
Citation: Zhou, M.; Wei, K.; Wu, X.;

Weng, L.; Su, H.; Wang, D.; Zhang, Y.;

Li, J. Fractional-Order Sliding-Mode

Observers for the Estimation of

State-of-Charge and State-of-Health

of Lithium Batteries. Batteries 2023, 9,

213. https://doi.org/10.3390/

batteries9040213

Academic Editor: Matthieu Dubarry

Received: 8 January 2023

Revised: 25 March 2023

Accepted: 29 March 2023

Published: 1 April 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

batteries

Article

Fractional-Order Sliding-Mode Observers for the Estimation of
State-of-Charge and State-of-Health of Lithium Batteries
Minghao Zhou 1, Kemeng Wei 1 , Xiaogang Wu 1 , Ling Weng 2,*, Hongyu Su 1, Dong Wang 1, Yuanke Zhang 1

and Jialin Li 1

1 School of Electrical and Electronic Engineering, Harbin University of Science and Technology,
Harbin 150080, China; zhouminghao@hrbust.edu.cn (M.Z.)

2 School of Materials Science and Chemical Engineering, Harbin University of Science and Technology,
Harbin 150080, China

* Correspondence: l.weng@hrbust.edu.cn; Tel.: +86-139-0361-7062

Abstract: Lithium batteries are widely used in power storage and new energy vehicles due to their
high energy density and long cycle life. The accurate and real-time estimation for the state-of-charge
(SoC) and the state-of-health (SoH) of lithium batteries is of great significance to improve battery
life, reliability, and utilization efficiency. In this paper, three cascaded fractional-order sliding-mode
observers (FOSMOs) are designed for the estimation of SoC by observing the terminal voltage, the
polarization voltage, and the open-circuit voltage of a lithium cell, respectively. Furthermore, to
calculate the value of the SoH, two FOSMOs are developed to estimate the capacity and internal
resistance of the lithium cell. The control signals of the observers are continuous by utilizing fractional-
order sliding manifolds without low-pass filters. Compared with the existing sliding-mode observers
for SoC and SoH, weaker chattering, faster response, and higher estimation accuracy are obtained in
the proposed method. Finally, the experiment tests demonstrate the validity and feasibility of the
proposed observer design method.

Keywords: sliding-mode observer (SMO); state-of-charge (SoC); state-of-health (SoH); lithium battery

1. Introduction

With the depletion of global energy, new energy vehicles are gradually replacing
fuel vehicles. Batteries, represented by lithium batteries, are the core components of new-
energy vehicles. The real-time estimation for SoC and SoH is vital and indispensable for
the safety, reliability, and efficiency of lithium batteries [1,2]. The model of the battery is
the mathematical expression of its characteristics, and accurate battery models can not
only reflect the relationship between battery characteristics and influencing factors, but
also provide an important basis for accurate state estimation. The mathematical models of
lithium batteries are generally divided into two types: the electrochemical model [3] and the
equivalent circuit model (ECM) [4]. Electrochemical models take into account the impact of
the distributed behaviors inside the cells, including the potentials in the electrolyte and
the concentration of Li-ions [5]. The equivalent circuit model has been widely used in the
modeling and state estimation of various power lithium batteries because of its simple
structure, easy integration, easy real-time calculation, and low complexity. In recent years,
scholars proposed a variety of equivalent circuit models such as the Rint model, Thevenin
model, Partnership for a New Generation of Vehicles (PNGV) model, and Dual Polarization
(DP) model. The Thevenin model, also called the RC equivalent circuit model, which
consists of an internal resistance and some resistance-capacitance loops, can simulate the
static and dynamic performance precisely. However, because of their stochastic internal
parameter variations, the uncertainties existing in the lithium batteries would be hard
to estimate and compensate practically [6,7]. The main estimation methods for lithium
batteries based on ECMs include the impedance measurement method [8], machine learning
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algorithm [9], extended Kalman filter (EKF) algorithm [10], and sliding-mode observer-
based method [11].

