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Abstract: The state estimation of a battery is a significant component of a BMS. Due to the poor
temperature performance and voltage plateau phase in LiFePO4 batteries, the difficulty of state
estimation is greatly increased. At the same time, the ambient temperature in which the battery
operates is changeable, and its parameters will vary with the temperature. Therefore, it is extremely
challenging to estimate the state of LiFePO4 batteries under variable temperatures. In an effort to
accurately estimate the SOC of LiFePO4 batteries at different and variable temperatures, as well as its
capacity at low temperature, the characteristics of LiFePO4 batteries at different temperatures are first
tested. In addition, a variable temperature OCV experiment is designed to obtain the OCV of the full
SOC range. Then, the ECM considering temperature is established and all parameters are identified
by PSO. Finally, an improved EKF algorithm is presented to accurately estimate the SOC of LiFePO4

batteries at different and variable temperatures. Meanwhile, the battery capacity at low temperature
is further estimated based on the estimated SOC result. The results show that SOC estimation errors
at variable temperature are all within 3%, and the capacity estimation errors at low temperature are
all within 1%.

Keywords: variable temperature condition; LiFePO4 battery; least squares; extended Kalman filter;
state estimation

1. Introduction

Due to energy shortages and environmental pollution that are becoming progressively
more serious, electric vehicles are favored by the market due to their green characteristics.
The rapid growth in the electric vehicle market and large-scale power grid applications have
strongly promoted the development of LiFePO4 batteries, which have been extensively
used in electric vehicles and energy storage systems [1–4]. Among them, LiFePO4 batteries
have become the main power provider in electric vehicles due to their advantages such
as environmental friendliness, low cost and long cycle life [5]. Accurate state of charge
(SOC) estimation is a prerequisite for batteries to work more efficiently and safely [6].
A common SOC estimation method is to obtain battery SOC based on the relationship
between battery SOC and open circuit voltage (OCV) [7]. However, due to the long plateau
period and OCV hysteresis of LiFePO4 batteries, an accurate SOC cannot be obtained by
this method. According to a study by Zheng et al. [8], when the OCV error reaches up to 1
mV, it can generate a 5% SOC estimation error for LiFePO4 batteries. Therefore, it is difficult
to accurately estimate the SOC of LiFePO4 batteries [9]. Meanwhile, the low temperature
performance of LiFePO4 batteries is poor [10], which further affects the accuracy of SOC
and capacity estimation. Consequently, it is necessary to devise a method to accurately
estimate the SOC and capacity at low temperatures.

The basis for estimating battery state with high precision is an appropriate battery
model [11]. Common battery models include the equivalent circuit model (ECM) [12], the
electrochemical mechanism model and the data-driven model [13–15]. Battery dynamic
characteristics have been described by Dai [16] using a first-order RC model. Hu [17]
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compared the accuracy, complexity and robustness of twelve common ECMs. He believed
that the terminal voltage estimation accuracy for a LiFePO4 battery could be achieved by
using the first-order RC model and the hysteresis of a single state. Other researchers [18–20]
have achieved improvements in ECMs, but the influence of temperature has not been taken
into consideration. The dynamic properties of a battery were described by Johnson et al.
by using the Rint model, which verified that the OCV and ohmic internal resistance are
functions of the SOC and temperature [21]. Nevertheless, there was a problem with the
structure of this model, since it cannot describe the polarization phenomenon of batteries.
He et al. simulated the battery terminal voltage based on the Thevenin model considering
temperature [22], but they ignored the influence of OCV which is a crucial model parameter.
Xing et al. established a battery model based on a OCV–SOC curve to study the influence
of temperature on OCV [23]. They proposed a correction coefficient to improve the model,
but the influence of temperature on the internal resistance and other parameters of the
model was not considered. Leo et al. considered the variation in battery capacity and
internal resistance with temperature [24,25] but neglected to consider other parameters as
well. Xu et al. established a temperature-related second-order RC model to simulate an
NCM battery [26], but the change in model parameters was not significant owing to the
narrow temperature range.

