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Abstract: High-throughput computational screening (HTCS) is an effective tool to accelerate the
discovery of active materials for Li-ion batteries. For the evaluation of organic cathode materials,
the effectiveness of HTCS depends on the accuracy of the employed chemical descriptors and
their computing cost. This work was focused on evaluating the performance of computational
chemistry methods, including semi-empirical quantum mechanics (SEQM), density-functional tight-
binding (DFTB), and density functional theory (DFT), for the prediction of the redox potentials of
quinone-based cathode materials for Li-ion batteries. In addition, we evaluated the accuracy of
three energy-related descriptors: (1) the redox reaction energy, (2) the lowest unoccupied molecular
orbital (LUMO) energy of reactant molecules, and (3) the highest occupied molecular orbital (HOMO)
energy of lithiated product molecules. Among them, the LUMO energy of the reactant compounds,
regardless of the level of theory used for its calculation, showed the best performance as a descriptor
for the prediction of experimental redox potentials. This finding contrasts with our earlier results
on the calculation of quinone redox potentials in aqueous media for redox flow batteries, for which
the redox reaction energy was the best descriptor. Furthermore, the combination of geometry
optimization using low-level methods (e.g., SEQM or DFTB) followed by energy calculation with
DFT yielded accuracy as good as the full optimization of geometry using the DFT calculations. Thus,
the proposed calculation scheme is useful for both the optimum use of computational resources and
the systematic generation of robust calculation data on quinone-based cathode compounds for the
training of data-driven material discovery models.

Keywords: computational chemistry; semi-empirical calculations; DFT calculations; quinones; Li-ion
batteries; energy storage

1. Introduction

Lithium-ion batteries (LIBs) are some the most widely investigated energy systems
designed to meet the ever-increasing demands for renewable energy storage and thereby to
alleviate global environmental issues [1]. Characterized by high-abundance, low cost, and
relatively sustainable synthesis and recycling procedures, organic electroactive materials
have received increasing attention as high-performance battery electrodes [2,3]. They are
also structurally diverse, which allows one to tune their redox and mechanical properties [3].
Among the currently investigated classes of organic materials, conjugated carbonyls are
widely studied because of their tunable structures and battery-relevant properties [4].

Quinones, which are a broad subclass of conjugated carbonyls, have drawn huge
interest from the research community, especially because of their reversible electrochemistry
with Li ions [5]. The redox mechanism of quinones can be explained by the enolate
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reactions on the carbonyl groups [6] that are stabilized by conjugation. However, quinone-
based compounds suffer from high solubility in organic electrolytes, and their redox
properties require further optimization for practical application as cathode materials [4,7].
Therefore, various modifications, such as functionalization with chemical groups [8], the
substitution of heteroatoms [9], the fusion of aromatic rings [10], and increasing the number
of carbonyl groups [11], have been used to tune their intrinsic properties to improve their
electrochemical performance. Given the large chemical and configurational space of
electroactive compounds, high-throughput computational screening (HTCS) is a promising
strategy for creating virtual libraries of diverse electroactive compounds, predicting their
performance by computing descriptors, and identifying the most promising candidates for
further validation [12–17].

Typically, HTCS studies use quantum chemical simulations for the prediction of redox
properties; hence, the computational cost associated with screening possibly millions of
candidate compounds can become unfeasibly large. Therefore, the performance descriptors
used in HTCS need to be carefully chosen, and the trade-offs between their accuracy
and computing cost must be addressed. One of the central properties of interest is the
redox potential of the lithiation of carbonyl groups because it is directly proportional
to the cell voltage and energy density. Multiple studies have reported the reasonably
accurate (~50 mV) prediction of the redox potential of quinones for redox flow battery
applications, in which they are treated in a single-molecule (gas phase) model with implicit
solvation [13,18]. However, the computational prediction of redox potentials with the
explicit treatment of the amorphous or crystalline electrodes is a difficult challenge because
it requires knowledge of the solid-state structure [19].