The impedance measurement method can obtain the functional relationship between
the SoC and the lithium battery model by stimulating the currents with different frequen-
cies [12]. However, the functional relationship cannot be obtained accurately because
the internal resistance of the battery is affected by its temperature and SoH [13], and the
measurement can only be carried out when the batteries are off-line [14]. The machine
learning algorithm regards the lithium batteries as a black box and performs tests and
training only by using a large amount of experimental data, regardless of the battery’s
internal relations [15]. In [16], the machine learning algorithm is used to estimate the SoC
of Li-ion batteries, which achieves high accuracy and fast estimation. However, the process
of estimation is extremely reliant on the training number and the count of neurons in
the hidden layer. The extended Kalman filter [17] uses the estimation state values of the
present moment and the previous moment to observe the currents, while EKF needs precise
modeling and other factors such as aging and environmental changes.

Generally, the aforementioned estimation methods of SoC and SoH depend on accurate
modeling, however the existing ECMs have their own limitations [18]. The sliding-mode
observer (SMO) is insensitive to the internal parameter variations and robust to exter-
nal disturbances, so it is suitable for the state observation of nonlinear and time-varying
systems [19]. In [20], a multi-time scale dual-SMO is designed to estimate the SoC and
SoH of lithium batteries simultaneously. Based on Thevenin model, [21] designed a dual
sliding-mode observer to observe the SOC and SoH of the battery, but it is difficult to obtain
the equivalent control signal by relying on the filter with complex structure. In [22], the
estimation of the SoC and SoH state is carried out by comparing the extended Kalman
filter with Particle Filtering. It is found that Particle Filtering has higher estimation accu-
racy. However, it also has high dependence on the model and poor robustness. In [23],
the variable parameters discrete sliding-mode observer is proposed in the time-varying
circumstance to estimate the SoC of a lithium battery. However, the low availability of data
and the phase lag of the low-pass filter (LPF) make the existing SMO have limitations in
the practical application. In [24], Alexander used the least square method to estimate the
model parameters in the electrochemical model of lithium batteries, considering the aging
of lithium batteries. Ref. [25] proposed a sliding-mode observer based on an AEM model to
estimate the SoH of a battery, but its control signal is discontinuous, which is not conducive
to practical application.

For accurate and real-time estimation, the fractional-order sliding-mode observers
are proposed for the SoC and SoH using the RC equivalent circuit model, which not only
avoids the phase lag caused by LPF, but also smooths the observation signals by fractional
order integrator. Furthermore, the observers are designed in the cascade type for the high
accuracy of the global estimation. The contributions of the paper can be summarized
as follows:

(1) The accuracy of estimation for SoC and SoH is enhanced without utilizing the LPF.
Owing to the fractional-order sliding manifolds, the control signals of the observers
are smoothed by the α + 1 order integrator, which can be directly used to estimate
SoC and SoH.

(2) The accuracy of the data is improved. The proposed FOSMOs adopt the data of
measured voltage and current to estimate the significant data, which will be used in
the next development of FOSMOs.

This paper is organized as follows: Section 2 introduces the RC equivalent circuit
model of lithium batteries. In Section 3, three FOSMOs are designed in the estimation
process of SoC. In Section 4, two novel observers are presented in the process of estimation
of SoH. Section 5 gives the experimental results. Finally, conclusions are shown in Section 6.
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2. Preliminary
2.1. The Mathematical Model of the Battery

The establishment of a high precision mathematical model is the basis of SoC and
SoH estimation of lithium batteries. The lithium battery is a typical nonlinear system. The
mathematical model of lithium batteries mainly includes the electrochemical model and
ECM [26]. The ECM has a simpler structure and lower computational complexity than the
electrochemical model [27]. Therefore, the RC equivalent circuit model is widely used in
the observation and control of lithium batteries. The RC equivalent circuit model presents
different modes according to the SoC, the current, and temperature, and it can simulate the
static and dynamic performance of the lithium batteries properly [28]. The RC equivalent
circuit model of lithium batteries is shown in Figure 1.
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Figure 1. RC equivalent circuit model of the lithium battery. 