The parameter identification of battery models is generally realized by intelligent
optimization algorithms which include the genetic algorithm (GA) and particle swarm
optimization (PSO) [27,28]. The optimal parameters can be found by setting reasonable
upper and lower limits of the parameters. The combination of ECM and various algorithms
is the most common method of SOC estimation [29]. In recent years, Kalman filters (KFs)
have been universally applied, benefiting from a balance of accuracy, robustness and com-
puting complexity [30,31]. Chen et al. [32] combined the Rint model and KF algorithm to
estimate the SOC of a battery; the estimation accuracy was significantly improved when
compared with the OCV-corrected ampere-hour integration method. Cui et al. [33] pro-
posed a square-root volumetric KF with temperature correction rules to achieve an accurate
estimation of the SOC in the battery management system (BMS) of an on-board embed-
ded microcontroller. Sangwan et al. [10] optimized the model parameters by considering
temperature, adopting three adaptive filtering algorithms based on recursive Bayesian
filtering to estimate the battery SOC. In addition, they compared the efficiency of mass and
computation time. Despite the aforementioned methods, which consider the influence of
temperature and have a relatively good SOC estimation accuracy, most of them ignore the
dynamic load with simultaneous changes in temperature and current.

Thereby, in this paper, we propose a modified extended Kalman filter (EKF) algorithm.
The LiFePO4 battery is selected to verify the precision of SOC estimation results under
various temperature scenarios and capacity estimation results under low temperature.
Firstly, a second-order RC model considering temperature is established. Identifying all
parameters of the model is performed by the PSO algorithm. Then, a new SOC definition
is put forward according to temperature variation, which redefines the SOC cutoff point
under different ambient temperatures. Furthermore, the OCVs at different temperatures are
estimated based on the forgetting factor recursive least square (FFRLS) method, and the gain
of EKF is adjusted between the plateau phase and non-plateau phase of the OCV curve. The
SOC can subsequently be accurately estimated at different temperatures. In the meantime,
through a discharging experiment under variable temperature conditions, the accuracy of
the proposed method and the reliability of the battery model are verified. Finally, on the
premise of the accurate SOC estimation of LiFePO4 batteries at low temperatures, based
on the principle of SOC electric quantity gain method, the iterative weighted least squares
method is used to estimate the capacity of the battery at low temperatures.

2. Variable Temperature State Estimation Method

Estimation of the SOC is commonly carried out using the EKF algorithm, which is a
method combining the ampere-hour integration method and terminal voltage calculation
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based on a battery model. The terminal voltage of the battery model is calculated based
on OCV, and OCV is generally obtained through SOC–OCV curve interpolation or table
query. However, there are two obvious plateau periods on the SOC–OCV curve of the
LiFePO4 battery. As a result, using the method of OCV table query, it is difficult to obtain
an accurate OCV even with an accurate SOC. Inaccurate calculation of battery terminal
voltage will lead to inaccurate estimation of the SOC in the next step. Therefore, how to
use the EKF algorithm in the OCV plateau periods of LiFePO4 batteries is a key problem.
Moreover, setting a Kalman gain will largely determine the estimation accuracy of the EKF
algorithm. An improved EKF algorithm is established in this section to estimate the SOC of
a LiFePO4 battery. The steps are as follows: Firstly, the OCV curve of a LiFePO4 battery will
be estimated online, and the noise of the EKF will be adjusted between zones according
to the plateau and non-plateau phase of the estimated OCV curve. The advantages of
combining the ampere-hour integration method and the battery model method of the EKF
algorithm will be used to estimate SOC of the battery at different temperatures. Then, the
SOC will be estimated at variable temperature dynamic conditions. Based on the SOC
estimation results at low temperature, the weighted iterative least squares method will
be utilized for estimating the battery capacity. The framework of this method is shown in
Figure 1.
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2.1. Battery Model and Parameter Identification

An accurate selection of the battery model is essential to achieve a high precision of
the state estimation. Following a comprehensive consideration of the complexity, accuracy,
implementation convenience and practical value of the chosen model, the RC equivalent
circuit model is generally adopted. The higher the order of RC, the higher the accuracy.
At the same time, since the variations in the parameters with temperature need to be
considered, the second-order RC model considering temperature is an appropriate choice
to simulate the characteristics of a LiFePO4 battery. The structure of the selected model is
illustrated in Figure 2.
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In the aforementioned model, UOC represents the OCV of the battery, I is the charg-
ing or discharging current, Ut is the terminal voltage and R0 represents ohmic internal
resistance. Polarization internal resistances, R1 and R2, are connected in parallel with
polarization capacitors, C1 and C2, to form two RC structures. U1 and U2 are the voltages
of the two RC structures, respectively, which are used to simulate the voltage rise and
fall characteristics of the battery polarization. The measured current, I, and cell surface
temperature, T, are the inputs of the established cell model. Meanwhile, Ut represents the
output of the model. The state space equations and discretization equations obtained are
as follows:

