O
3 40 - i
5
w
0 500 1000 1500 2000 2500 3000
Time [s]
Figure 9. Motor torque comparison between experimental and simulated data.
4.2. Battery

The results of those experiments show that the recursive algorithm does not bring any additional
precision to the battery model compared to the two RC network battery model by itself. Nevertheless,
they do prove that the two RC network battery model improves the accuracy of the estimation of the
voltage and SoC of the battery, as shown in Figures 10 and 11 and Tables 4 and 5, compared to the
simple internal resistance battery model. However, the impact of the battery model on the current
is minimal, as shown in Figure 12 and Table 6. Those observations have a theoretical explanation.
We know that Ipa = Ppatt/ Viatt- As Vpay fluctuations are small compared to Py, Ipare mainly depends
on Py, In a high-level abstraction, we could say that Ij,a = f(Ppagt) as Vipar is quite constant. This is
why precision of the battery model will not have much effect on Ij,,. We can also deduce that error on
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Ipatt mainly depends on the vehicle dynamics and electric motor models because Py, clearly depends
on those equations (see Equations (1), (2) and (A1)—-(A16)). However, the precision of the battery model
will have an impact on Vi, Indeed, this battery model is made to simulate the battery response
voltage due to current changes. This is why V},.y; is influenced by the model. Concerning the SoC, it is
computed by integrating I, Even if the battery model has a locally small impact on I, there is
a difference between both calculated currents (see Table 5). By integrating those differences, the error,
regarding the SoC estimation, accumulates. This explains why the SoC of the two RC network and the

internal resistance battery model are slowly diverging from each other while discharging, as shown in
Figure 12.

Table 4. Result of the experimental and simulated battery voltage comparison.

Average Improvement Standard Deviation
Battery Model Absolute Error Factor Absolute Error
Internal resistance 8.0V - 8.0V
Two RC network recursive 25V 3.200 28V
Two RC network simple 25V 3.200 27V
400, ) Comparison l_:leiweerl axperime_ntal and sirnulate_d battery voltagg

Experimental data
2RC network recursive

2RC network simple
| resistance
57350 wﬁ(‘( i M internal -
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Figure 10. Battery voltage comparison between the experimental and simulated battery model.
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Figure 11. SoC comparison between the experimental and simulated battery model.
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Figure 12. Battery current comparison between the experimental and simulated battery model.

Table 5. Result of the experimental and simulated battery SoC comparison.

Average Improvement Standard Deviation
Battery Model Absolute Error Factor Absolute Error
Internal resistance 1.5% - 0.5%
Two RC network recursive 0.7% 2.142 0.3%
Two RC network simple 0.8% 1.875 0.3%

Table 6. Result of the experimental and simulated battery current comparison.

Average Improvement Standard Deviation
Battery Model Absolute Error Factor Absolute Error
Internal resistance 6.3 A - 7.0 A
Two RC network recursive 6.2 A 1.016 7.0 A
Two RC network simple 62 A 1.016 69 A

For experimental data, Voc has not been measured during the test. However, as the Voc used
with the two RC Network battery model is originally derived from experimental data (see Figure 5),
the same V¢ has been used for computing the battery loss in experimental data. The results, shown in
Figures 13 and 14 and Table 7, prove that the simulated losses from the two RC Network battery model
are closer to reality than the one simulated by the internal resistance battery model. This observation
suggests that the improvement of the battery accuracy may impact the MPC controller. Indeed,
as the simulated battery power loss is closer to reality, the power requested to the engine will change
and be closer to the real need of the vehicle. Besides, it is noted that the two RC network battery
model estimates the bus voltage better. Therefore, when this model is used for the battery in the
power-train model of a MPC algorithm, the variables such as voltage, current, torque, and speed of
other components, such as engine, generator, and traction motor, will change. Thus, it can be predicted
that, in a power-train model of a MPC where a two RC network battery model is deployed, a better
estimation of actual variables of the system can be accomplished.

Table 7. Result of the experimental and simulated battery power loss comparison.

Average Improvement Standard Deviation
Battery Model Absolute Error Factor Absolute Error
Internal resistance 3259 W - 2315W
Two RC network recursive 153.6 W 2.122 181.9W

Two RC network simple 152.5W 2.137 1784 W
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Comparison between experimental and simulated battery power loss
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Figure 13. Power loss comparison between the experimental data and simulated battery model.

The employed method to compute both battery power and cumulative losses is described by
Equations (16) and (17):

Pbloss = ||Ibatt(t) X Vbatt(t)| - |Ibatt(t) X VOC(f)H (16)

— Comparison between experimental and simulated battery energy loss
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Figure 14. Cumulative energy loss comparison between the experimental data and simulated
battery model.
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5. Conclusions

In this manuscript, a Matlab-based model has been developed with a high accuracy battery model
for a hybridized Subaru BRZ 2015. This manuscript has two contributions. The first contribution
is the development, for the first time in the field of a MPC controller, of a high accuracy battery for
a PHEV Matlab-based model. Indeed, the new battery model reduces the absolute voltage, SoC and
battery power loss error respectively by a factor of 3.2, 1.9 and 2.1 on average compared to the simpler
battery model. Those observations highly infer that the performance of MPC will be impacted by
the improvement of the high-fidelity battery model. It is likely that the high-fidelity battery model
helps to reach more accurate estimation of the behaviors of other power-train components, and thus
helps MPC to manage more precisely fuel consumption, battery lifetime, vehicle efficiency, or any
other implemented cost function. However, there is no concrete proof that the improvement of the
battery model fidelity is necessary to obtain an optimal control solution from the MPC. This is why
the second contribution is the question raised in this manuscript: what is the optimal battery model
fidelity required to optimize the performance of a MPC controller in the case of automotive application?
To answer this question, the first sensitivity analysis of the battery model for MPC is planned to be
conducted in a separate work. Following the control loop of Figure 15, this analysis should provide
a procedure and results to determine the optimal tradeoff between the complexity and accuracy of the
battery model of a PHEV for a MPC controller.