Although it is in principle possible to achieve higher prediction accuracy with ab
initio simulations of the solid phase [20], such an approach is in practice computationally
demanding because the amorphous or semi-amorphous nature of these solids requires
the large simulation cells and an exhaustive search for the lowest-energy structure over a
typically intractable configurational space. Given the fact that the subsequent lithiation
of these structures will arguably increase the complexity multifold because many equally
probable amorphous structures of even the same compound have varying charge capac-
ities and redox potentials, HTCS using ab initio methods is currently infeasible for the
solid-phase structures of thousands of quinone-based candidates. Therefore, a common
approach for estimating the redox potentials of quinones is to perform simulations of gas
phase molecules using density functional theory (DFT) [8,11,21]. Although DFT has been
extensively applied for performing such computations, other less frequently used low
level methods, such as semi-empirical quantum mechanics (SEQM) and density functional
tight binding (DFTB), hold promise to speed up structure and property predictions while
retaining accuracy.

In the current work, we systematically evaluated the performance of the level of theo-
ries, including DFT, DFTB, SEQM, and their hybrid combinations, for predicting the redox
potentials of quinone-based compounds within the gas phase model. The effectiveness
of this approximation was validated in the context of different structural variations of
the molecular backbones, including heteroatom substitutions and functionalization with
chemical groups. For the prediction of experimental redox potentials, we compared the
performance of three descriptors by independently calibrating them against the available
experimental electrochemical data of the compounds. These descriptors included the reac-
tion energy of molecules with Li atoms, the lowest unoccupied molecular orbital (LUMO)
energy of the reactant, and the highest occupied molecular orbital (HOMO) energy of the
lithiated product molecules. The performance of descriptors and calculation procedures
for the acceleration of redox potential prediction of vast chemical libraries were analyzed.
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2. Methods
2.1. Choice of Descriptors

Within the gas phase approximation, the redox potential (Eo) can be described using
the Nernst equation as follows:

Eo = −∆Gr

nF
(1)

where ∆Gr denotes the Gibbs free energy difference between the reactant and product, F is
the Faraday constant, and n is the number of transferred electrons. ∆Gr can be expressed as:

∆Gr = ∆Er + p∆Vr − T∆Sr + ∆(ZPE) (2)

where ∆Er is the change in internal energy, also called reaction energy. ∆Vr, ∆Sr, and
∆(ZPE) correspond to changes in volume, entropy, and zero-point energy, respectively.
Pressure and temperature are represented by p and T, respectively. In the gas phase
approximation, the terms p∆Vr and T∆Sr are typically much smaller than ∆Er [19], and
they are therefore neglected in the equation. For the prediction of the redox potentials of
quinone-based organic molecules, ∆(ZPE) is sufficiently small (as shown in Table S10) and
can be neglected in HTCS studies [13,22]. Thus, the redox potential is approximated as:

Eo = −∆Er

nF
(3)

where ∆Er is given by:
∆Er = EQLi2 − EQ − 2ELi (4)

where EQLi2 , EQ, and ELi denote the total energy of a lithiated molecule, reactant quinone
molecule, and a lithium atom in gas phase, respectively. In addition to ∆Er, we also consid-
ered the frontier orbital energies corresponding to the HOMO of the lithiated molecule and
the LUMO of the reactant molecule as descriptors for the prediction of redox potentials [23].