In Figure 1, the controlled voltage source Voc (Z) is used to describe the open-circuit 
voltage of the lithium battery. The Voc (Z) and SoC of the battery meet a certain function 
relationship, and the Voc is affected by the ambient temperature. Z stands for SoC [29]. The 
internal resistance of the battery is generally uncertain, which contains ohmic resistance 
Rt and polarization resistance Rp. Cp is the polarization capacitance. The polarization volt-
age Vp is used to describe the polarization effect of the lithium battery in the charge and 
discharge processes. The three polarization parameters are jointly affected by the charge 
and discharge currents, SoC, and ambient temperature. Vt is the terminal output voltage, 
and Δf represents the uncertainties. The dynamics of the SoC can be expressed as:  𝑍ሶ = 𝑓ሶ௩௢௖ିଵ(𝑉௢௖) = 𝐼𝐶௡ (1) 
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where the variable ҡ, the slope at point Z, can be obtained from:  

Figure 1. RC equivalent circuit model of the lithium battery.

In Figure 1, the controlled voltage source Voc (Z) is used to describe the open-circuit
voltage of the lithium battery. The Voc (Z) and SoC of the battery meet a certain function
relationship, and the Voc is affected by the ambient temperature. Z stands for SoC [29]. The
internal resistance of the battery is generally uncertain, which contains ohmic resistance
Rt and polarization resistance Rp. Cp is the polarization capacitance. The polarization
voltage Vp is used to describe the polarization effect of the lithium battery in the charge and
discharge processes. The three polarization parameters are jointly affected by the charge
and discharge currents, SoC, and ambient temperature. Vt is the terminal output voltage,
and ∆f represents the uncertainties. The dynamics of the SoC can be expressed as:

.
Z =

.
f
−1
voc(Voc) =

I
Cn

(1)

where Cn is the rated capacity. The SoC and the Voc satisfy the following:

.
Voc =

.
f voc(Z) = κ

.
Z (2)

where the variable κ, the slope at point Z, can be obtained from:

κ =

.
Voc

.
Z

=
d fvoc(Z)

dZ
(3)

where the nonlinear function fvoc(Z) is the mapping of Voc versus Z.
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The mathematical relationship of Vt, Voc, and Vp in Figure 1 is expressed as:

.
Vt = −a1Vt + a1Voc(Z) + Rt

.
I + b1 I (4)

.
Voc = κa2Vt − κa2Voc − κa2Vp (5)

.
Vp = −a1Vp + b2 I + ∆ f (6)

where a1 = 1
RpCP

, a2 = 1
RtCn

, b1 = 1
Cn

+ 1
CP

+ Rt
RpCP

, b2 = 1
CP

. The disturbance ∆ f is
unknown, which is Lipschitz and bounded, then:

|∆ f | ≤ Ff 1,
∣∣∣Dα+1∆ f

∣∣∣ ≤ Ff 2 (7)

where Ff1 and Ff2 are known positive constants. The fractional-order derivate of the
estimation error of the open-circuit voltage and the estimation error of the polarization
voltage are assumed to be bounded as:∣∣∣Dα+1(Voc − V̂oc

)∣∣∣ ≤ Foc,
∣∣∣Dα+1(Vp − V̂p

)∣∣∣ ≤ Fp (8)

where Foc > 0 and Fp > 0 are certain constants, and V̂oc and V̂p are the estimations of Voc
and Vp.

2.2. High Order Sliding-Mode Observer

The high order sliding-mode control (HOSMC) proposed by Levant in 1996 can
eliminate chattering and improve the control accuracy effectively [30]. As a special type
of the HOSMC, the super twisting algorithm (STA) can realize convergency of the system
state to the ideal sliding manifold s =

.
s = 0 in finite time, but the rate of the convergence is

restricted if the initial state is far away from the equilibrium point [31].
Consider a first-order system as follows:

.
x = f (x) + u + d (9)

where x is the state variable, f (x) a known function, u the control input of the system,
and d the disturbance. Then, a high order sliding-mode observer (HOSMO) [32] can be
designed as:

.
x̂ = f (x̂) + u + v (10)

where x̂ is the observed value of x, v the observer control signal, and the estimating error is
defined as e = x− x̂. Then, we can obtain the follow form:

.
e = [ f (x)− f (x̂)] + d− v (11)

The finite time convergence of the system is guaranteed if the observer control law is
designed as follows:

v = −k1|e|1/2sgn(e)− k2

∫ t

0
sgn(e)dt (12)

The system state could converge to the equilibrium point in finite time and the sliding
manifold could achieve s =

.
s = 0.