The equations of state spaces:

d(U1)

dt
= I(t)

1
C1(SOC, T)

− 1
R1(SOC, T)C1(SOC, T)

U1(t) (1)

d(U2)

dt
= I(t)

1
C2(SOC, T)

− 1
R2(SOC, T)C2(SOC, T)

U2(t) (2)

U(t) = Uoc(SOC, T) + I(t) · R0(SOC, T) + U1(t) + U2(t) (3)

Equations (1)–(3) are simplified to obtain:

U1(t) = U1(t− 1)e−
∆t
τ1 + I(t)R1(1− e−

∆t
τ1 ) (4)

U2(t) = U2(t− 1)e−
∆t
τ2 + I(t)R2(1− e−

∆t
τ2 ) (5)

U(t) = Uoc(t) + I(t)R0 + U1(t) + U2(t) (6)

where τ1 = R1C1, τ2 = R2C2, τ1 and τ2 are time constants and ∆t is the sampling interval.
Since the parameters in the model cannot be measured directly, experimental data

will be utilized to identify these unknown parameters. In this paper, the PSO algorithm is
selected for parameter identification for its fast calculation speed and low use of resources.
The model parameters to be identified are as follows:

θ = [RCha, RDch, R1, τ1, R2, τ2] (7)

where RCha indicates charging ohmic internal resistance and RDch indicates discharging
ohmic internal resistance. To evaluate the precision of the battery model, we take advantage
of the rooted mean squared error (RMSE) between the terminal voltage of the model and the
measured terminal voltage in the battery experiment. Therefore, the adaptability function
of PSO is:

F̂(θ̂k) =

√√√√ 1
N

N

∑
k=1

(Uk − Ûk(θ̂k))

2

(8)

where F̂(θ̂k) indicates the RMSE at time k, N is the number of data points and Uk and Ûk
indicate the measured terminal voltage at time k and the terminal voltage estimated by the
model at time k, respectively. θ̂k is an estimate of the individual parameters in the model.
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2.2. Improved EKF Algorithm

There are two goals that can be achieved with the improved EKF algorithm. On the
one hand, the OCV curve of the battery can be determined online from the real-time data
accurately. On the other hand, to improve the convergence speed of the algorithm and
the ability to change parameters during identification, the forgetting factor, λ, is added
to amplify the weight influence of the next iteration. In this way, it can increase the
influence of new data in the dynamic system on the identification results. With respect
to the established model incorporating the temperature factor, the FFRLS algorithm is
employed for the OCV which is identified online for the LiFePO4 battery. The form of
recursive least squares method based on the standard is yk = φkθk + ek, and the specific
process of FFRLS algorithm is shown in Figure 3.
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λ is the forgetting factor, affecting the final estimation result with different values.
If λ is too small, the increase in the weight of the old data will lead to a fluctuation or
divergence of the identification result. If λ is too large and the weight of the old data is
too small, the identification result will not track the dynamic parameters with time, and
the convergence speed will slow down. In general, λ is set in the range of 0.95 to 1. After
parameter modification, when λ = 0.98, the method can take both stability and convergence
speed into account.

When the online estimation of is OCV finished, the plateau phase and non-plateau
phase can be distinguished, and then the Kalman gain can be adjusted in the EKF algorithm.
For dynamic nonlinear systems, when system noise and measurement noise are considered,
Equations (9) and (10) are generally used to express the state space model of the system:

xk + 1 = f (xk,uk) + wk (9)

yk = g(xk, uk) + vk (10)

According to the above state space model, taking xk = [SOC, U1, U2]
T as the state

variable, the charging and discharging current as the input and the estimated terminal
voltage as the output, we obtain the discrete state space expressions:

xk+1 = A · xk + B · Ik + wk (11)

Ut,k = Uocv −U1,k −U2,k − IkR0 + vk (12)
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The initialization and iterative estimation equations of the EKF algorithm are shown
in Table 1.