The prediction performance of redox potential can be evaluated by calculating the
coefficient of determination (R2) and root-mean-square error (RMSE) of the linear regression
(LR) between the computational data and the measured redox potentials. To facilitate
the comparison between models with different scales, we used the normalized RMSE
(NRMSE) [24], which is defined as the RMSE for any given dataset divided by the range of
redox potentials spanned by that dataset:

NRMSE =
RMSE

Range o f experimental redox potential
(5)

2.2. Experimental Data for Validation

In order to examine the validity of the gas phase approximation, we collected ex-
perimental data of the lithiation redox potential of a wide variety of quinone-like elec-
troactive compounds for Li-ion batteries [8–11,21,25–28]. We separately performed LR
analysis on the groups of molecules from different literature sources, thus ensuring con-
sistency with respect to electrode synthesis, electrolyte formulation, cell configurations,
charge/discharge rates, and other experimental conditions. While numerous experimental
studies have been reported on quinone-like electrodes, we identified seven experimental
datasets [8–11,21,26,27], as shown in Table 1, that satisfied the following five criteria: (1) the
total number of different compounds that have been tested should be at least three, which
is essentially the minimal number of points for a LR model; (2) the redox potentials of
the different molecules should span a range that is wider than 0.1 V vs. Li/Li+, as this
value is similar to errors in DFT calculations [29]; (3) the redox potentials of compounds
that involve a two-electron lithiation process should be clearly specified rather than be
presented as a range of values [28]; (4) the lithiation sites on the molecules should be limited
to the carbonyl groups that are directly attached to the rings of quinones, as opposed to
the chemical functional groups of the molecules; and (5) molecules with more than four
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rings should be ignored because it is known that the π-π stacking interaction between
quinones rapidly increases with the number of aromatic rings [30] and the intermolecular
interactions consequently increase, which is likely to result in errors within the gas phase
approximation [20]. In addition to these criteria, fluorinated 2, 2′-bis-p-benzoquinone (F2-
BBQ) [21] from dataset No. 5 was removed because of its fast decomposition (12% capacity
retained after 20th cycle) and therefore lack of discharge voltage data. As a result, a total of
39 compounds divided into seven sets were identified for the validation of the descriptors
and computational models. The two-dimensional (2D) structures of these compounds are
shown in Figure 1.

Table 1. A summary of experimental data for each of the seven calibration datasets.

Dataset Electrolyte Number of
Molecules

Discharge
Condition

Range of Redox
Potential (vs.

Li/Li+)
Data Source *

1 1 M LiPF6-EC + DEC (v/v = 3:7) 4 0.1 mA 0.60 V Table
2 1 M LiPF6-EC + DMC (w/w = 1:1) 4 1 Li per 5 h 0.44 V Text
3 1 M LiPF6-EC + DMC (w/w = 1:1) 5 1 Li per 5 h 0.66 V Table
4 1 M LiPF6-EC + DMC (v/v = 3:7) 6 1 mV/s 1.55 V Text
5 2.75 M LiTFSI-Tetraglyme 8 40 mA/g 0.30 V Table
6 1 M LiTFSI-Tetraglyme 5 40 mA/g 1.00 V Table
7 1 M LiPF6-PC 7 1 Li per 10 h 0.82 V Text

* Table and Text indicate the original source in the corresponding literature from which the data were extracted.

Figure 1. 2D structures of the molecules that were used for the calibration of computational methods. A total of seven
different experimental datasets were considered in the current study.

As shown in Figure 1, the experimentally tested compounds exhibit good structural
diversity in terms of quinone-based backbones and their functional derivatives. The
molecules contain a maximum of four rings and four C=O groups as lithiation sites,
which are located at the para and ortho positions on the rings. Apart from the heteroatomic
substitutions of ring carbons with N, O, and S atoms, several compounds are functionalized
with a wide selection of electron-donating and -withdrawing groups, including –CH3, –CF3,
–C4F9, –C6F13, –Cl, –COOH, –NH2, –CH3, –Br, –C4H9, –CH(CH3)2, –C(CH3)3, –OCH3,
–COOLi, and –COOCH3. The measured values of redox potentials were obtained by two
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different experimental techniques: galvanostatic cycling and cyclic voltammetry. Further
details on the electrolytes, discharge rates, and type of data source that was used to obtain
the measured redox potentials are summarized in Table 1, and the operation voltage and
charge/discharge windows for the seven datasets are tabulated in Table S9.