The lemmas are given below to prove the theorems presented in Sections 3 and 4. To
prove the stability of the fractional differential systems, Lemma 1 is given as the theoretical
basis to design the fractional-order sliding manifold.
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Lemma 1. (Fractional-order sliding-mode [33]): Consider a fractional-order system expressed by

Dvx + Ax = 0, x(0) = x0 (13)

where v is the fractional-order parameter, 0 < v < 2, x ∈ Rn, A ∈ Rn×n, if |arg(eig(A)|> vπ/2, and
the solution of the system is asymptotically stable.

To prove the finite-time convergence of the sliding manifold, Lemma 2 is given below
as the theoretical basis.

Lemma 2. (Finite-time convergence theorem [34]): Consider a system
.
x = f (x), f(0) = 0, x ∈ Rn,

if there exists a positive definite continuous function V(x): U→R, real numbers c > 0 and 0 < α < 1,
and an open neighborhood U0⊂U of the origin such that

.
V + cVα(x) ≤ 0, x ∈ U0{0}, and then

V(x) can approach zero in a finite-time, tr ≤ V1−α(x(0))/(c(1 − α)).

3. The Estimation Method for SoC

The SoC of the lithium battery is generally defined as the ratio of the remaining
capacity to the rated capacity [35]. The SoC is related to the nature of the battery itself, but
also affected by the rate of discharge, environment temperature, and ambient noise [36].
The SoC of the lithium battery is mainly defined in two ways:

(1) The electric quantity perspective-based definition is given as [35]:

SoC = 1− Cs

CN
= 1−

ηs
∫

is(t)dt
CN

(14)

where Cs and CN are the discharge quantity and rated capacity of the lithium battery,
is(t) is the discharge current, and ηs is the discharge efficiency factor.

(2) The energy perspective-based definition is shown by [37]:

SoC = 1− Ws

WN
= 1−

ηs
∫

V(t)is(t)dt
WN

(15)

where Ws and WN are the released energy and total energy of the lithium battery, and
V(t) is the terminal voltage.

In the paper, the SoC definition based on the electric quantity perspective is selected.
To estimate SoC, three observers estimating the terminal voltage Vt, the open-circuit voltage
Voc, and the polarization voltage Vp are designed, respectively.

3.1. Terminal Voltage Observer

According to (4), an observer for Vt is proposed as follows:

.
V̂t = −a1V̂t + a1V̂oc(Z) + Rt

.
I + b1 I + v1 (16)

where v1 is the observer control signal. The estimating error of the Vt is defined as
e1 = Vt − V̂t, which can be obtained from (4) and (16). Then, the dynamics of the es-
timation error can be expressed as:

.
e1 = −a1e1 + a1

(
Voc − V̂oc

)
− v1 (17)

A fractional-order sliding manifold is selected as:

s1 = Dα+1e1 + β1e1 (18)

where β1 > 0 is a constant, and α satisfies 0 < α < 1.
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Theorem 1. The finite-time convergence of the error dynamics (17) is guaranteed if the fractional-
order sliding manifold (18) is utilized, and the following observer control law is designed as:

v1 = v1eq + v1n (19)

v1eq = −a1e1 + D−α(β1e1) (20)

v1n = D−α−1(k1sgn(s1)) (21)

where k1 = a1Foc + η1, Foc is defined in (8), and η1 is a positive constant. On the fractional-order
sliding manifold, the estimation error of the open-circuit voltage e2 = Voc − V̂oc satisfies:

e2 = D−α−1((k1/a1)sgn(s1)) (22)

The proof is set out in Appendix A. In conclusion, the terminal voltage Vt can be
estimated directly, and the open circuit voltage Voc is unknown from (4). The observer
control law (19) is applied to guarantee the convergence of e1. Although the Voc is unknown,
the error e2 = Voc − V̂oc can be obtained by (22), which is further adopted for the observer
of Voc.

3.2. Open-Circuit Voltage Observer

According to (5), an observer for the open-circuit voltage is designed as:

.
V̂oc = κa2V̂t − κa2V̂oc − κa2V̂p + v2 (23)

where V̂p is the estimation of Vp, v2 the observer control law.
Defining the voltage error between Vp and its estimation as e3 = Vp − V̂p, the error

dynamics of the Voc can be expressed based on (5) and (23) as:

.
e2 = κa2e1 − κa2e2 − κa2e3 − v2 (24)

A fractional-order sliding manifold is constructed by:

s2 = Dα+1e2 + β2e2 (25)

where β2 > 0 is a constant, and α satisfies 0 < α < 1.