Table 1. Iteration equations of the EKF algorithm.

Definition:

Âk =
∂ f (xk ,uk)

∂xk
=

1 0 0
0 exp(−∆t/τ1) 0
0 0 exp(−∆t/τ2)


Ĉk =

∂g(xk ,uk)
∂xk

=
[

dOCVk(SOCk)
dSOCk

−1 −1
]

Here are the steps:
Initialization: K = 0, initial state vector x+0 = E[x0], initial bias

P+
0 = E[(x− x̂+0 )(x− x̂+0 )

T
]

Iterative calculation:
When K = 1,2 . . .
Status vector time update: x̂−k = f (x̂+k−1, uk−1)

Error covariance matrix time update: ∑−x̃,k = Âk−1∑+
x̃,k−1 ÂT

k−1 + ∑w

To calculate the Kalman gain: Lk = ∑−x̃,k ĈT
k [Ĉk∑−x̃,k ĈT

k +∑v]
−1

Status vector measurement update: x̂+k = x̂−k + Lk[yk − g(x̂−k , uk)]

Error covariance matrix measurement updated: ∑+
x̃,k = (I − LkĈk)∑−x̃,k

where Âk and Ĉk are the coefficient matrixes, Lk is the Kalman gain, ∑w and ∑v are the covariance matrixes of the
input measurement noise named wk and the output measurement noise named vk , respectively. The covariance
matrix, ∑x̃,k , indicates the non-determinacy of the state estimation.

The OCV plateau of the LiFePO4 battery is also known as the non-battery model
reliability interval. Within this interval, an appropriate Kalman gain should be selected
so that the EKF algorithm is even more inclined to trust the actual terminal voltage value
measured by the voltage sensor. In this case, it is preferable to calculate the SOC using
the method of ampere-hour integration. In the non-plateau phase of the battery, that is,
the reliability interval of the battery model, it is more preferable to select the Kalman gain
to obtain the terminal voltage from the EKF algorithm. In this case, the OCV table query
method is preferred to estimate the SOC of the battery. Thereby, the key to solving the
problem is to find the specific voltage value that distinguishes the OCV plateau period
from the OCV non-plateau period.

2.3. Capacity Estimation Method

The discharging capacity of a battery will greatly reduce at low temperatures, which
causes a tremendous impact on the pinpoint capacity estimation results at low temperature.
At present, the SOC electric quantity gain method is commonly used to estimate the battery
capacity. The variation in battery capacity is generally calculated by the ampere-hour
integration method. After obtaining the SOC at different temperatures as described above,
the capacity estimation at low temperature can be carried out based on the idea of the
SOC charge gain method by using the result of the low temperature SOC estimation. The
least square method is a common online estimation method of battery capacity by iterative
calculations. Considering that the SOC estimation process will be affected by uncontrollable
noise at low temperatures, the battery capacity is estimated using the weighted iterative
least squares method.

The two-point method is a basis for the SOC electric quantity gain method. When
the ∆Q of two points and the corresponding ∆SOC is calculated the battery capacity can
be calculated from the ratio between the two points. The calculation formula is shown in
Equation (13):

Cnorm =
∆Q

∆SOC
=

∫ t2
t1

η I(t)
3600 dt

SOC(t2)− SOC(t1)
(13)
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where SOC(t1) and SOC(t2) represent SOC at the moments t1 and t2, respectively. I(t) is
the charging and discharging current at time t and η is the coulomb efficiency, usually
taken as 1.

The capacity estimation model for ordinary least squares (OLS) is:

yi = β1 + β2xi + vi (14)

where β1 is a constant value, β2 is a coefficient value (both are to be calculated) and vi is
the noise.

Converting Equation (14) to the vector Formula (15) gives:
y1
y2
...

yn

 =


1 x11
1 x21
...

...
1 xn1


[

β1
β2

]
+


v1
v2
...

vn

 (15)

Thereby, the battery capacity in the model can be calculated by Formula (16):

Cnorm = 1/β2 (16)

The matrix form of Formula (15) is:

Y = X · H + V (17)

where Y is the observation vector corresponding to n*1, X represents the matrix of n*2,
H is the parameter vector, H = [β1, β2]

T and V is the error vector of n*1. The capacity
can be calculated using iteratively reweighted least squares (IRLS) using the OLS capacity
estimation model.