2.3. Computational Scheme

To compare the accuracy of various theoretical methods for the prediction of redox
potentials, we propose a computational workflow that includes the following steps:

(1) The three-dimensional (3D) molecular geometries were initially created by using the
Maestro editor in the Schrödinger Materials Science Suite (version 2019-3) [31].

(2) A search for the lowest energy conformer was performed for all the compounds using
the OPLS3e [32] force field.

(3) The lowest energy conformers were further optimized in the gas phase with various
SEQM, DFTB, and DFT methods that are described below. As an additional step,
single point energy (SPE) calculations using two representative DFT methods were
performed on frozen atom coordinates obtained from the SEQM or DFTB optimiza-
tions. Altogether, these optimizations yielded descriptor data that were obtained at
three levels of approximation: SEQM or DFTB, DFT, and a hybrid of the two.

(4) To explore the possible contributions of solvation effects (as explored in previous
studies [18,33]), SPE calculations were performed again in an implicit solvation
environment within the standard Poisson–Boltzmann Formalism (PBF) [34], in which
the parameters for the solvent phase were set according to the experimental conditions
from each dataset.

The conformational search was performed by using the MacroModel [35] module.
The MOPAC [36] and Jaguar [37] programs, both as implemented in Schrödinger Materials
Science Suite, were used to perform the SEQM and DFT calculations, respectively. The
DFTB calculations were carried out using the ADF software [38]. Seven SEQM methods
were considered here to perform the geometry optimizations: AM1, MNDO, MNDOD,
PM3, PM6, PM6-D3H4X, and PM7. GFN1-xTB [39] and SCC-DFTB [40] with the parameter
set of QUASINANO2015 [41] were selected for the DFTB based geometry optimizations.
Two exchange-correlation functionals, also with and without Grimme’s D3 dispersion
corrections, were employed in the DFT simulations; these included PBE, PBE-D3, B3LYP,
and B3LYP-D3. The LACVP++** [42] basis set with polarization and diffuse functions was
used for the DFT calculations. For DFT optimization calculations, we used grids with
medium point density, whereas for DFT SPE calculations, we used finer grids. The hybrid
scheme, i.e., the DFT calculated SPE on the SEQM- or DFTB-optimized coordinates, was
performed without the dispersion corrections, as they showed no significant advantage
when using the full DFT-based calculation scheme. The dielectric constant, molecular
weight, and density of the electrolyte solvent used for the SPE calculations involving the
implicit solvation effect are provided in Supporting Information Table S1. The values for
binary solvents were calculated based on their molar ratios in the mixtures.

3. Results and Discussions

To identify an optimal descriptor and prediction method for HTCS, we developed
LR models between the experimental redox potentials and the calculated descriptors (∆Er,
LUMO, and HOMO energies) for each of the seven datasets. The scatter plots for the
NRMSE of the three descriptors that were calculated at three rungs of a computational
ladder (DFT, SEQM, and DFTB) are shown in Figure 2, and their numerical data are
provided in Tables S2–S4. The corresponding R2 and RMSE data are shown in Supporting
Information Figure S1, Tables S5–S7 and S11–S13. We begin with a discussion of the
performance of the three descriptors at the highest level of theory considered in this work;
the DFT calculated results as shown in Figure 2a–c. Firstly, when using HOMO energy
as the descriptor, there was considerable spread in NRMSE values for the various DFT
methods for all datasets (Figure 2c). Secondly, when using ∆Er (Figure 2a), the NRMSE
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spread was ~10%, except for dataset No. 2, for which the NRMSE ranged from 3.82% to
29.78%. Thirdly, when the reactant molecule’s LUMO energy was used as the descriptor
(Figure 2b), all DFT methods showed quite similar performance for each dataset, with an
NRMSE spread of approximately 5%. A consensus between the various DFT methods
applied in the current study reveals problems with the optimized structures and the
corresponding energies of the lithiated molecules. In addition, when considering DFT
methods without implicit solvation, LUMO energy was found to be the best descriptor
for predicting the redox potentials not only because of the high consistency between
various DFT methods on NRMSE but also because of its lowest prediction error among
three descriptors.