¥

MPC Control inputs . Real vehicle states
Vehicle Battery —p| Real vehicle

best model +

error

MPC Control inputs . Real vehicle states
Vehicle Battery Real vehicle

model n

t

Y

Figure 15. Control loop for the future sensitivity analysis.
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Nomenclature

Symbol Name Units
t The discrete time S

At The step time s

F; The rolling resistance N
Fg The grading resistance N
Fw The aerodynamic drag resistance N
Fa The acceleration resistance N
F. The sum of every resistant force applied to the car N

B The lateral angle between the wind and car direction rads
o The vertical angle between the wind and car direction rads

104 The road elevation rads
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Py,

p m_elec
p g_elec
Pa
Ppatt
Pe

p m_mech
Oc

Ofw

Ow

Oc

g

Wm
Wg

We

TS

Te

Tm
Jfiwhi
M;

M
Tbatt
Mg
TNgear
Nm

MNe
Vbatt
Voc
VTransient_S
VTransienth
Ipatt
SoC

Cbatt

Qloss
Pb loss

Eboss
ASoC
DOD
Meycle
CrO
Cr1
Cp

€0

rd

Af

Pa
Text

The power provided/received by the battery

The electric power requested /supply by the electric motor
The power provide by the generator

The constant power consumed by the auxiliary electric system
The power provided/received by the battery

The power requested /provided by the car

The power provided by the motor

The car speed

The frontal wind speed

The wind speed

The car acceleration

The earth gravitational constant

The motor speed

The generator speed

The engine speed

The generator torque

The engine torque

The motor torque

The sum of the engine and generator flywheel moment of inertia

The inertia mass due to all rotating parts
The car mass

The battery efficiency

The generator efficiency

The motor gear ratio efficiency

The motor efficiency

The engine efficiency

The battery voltage

The battery open circuit voltage

The battery short time response voltage
The battery long time response voltage
The current provided /received by the battery
The battery state of charge

The battery nominal capacity

The battery capacity fades

The battery power loss

The battery energy loss

The cumulative SoC variation for a given C-rate
The depth of discharge

The number of battery cycle

The car static rolling coefficient

The car dynamic rolling coefficient

The car drag coefficient

The gear reduction

The wheels radius

The car front size surface

The air density

The ambient absolute temperature

The ambient pressure

The specific gas constant for dry air
The perfect gas constant

The activation energy

The power law factor

The pre-exponent factor
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m
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kg/m?
K
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J/(kg-K)
J/mol-K
J/mol



Batteries 2017, 3, 13 14 of 17

Appendix A.

Appendix A.1. Vehicle Dynamics

This section describes the vehicle dynamic equations [36-39]. The power that the car’s power-train has to
provide can be computed as follows:

Pe(t) = [Fe(t) + Fg(t) + Fu (t) + Fa(t) ] oc(t) (A1)

The rolling resistance of the vehicle is defined by Equation (A2):

1.2
E(t) = (cro+cr1 x {Zz(iﬂ )Mgcos(oc(t)) (A2)

The static and dynamic rolling coefficients have been experimentally determined.
The grading resistance of the vehicle is defined by Equation (A3):

Fy(t) = Mgsin(a(t)) (A3)

The aerodynamics drag resistance is defined as follows:

Fu(t) = 0.5 p,(t) X Af x Cp X (ve(t) — vy (£))? (A4)
Vg (t) = vw(t) cos(B(t)) cos(d(t)) (A5)
pa(t) = roi (A6)

The acceleration resistance of the vehicle is defined by Equation (A7):
E(t) = [M+ Mj]oc(t) (A7)

Appendix A.2. Electric Motor

The electric motor power demand at the wheels can be calculated by Equations (A8) and (A9):

P.(t

<( ), ifP.(t) >0 (A8)
Pm_mech(t) = 4 Ngear

Pe(t) Ngear, 1fR(t) <O (A9)

The motor speed and torque are computed by Equations (A10) and (A11):

wm(t) = 2ellden

wd (A10)
Tm(t) = Tomeyll) (A11)

The electric power requested by the electric motor is computed as follows:

O (t) T (£) . (A12)
—_—, if Py mech(t) =0
Pm_elec(t) =3Mm (wm' Tm) - h( )
W (t)Tm (t)nm(wm' Tm)ninv' if Pm_mech(t) <0 (A13)

The motor efficiency nm is computed by interpolating the manufacturer look-up table over torque and speed.

Appendix A.3. Electric Generator

The electric power generated by the electric generator can be computed as follows:
Pg_elec(t) = Tg(t)wg(t) ng(wg/ Tg) (A14)

wg () = we(t) (A15)
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The generator efficiency ng is calculated by interpolating the manufacturer look-up table over torque
and speed.

Appendix A.4. Engine

The speed of the engine is already known as it is controlled by the MPC. Only the engine torque needs to be
computed. In a discrete domain, the engine torque can be computed by Equation (A16):

we(t+1) — wel(t)

Te(t+1) = Jawht AL

+ Ty(t+1) (A16)

The fuel consumption is then computed by interpolating the manufacturer look-up table over engine torque
and speed.
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