SE =
n

∑
i=1

(Yi − β1 − β2xi)
2 =

n

∑
i=1

v2
i (18)

where vi represents the residuals. If the influence function, ρ, is chosen as the sum of the
squares of the residuals, the objective function is transformed to:

SE =
n

∑
i=1

ρ(Yi − β1 − β2xi) =
n

∑
i=1

ρ(vi) (19)

SE deflects from β so that it is 0, obtaining the equation:

n

∑
i=1

ϕ(Yi − β1 − β2xi)xi = 0 (20)

where ϕ(x) is the derivative of ρ(x).
Introducing S = med(|vi |)

0.6745 in the weight function yields the standardized residuals
ui =

vi
S = 0.6745·vi

med(|ei |)
, where med represents the absolute median of the dispersion calculation.

Formula (20) can then be written as:

n

∑
i=1

ϕ(Yi − β1 − β2xi)xi =
n

∑
i=1

ϕ(ui)xi =
n

∑
i=1

ϕ(ui)

ui
· ui · xi =

n

∑
i=1

wi · ui · xi = 0 (21)

where wi =
ϕ(ui)

ui
is the sample weight of the observation of number i. Formula (18) is

vectorized and brought into the matrix to obtain:

XTWY = XTWXH (22)



Batteries 2023, 9, 43 8 of 17

Obtaining the parameter estimates as:

Ĥw = (XTWX)
−1

XTY (23)

Once the parametric vector Ĥw = [β1, β2]
T is obtained, the capacity estimate can be

calculated by Formula (16).

3. Experiments
3.1. Basic Performance Test at Different Temperatures

In this paper, a LiFePO4 battery from Tianjin Lishen Battery Company was selected
to carry out the basic performance experiments at different temperatures. The battery
was placed in a temperature chamber which could achieve a high temperature and low
temperature conversion during the experiment. In addition, the Xinwei battery test system
was used to conduct temperature variation experiments at different temperatures and
different rest times. A brief description of the basic parameters of the battery is provided in
Table 2.

Table 2. Basic performance parameters of experimental battery.

Parameters Numeric Value

Nominal capacity (Ah) 20
Nominal voltage (V) 3.2

Charging cutoff voltage (V) 3.65 ± 0.5
Discharging cutoff voltage (V) 2.0

Standard charging and discharging current (A) 1/3C
Charging temperature (◦C) 0~45

Discharging temperature (◦C) −20~60

The standard capacity of the LiFePO4 battery was tested at 45 ◦C, 25 ◦C, 5 ◦C and
−15 ◦C. In an effort to obtain the standard charging and discharging capacities at different
ambient temperatures, a current of 6.67 A, which is 1/3C, was used to charge and discharge
the battery. In addition, the hybrid pulse power characteristic (HPPC) test was proposed to
obtain the internal resistance at each temperature. Meanwhile, the dynamic working condi-
tion experiments were conducted at four temperatures to provide data for the estimation
of SOC.

3.2. Variable Temperature OCV Experiment

An important tool which can reflect the operating characteristics is the OCV–SOC
relationship curve of one battery. The OCVs of the same battery will be different when
the temperature changes, and there is an OCV plateau in the OCV of a LiFePO4 battery.
Therefore, analyzing the OCV performance of the LiFePO4 battery at different temperatures
was crucial. An original experiment method was proposed to attain the OCV of the full
range of the SOC. Firstly, the battery temperature was initially set at 25 ◦C and fully charged
in this scenario, followed by 45 ◦C, 25 ◦C, 5 ◦C and −15 ◦C settings for the temperature
chamber. The corresponding rest time was set to 3 h, 3 h, 4 h and 5 h, respectively, so as to
obtain the OCV of the SOC node at each temperature. After the rest time, the temperature
chamber was adjusted to the temperature of 25 ◦C, and the next SOC point can be obtained
by constant discharging current. The above steps are repeated to obtain the OCVs in the full
SOC range at different temperatures. Figure 4 shows the flow chart of the OCV experiment
at variable temperatures.
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3.3. Experiment to Determine the Upper and Lower Limits of SOC at Different Temperatures