Figure 2. NRMSE of three descriptors—∆Er, LUMO energy, and HOMO energy—calculated with (a–c) DFT functionals,
(d–f) SEQM methods, and (g–i) DFTB methods for the seven datasets. PBEg and PBEs represent the calculation of single
point energy in the gas (g) and solvent phases (s), respectively. The shaded vertical bars in (b,e,h) show the fully B3LYPg

calculated data.

In a recent study, we showed that the redox potential of the concerted proton–electron
reduction of quinones in aqueous flow batteries is most efficiently predicted by using ∆Er
as the descriptor [13]. As shown in Figure 2, the relatively better performance of the LUMO
energy when used as a descriptor for the redox potential predictions of Li-ion batteries
can be explained by noting that the gas phase approximation to the solid-state structures
became more erroneous. This was likely because the lithiation led to significant changes
in both the solid structures and their associated energies of inter-molecular interactions.
Moreover, the computation of lithiated molecules not only led to a significant drop in the
prediction accuracy of redox potentials but also doubled the calculation efforts. Therefore,
these findings are expected to have major implications for strategizing future HTCS efforts
from the standpoint of prediction accuracy and computational cost. The inclusion of
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implicit solvation in the DFT calculations of SPE had varying degrees of effect on prediction
performance. The inclusion of solvation improved the energetics of lithiated quinones
(though not consistently among the datasets), as can be seen in Figure 2c with a decrease in
NRMSE values when using the HOMO energy descriptor. On the other hand, the inclusion
of solvation had negligible effect for reactant quinones, as can be seen in Figure 2b with the
performance of the LUMO energy descriptor. Since the DFT treatment of lithiated molecules
in the gas phase model is prone to errors when predicting the measured potentials (as
discussed above) and the fact that the inclusion of implicit solvation requires additional
computing power, there is no clear advantage of including implicit solvation models for
the calculation of chemical descriptors from the perspective of HTCS.

Regarding the performance of the DFT functionals, when LUMO energy was used as
the descriptor, B3LYP performed better than PBE in five datasets and was comparable to
PBE in the remaining two datasets (Figure 2b; see also Supporting Information Table S3).
Moreover, the dispersion corrections to either of the two DFT functionals had insignificant
effects on the prediction performance. Accordingly, we chose the results from the B3LYP
functional as our benchmark and compared the results from the low-level theoretical
methods to them. When comparing the accuracy of the three descriptors calculated with
various SEQM (Figure 2d–f) and DFTB methods (Figure 2g–i), the trends in the results
showed similarities to those of the DFT simulations. As one can expect, the overall errors
for SEQM and DFTB were higher than DFT. Though LUMO emerged as the best performing
descriptor again, ∆Er did not show good performance. In addition, as evidenced by the
performance of HOMO energy as the descriptor, the treatment of lithiated compounds
with SEQM and DFTB was significantly more erroneous than with DFT. It must also be
noted that even when using the LUMO energy as the descriptor, the SEQM methods
had a larger NRMSE spread than the DFT methods. As shown in Table S8, the ranking
of SEQM methods based on average of the NRMSE for the seven datasets was: AM1 >
PM7 > PM6-D3H4X > PM6 > MNDOD > PM3 > MNDO. In the group of DFTB methods,
GFN1-xTB showed a better prediction accuracy than SCC-DFTB for all seven datasets.
Based on these results, AM1 and GFN1-xTB emerged as the best performing SEQM and
DFTB methods, respectively.