Theorem 2. The error dynamics (24) can approach s2 = 0 in finite time, then converge to zero along
s2 = 0 if the fractional-order sliding manifold s2 is chosen as (25) and the observer control law is
designed as:

v2 = v2eq + v2n (26)

v2eq = κa2e1 − κa2e2 + D−α(β2e2) (27)

v2n = D−α−1(k2sgn(s2)) (28)

where k2 = −κa2FP + η2, Fp is a certain constant defined in (8), and η2 is a positive constant.
When the sliding manifold satisfies s2 = 0, then the voltage error e3 can be obtained as:

e3 = − k2

κa2
D−α−1sgn(s2) (29)
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After the first observer (16) tracks the variable of the system (4), e2 is given by (22)
and utilized in the observer control law (26). Then, e3 can be observed by (29) and will be
transferred to the observer for Vp after e2 converges to zero.

3.3. Polarization Voltage Observer

An observer based on the dynamics of the polarization voltage (6) can be designed by:

.
V̂p = −a1V̂p + b2 I + v3 (30)

where v3 is the observer control signal. Combining (6) and (30), the polarization voltage
error dynamics are governed by:

.
e3 = −a1e3 − v3 + ∆ f (31)

A fractional-order sliding manifold is chosen as:

s3 = Dα+1e3 + β3e3 (32)

where β3 > 0 is a constant, and α satisfies 0 < α < 1.

Theorem 3. When the error dynamics (24) stays on the fractional-order sliding manifold s2 = 0,
the error dynamics (31) can reach s3 = 0 in finite time and converge to zero along s3 = 0, if the
fractional-order sliding-mode s3 is selected as (32) and the observer control law is presented below:

v3 = v3eq + v3n (33)

v3eq = −a1e3 + D−α(β3e3) (34)

v3n = D−α−1(k3sgn(s3)) (35)

where k3 = Ff2 + η3, Ff2 is from (7), η3 > 0. When the trajectory of the error dynamics (31) reaches
the sliding manifold s3 = 0, we have Dα+1e3 + β3e3 = 0, then e3 reaches zero from Lemma 1.

From (6), we can know that only the current can be measured. When the Voc in (5) is
estimated, e3 can be obtained by (29) and used in the observer control law (33). When the
polarization voltage error e3 converges to zero, all the estimation errors, i.e., e1, e2 and e3,
converge to zeros.

3.4. Calculation of SoC

In Theorems 1–3, three observers based on fractional-order sliding-mode theory are
designed for the terminal voltage Vt, the open circuit voltage Voc, and the polarization
voltage Vp in the model of lithium batteries. Then, V̂oc, the estimation of Voc (Z) in the
second observer, is determined and can be used to calculate the SoC as follows:

Ẑ = f−1
voc
(
V̂oc
)

(36)

where fvoc is the known function defined in (3).

4. The Estimation Method for SoH

The estimation of SoH needs the capacity and the resistance. During the process of
estimation of SoC, Cn and Rt are assumed to be constant, while in the estimation of SoH,
they should be seen as variables. The definition of the SoH can be expressed in two ways.
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(1) The capacity-based definition is shown by [36]:

SoH =
Cn

Cnom
(37)

where Cn and Cnom are the actual capacity and nominal capacity of the lithium battery.
(2) The internal resistance-based definition is given as [38]:

SoH =
REoL − Rt

REoL − Rnom
(38)

where Rt and Rnom are the actual and nominal resistance, and REoL is the resistance
at the end of life [39]. In the SoH estimation, the capacity and resistance are mono-
tonically changing with aging, environmental temperature, magnitude of current,
and depth of discharge. The observer control signals can be viewed as continuous.
Therefore, the following assumptions can be given:∣∣∣Dα

( .
I
(

C−1
n − Ĉ−1

n

))∣∣∣+ ∣∣∣∣Dα

(
I
(
−

.
CnC−2

n +
.
ĈnĈ−2

n

))∣∣∣∣ ≤ Fc,
∣∣∣ .
Cn

∣∣∣ ≤ Fcn (39)

∣∣∣Dα
( .