The SOC reflects the discharging capacity of a battery, which is defined as the propor-
tion of the remaining discharging capacity to the total capacity. As temperatures and aging
effect the overall discharging capacity of a lithium-ion battery, the SOC used to reflect the
residual discharging capacity of the battery must also take into account these factors. SOC
values for batteries are inconsistent at different temperatures when the standard capacity
test method is used to charge and discharge the battery to the cutoff voltage. Thus, it is
necessary to redefine the SOC and define the upper and lower limits of the SOC when
the ambient temperature is different. In this paper, the SOC at 25 ◦C was used as the
benchmark, meaning the range of SOC at 25 ◦C was 0 to 100%, and the upper and lower
limits of SOC at other temperatures changes as the temperature changes.

To determine the two limits of SOC at different temperatures, the following experi-
ments were conducted:

(1) At 25 ◦C, the battery was charged with 1/3C constant current to charge it to the
charging cutoff voltage, and then it was charged to the charging cutoff current with constant
voltage. At this point, the battery SOC was 100%. Then, it was adjusted to rest for a certain
time at different temperatures, and then discharged to the lower limit of voltage at 1/3C.
In this process, this ratio was the lower limit of SOC at this temperature, which is the
remaining battery capacity divided by the total discharge capacity at 25 ◦C, as shown in
Equation (24).

SOCT
L =

Cap25
discha − CapT

discha
Cap25

discha
(24)

where SOCT
L denotes the lower limit of the SOC when the redefined temperature is T,

Cap25
discha represents the discharging capacity at 25 ◦C, CapT

discha is the actual discharging
capacity at temperature T and T is the ambient temperature in ◦C.

(2) At 25 ◦C, the battery was charged with 1/3C current to the lower limit of voltage
for discharging, at which time the battery SOC was 0%. Then, the battery was maintained
at other temperatures for a certain time, and then a constant current was applied to charge
the battery to the upper voltage limit. In this process, the ratio was the upper limit of SOC
at this temperature, which is the capacity at this temperature, to the battery capacity at
25 ◦C, as indicated in Equation (25).

SOCT
U =

CapT
cha

Cap25
cha

(25)

where SOCT
U is the upper limit of SOC when the redefined temperature is T, Cap25

cha is the
charging capacity at 25 ◦C and CapT

cha is the actual charging capacity at temperature T.
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3.4. Variable Temperature Dynamic Working Condition Experiment

Based on the previous dynamic working condition experiments at different temper-
atures, estimations of the SOC at different temperatures were calculated. However, the
battery works in an environment with variations in temperature, and the accuracy of SOC
estimation should be considered in terms of these environmental changes. Thus, this
section adjusts the ambient temperature change for the experiment of continuous NEDC
discharging condition of the battery. After being fully charged at 25 ◦C, the battery was put
in the temperature chamber and the temperature was set to imitate the ambient temperature
in an actual application. Meanwhile, the battery was discharged under continuous NEDC
conditions to achieve the simultaneous current changes with ambient temperature.

Two experiments of a temperature rise and a temperature drop were carried out
to satisfy the temperature changes. The temperature and voltage curves for the rising
temperature scenario are given in Figure 5. The ambient temperature where the battery
is located gradually rises from −18 ◦C to 45 ◦C at a rate of 0.3 ◦C/min. At this time,
the program of the temperature chamber stops, and the temperature gradually drops to
35 ◦C. When the battery reaches a low temperature, the terminal voltage is greatly affected
by the temperature and changes sharply. At one point, the cutoff voltage of the battery
reaches 3.8 V. With a gradual rise in temperature, the battery terminal voltage changes
gradually stabilize. As shown in Figure 6, the temperature of the temperature chamber
drops gradually from 45 ◦C to −12 ◦C at a rate of 0.3 ◦C/min. At this time, the program of
the temperature chamber stops, and the temperature gradually rises to 15 ◦C. Additionally,
the terminal voltage curve shows that the terminal voltage changes sharply when the
battery is at a low temperature. As the temperature rises gradually, the battery terminal
voltage changes steadily.
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Figure 5. Temperature variation and voltage curve from the temperature rise experiment. (a) Temper-
ature curve and (b) voltage curve.
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Figure 6. Temperature variation and voltage curve from the temperature drop experiment. (a) Tem-
perature curve and (b) voltage curve.
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4. Results
4.1. Experimental Results of Variable Temperature OCV

The variable temperature experiment was conducted at four temperatures, and all
of them discharge at 25 ◦C to the next SOC point. Therefore, the SOC points at different
temperatures are correspond well. In addition, the whole battery electric quantity can be
released at 25 ◦C; thus, the OCV at all SOC points can be obtained. The OCV curves at the
four temperatures show low fluctuation and are practically equal, as shown by the results
of the variable temperature experiment. As a result, the model established in this study will
not take into account the effect of temperature on OCV in order to reduce the complexity
of the model and increase computational efficiency. The OCV–SOC curve at 25 ◦C will be
adopted uniformly.