A common feature of DFT, SEQM, and DFTB calculations was that their performance
on datasets No. 4, 5, and 7 was comparably worse than on the other sets. In dataset No. 4,
the number of rings in molecules varied from one to three, which indicates that the varying
degree of π-π interactions are likely to increase the non-systematic errors when using the
gas phase model. In experiments with dataset No. 5, the Cl- and Br-substituted quinones
were shown to display high solubility in the electrolyte, and the discharge potentials were
obtained by averaging the area under the charge–discharge curves. It is possible that these
factors incurred large uncertainties in dataset No. 5. Finally, for HTCS purposes, we note
that the prediction accuracies of the SEQM methods were not significantly worse than the
DFT benchmark for the LUMO energy descriptor. Although the average NRMSE values of
the seven datasets for AM1, PM7, and B3LYP were 16.10, 17.13, and 12.65%, respectively
(Table S8), the low-level methods were approximately 103 times faster to compute. As
shown in Figure 2e, the prediction accuracies of the SEQM methods were almost as good as
the DFT simulations for datasets No. 1, 2, and 5, but they were slightly worse for datasets
No. 3, 4, 6, and 7. The average NRMSE values for GFN1-xTB and SCC-DFTB were 15.85
and 19.60%, respectively. The DFTB methods showed similar prediction accuracies to
DFT for datasets No. 1, 2, 4, and 5, though they were comparably worse for datasets
No. 3 and 6.

The hybrid scheme of using DFT calculations of SPE on frozen atom coordinates from
SEQM or DFTB optimizations was further explored with the aim to improve the prediction
accuracy of low-level methods. The NRMSE, R2, and RMSE of hybrid calculations for
three descriptors are shown in Figure 3 and Supporting Information Figure S2, Tables
S2–S7 and S11–S13. Two SEQM (AM1 and PM7) and two DFTB (GFN1-xTB and SCC-
DFTB) methods were used for the geometry optimizations, and these were followed by
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SPE calculations using the B3LYP functional. Yet again, the relative behavior of the three
descriptors remained unchanged across all seven datasets, and LUMO clearly emerged
as the most accurate descriptor with the lowest NRMSE. Remarkably, when using LUMO
as the descriptor, the performance of the hybrid scheme was just as good as the DFT
calculations across the seven datasets (Figure 3b,e). Within the gas phase approximation,
the notable similarities between the hybrid scheme and DFT results suggest that the
differences between the bare low-level calculations and the full DFT calculations originated
from the prediction of energies rather than the difference in geometries. It can be observed
that inclusion of implicit solvation led to a miniscule effect on the prediction accuracy when
using the LUMO descriptor, which was the same as the case of the full DFT calculations.
The average NRMSE of the hybrid scheme PM7/B3LYPg (11.46%) was slightly less than
that of AM1/B3LYPg (13.83%), which was different than the performance of the bare SEQM
calculations. A similar conclusion was reached for the hybrid scheme of DFTB and DFT,
for which the SCC-DFTB/B3LYPg (12.01%) slightly outperformed GFN1-xTB/B3LYPg
(13.11%), and the bare GFN1-xTB results had smaller average NRMSE values than the
bare SCC-DFTB results. According to these findings, the PM7 and SCC-DFTB methods
are efficient for geometry optimization, and the AM1 and GFN1-xTB methods are better
at predicting energies. In summary, when LUMO energy is used as the descriptor for the
prediction of measured redox potentials, the hybrid scheme PM7/B3LYPg is the best choice.

Figure 3. NRMSE of three descriptors: ∆Er, LUMO energy, and HOMO energy. The hybrid schemes of SEQM/DFT
(a–c) and DFTB/DFT (d–f) were used for the seven datasets. Accordingly, AM1/B3LYPg and AM1/B3LYPs suggest that the
molecules were optimized only with AM1, and their energies were calculated by using B3LYP functional either without or
with solvation effect, respectively. The shaded vertical bars in (b,e) show the fully B3LYPg calculated data.

4. Conclusions

A systematic evaluation of theoretical methods of varying levels of accuracy and com-
putational cost was performed in order to devise an effective strategy for accelerating the
prediction of the redox potentials of quinone-based cathode materials for Li-ion batteries.
Two DFT functionals with dispersion corrections, seven SEQM and two DFTB parametriza-
tions were considered for evaluation. In addition, hybrid schemes that involve SEQM,
DFTB, and DFT methods, were also considered. Three energy-related descriptors—∆Er,
the LUMO energy of the quinones, and the HOMO energy of lithiated quinones—were
used against the measured redox potential data of 39 quinone-based cathode materials.
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The LUMO energy of the reactant molecules clearly emerged as the best descriptor at all
levels of the considered theory. The inclusion of an implicit solvation model during energy
calculations showed a negligible improvement when predicting the redox potentials. Com-
binations of low-level geometry optimization, either with SEQM or DFTB, and high-level
self-consistent single point energy calculation with DFT (B3LYP) offered similar accuracies
as the full DFT optimization calculations but at only a fraction of a computational effort.
Thus, we anticipate that the evaluation of the performance of descriptors and computa-
tional methods, as well as the proposed computational scheme of low- and high-level
methods, will be useful for future explorations of the vast chemical space of quinone-based
cathode materials for Li-ion batteries.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10
.3390/batteries7040071/s1. Table S1: Physical properties, including dielectric constant, molecular
weight, and density, of organic electrolytes and their mixtures corresponding to the experimental
datasets; Figure S1: R2 of three descriptors: ∆Er, LUMO energy, and HOMO energy. The computa-
tional data were calculated by using (a–c) DFT, (d–f) SEQM, and (g–i) DFTB methods for the seven
experimental datasets. PBEg and PBEs represent single point calculations in gas (g) and solvent
(s) phases, respectively. The shaded vertical bars in (b,e,h) show the fully B3LYPg calculated data;
Figure S2: R2 of three descriptors: ∆Er, LUMO energy, and HOMO energy. The computational data
were calculated by using (a–c) hybrid SEQM/DFT scheme and (d,e) hybrid DFTB/DFT scheme
for the seven experimental datasets. Accordingly, AM1/B3LYPg and AM1/B3LYPs suggest that
the molecules were optimized only with AM1 and their energies were calculated by using B3LYP
functional either without or with solvation effect, respectively. The shaded vertical bars in (b,e,h)
show the fully B3LYPg calculated data; Table S2: NRMSE of ∆Er as computed with DFT, SEQM,
DFTB, and hybrid schemes of SEQM (or DFTB) and DFT methods for the seven datasets; Table S3:
NRMSE of LUMO energy of the reactant molecules as computed with DFT, SEQM, DFTB, and hybrid
schemes of SEQM (or DFTB) and DFT methods for the seven datasets; Table S4: NRMSE of HOMO
energy of the product molecules as computed with DFT, SEQM, DFTB, and hybrid schemes of SEQM
(or DFTB) and DFT methods for the seven datasets; Table S5: R2 of ∆Er as computed with DFT,
SEQM, DFTB, and hybrid schemes of SEQM (or DFTB) and DFT methods for the seven datasets;
Table S6: R2 of LUMO energy of the reactant molecules as computed with DFT, SEQM, DFTB, and
hybrid schemes of SEQM (or DFTB) and DFT methods for the seven datasets; Table S7: R2 of HOMO
energy of the product molecules as computed with DFT, SEQM, DFTB, and hybrid schemes of SEQM
(or DFTB) and DFT methods for the seven datasets; Table S8: Average NRMSE of the seven datasets
for LUMO descriptor as calculated with B3LYP, SEQM, DFTB, and the hybrid schemes of SEQM
(or DFTB) and B3LYP; Table S9: Summary of operation voltage and charge/discharge windows for
the seven datasets; Table S10: The 2D structures of seven quinones, the zero-point energy (ZPE) of
quinone reactants and lithiated products, and their difference in ZPE with the functional of PBE
and B3LYP in gas phase; Table S11: RMSE of ∆Er as computed with DFT, SEQM, DFTB, and hybrid
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