The battery SOC is stable when discharged at 25 ◦C, which is reflected in the OCV
variation with SOC at different temperatures. Figure 7b reveals that the difference between
the OCV at 25 ◦C and every other temperature is negligible. Thereby, the OCVs at different
temperatures are considered to be same in the whole range of the SOC in this paper.
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Figure 7. OCV curves at different temperatures. (a) OCV–SOC curves at individual temperatures
and (b) the difference between the variable temperature OCVs and the OCV at 25 ◦C.

4.2. Parameter Identification Results

Figure 8 displays the parameters identified by the PSO algorithm using data from
HPPC experiments conducted at different temperatures. The results demonstrate that
changes in temperature and SOC have an impact on the charging and discharging ohmic
internal resistance, two polarization internal resistances, and two time constants. In the
following SOC estimation process, the model parameters are determined according to dif-
ferent SOC and different temperatures, which can meet the whole calculation requirements
at different ambient temperatures and SOC conditions.
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4.3. Fitting the SOC Upper and Lower Limit Functions

According to the actual charging and discharging electric quantity, calculations are
performed using the aforementioned defined upper and lower limits of the SOC at each
temperature. The final range of upper and lower limits of SOC at different temperatures
are shown in Figure 9.
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The upper and lower limits of the SOC function can be acquired by curve fitting in
accordance with the determined upper and lower limits of SOC at four temperatures. Based
on the results of the fitting, the two limits of the SOC at other temperatures, such as 0 ◦C,
can be simulated. The fitting curves are shown in Figure 10.
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Figure 10. Fitting curves.

SOC upper limit function:

SOCT
U = 0.2671 · e0.08937T + 97.51 (26)

SOC lower limit function:

SOCT
L = 9.899 · e−0.08702T − 1.115 (27)

Considering this figure, it is apparent that the fitting curves are capable of displaying
the actual upper and lower limits of SOC with accuracy. Thus, SOC estimations and
capacity estimations will be carried out based on this result.

4.4. Estimation Results of SOC at Different Temperatures and Variable Temperatures

The online OCV estimation of the LiFePO4 battery under different ambient tempera-
tures was carried out by the method of online OCV identification. Figure 11 displays the
estimation result taking 45 ◦C as an example.
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Figure 11. OCV estimation result and estimation error at 45 ◦C. (a) OCV estimation result and
(b) estimation error.

The error in the estimation results at the beginning and the end of OCV are relatively
large. However, the purpose of online OCV estimation in this paper is to distinguish
the plateau and non-plateau OCV phases of a LiFePO4 battery. It is worth noting that
there is a significant difference in the estimated OCV between the plateau and non-plateau
phases. Consequently, during the low SOC interval, large OCV estimation errors will not
have an effect on the accuracy of subsequent SOC estimation results. In Section 4.1, the
OCV curves at different temperatures obtained by the variable temperature experiment
were considered to be same, and so is the plateau phase and non-plateau phase of the
OCV curves at different temperatures. Therefore, the OCV curve at 25 ◦C in the variable
temperature experiment is applied uniformly. The OCV curve and the two plateau periods
are shown in Figure 12. The red rectangles show the two OCV plateau periods (3.290 V to
3.298 V and 3.331 V to 3.334 V) of the LiFePO4 battery range. The rest of OCV regions are
non-plateau periods. Thereby, a specific value to distinguish the plateau phase from the
non-plateau phase of the battery OCV can be obtained.
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Figure 12. OCV–SOC at 25 ◦C and the plateau period curve.

After distinguishing the plateau phase from the non-plateau phase based on the OCV
estimation results, the NEDC experiment results at different temperatures, the OCV–SOC
curve at a temperature of 25 ◦C and the discharging capacity will be used to estimate
the SOC. This is for the sake of validating the fast convergence of the improved EKF
algorithm tracking. On the other hand, considering that the capacity error will affect the
SOC estimation, 10% of the original SOC error and 10% of the capacity error are introduced.
The estimation results and errors at 45 ◦C, 25 ◦C, 5 ◦C and −15 ◦C are illustrated in
Figure 13.
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Figure 13. SOC estimation results and errors at different temperatures. (a) SOC estimation result at
each temperature and (b) SOC estimation error at each temperature.

In the plateau phase, the algorithm tends to be calculated by the ampere-hour in-
tegration method. Due to the capacity error, there exists a cumulative error in the SOC
calculation. In the non-plateau period, the algorithm tends to be calculated by the battery
model combined with the improved EKF method. The accumulated error is corrected
quickly and follows the real SOC. The above results demonstrate that the LiFePO4 battery
SOC can be accurately estimated at four ambient temperatures with the proposed method,
and the maximum error is no more than 4%.

In the process of SOC estimation at variable temperatures, the battery model param-
eters for the full SOC range at that temperature are acquired first based on the ambient
temperature. Then, the model parameter combination of the SOC is found according to
the SOC estimated value at this time. This cycle is iterated to achieve the application of
accurate model parameters at different ambient temperatures and SOC. For verifying the
reliability of the algorithm, an error of 5% was set for both the SOC and capacity initial
values. In addition, noise was added to the current and voltage in the input to simulate
an actual sensor. These two variable temperature experiments produced results which are
given in Figures 14 and 15. The SOC errors fluctuate around 0%, and the estimated SOC
of the two experiments with variable temperature can quickly converge to the real SOC.
Under the condition that the temperature and current change simultaneously, the final
accuracy of SOC estimation is within 3%.

In conclusion, with the conditions of SOC initial error, capacity error and current
and voltage drift, using the improved EKF algorithm, the SOC estimation accuracy and
robustness are maintained at variable temperatures.
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Figure 14. SOC estimation result and error of the temperature rise experiment. (a) SOC estimation
result and (b) SOC estimation error.
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Figure 15. SOC estimation result and error of the temperature drop experiment. (a) SOC estimation
result and (b) SOC estimation error.

4.5. Capacity Estimation

To confirm the accuracy of the IRLS algorithm for estimating the LiFePO4 battery
capacity at low temperatures, NEDC experiments were carried out on fresh and aged
LiFePO4 batteries at 0 ◦C. The battery SOC at 0 ◦C was first estimated with the improved
EKF algorithm. Afterwards, the IRLS algorithm was used to estimate the capacity by
iterative calculations. The results of the capacity estimation are presented in Table 3. Due to
the precise SOC estimation result at 0 ◦C, the capacity error estimated by the IRLS algorithm
at 0 ◦C is no more than 1%. As a result, battery capacity estimation by the IRLS algorithm
in the whole range of SOC can maintain a high accuracy at low temperature. Meanwhile,
the estimation error is stable for both fresh and aged batteries.

Table 3. Basic performance parameters of the battery.

Capacity Estimates Capacity
Experimental Values Capacity Errors

Fresh battery 20.50 Ah 20.53 Ah 0.15%
Aged battery 19.56 Ah 19.43 Ah 0.67%

5. Conclusions

For the purpose of achieving an accurate estimation of the SOC of a LiFePO4 battery
at different and variable temperatures, an improved EKF algorithm is proposed. Firstly,
with the forgetting factor, the OCV curve of the battery is identified online using the
least square method. Then, the OCV values of the plateau phase and non-plateau phase



Batteries 2023, 9, 43 16 of 17

are distinguished by the OCV curve at uniform temperature, and the Kalman gain is
adjusted between the zones to accurately estimate the SOC of the full range. In addition,
for estimating the variable temperature SOC, we drew upon a variable temperature NEDC
experiment. The results show that all SOC errors are within 3%. On account of the
pinpoint estimation of low temperature battery SOC, the low temperature battery capacity
is estimated through the use of the IRLS algorithm. A high degree of accuracy is observed
in the capacity estimation results for both fresh and aged batteries at low temperature, with
errors all within 1%.
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ECM Equivalent circuit model
SOC State of charge
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