I
(

Rt − R̂t
)
/RpCp

)∣∣∣+ ∣∣∣∣Dα

(
I
(

.
Rt −

.
R̂t

)
/RpCp

)∣∣∣∣ ≤ Ft,
∣∣∣ .
Rt

∣∣∣ ≤ Frt (40)

where Ĉn and R̂t are the estimation value, and Fc, Fcn, Ft, and Frt are all known positive
constants.

4.1. Battery Capacity Observer

According to the dynamics of the SoC (1), the observer can be designed as follows:

.
Ẑsoh =

I
Ĉn

+ v4 (41)

where Ẑsoh is the estimated variable of Z under the time-varying Cn in the design the SoH
observer, and v4 is the observer control. When e2 converges to zero, Ẑ is available and

satisfies
.
Ẑ = (1/Cn)I(t). In order to obtain Cn, e4 = Ẑ− Ẑsoh is defined, then:

.
e4 = I

(
1

Cn
− 1

Ĉn

)
− v4 (42)

A fractional-order sliding manifold is introduced as:

s4 = Dα+1e4 + β4e4 (43)

where β4 > 0 is a constant, and α satisfies 0 < α < 1.

Theorem 4. The sliding-mode manifold is selected as (43) and the observer control law is designed
as follows, then the state trajectory of the error dynamics (42) can reach s4 = 0 from any s4(0) 6= 0
in a finite-time t4r ≤ |s4(0)|/η4:

v4 = v4eq + v4n (44)

v4eq = D−α(β4e4) (45)

v4n = D−α−1(k4sgn(s4)) (46)

where k4 = Fc + η4, η4 > 0. The proof is set out in Appendix A.
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4.2. Battery Inner Resistance Observer

In addition to Cn, in the SoH estimation, Rt is also seen as a time varying variable.
Therefore, b1 in (4) can be rewritten as a function of Cn and Rt:

b1(Cn, Rt) = 1/Cn + 1/Cp + Rt/
(

RpCp
)

(47)

Different from the observer in the SoC estimation (16), another observer can be de-
signed in the following form:

.
V̂tsoh = −a1V̂tsoh + a1V̂oc

(
Ẑsoh

)
+
(
1/Ĉn + 1/Cp + R̂t/

(
RpCp

))
I + v5 (48)

where V̂tsoh is the estimate of the terminal voltage in SoH observer, and v5 is the observer
control law. Assuming that the current of the battery cell is constant, we have

.
I = 0.

Define e5 = Vt − V̂tsoh, then:

.
e5 = −a1e5 + a1

(
Voc(Z)− V̂oc

(
Ẑsoh

))
+
(
1/Cn − 1/Ĉn +

(
Rt − R̂t

)
/
(

RpCp
))

I − v5 (49)

A fractional-order sliding manifold is chosen for the error dynamics (49):

s5 = Dα+1e5 + β5e5 (50)

where β5 > 0 is a constant, and α satisfies 0 < α < 1.

Theorem 5. If s5 is chosen as (50) and the observer control law is designed as follows, the error
dynamics (49) can reach s5 = 0 in finite-time after the error dynamics (42) converges to zero:

v5 = v5eq + v5n (51)

v5eq = −a1e5 + v4n + D−α(β5e5) (52)

v5n = D−α−1(k5sgn(s5)) (53)

wherek5 = Ft + η5, η5 > 0. The proof is set out in Appendix A. The block diagram of the lithium
battery SoC and SoH estimation method is shown in Figure 2.
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5. Experiments
5.1. SoC-Estimation

As shown in Figure 3, the battery testing equipment consists of the Arbin BT2000 Bat-
tery Test System and the ESPEC PRA-3AP Temperature and Humidity Chamber. The Arbin
BT2000 is used to record the cumulative time, voltage, current, capacity, and other data of
the lithium battery. The ESPEC PRA-3AP chamber is utilized to control the temperature
between −20 ◦C and 150 ◦C. The lithium battery is selected as Samsung INR 18650-20R in
the paper, and the parameters are shown in the Table 1.
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Table 1. Basic parameters of INR 18650-20R.

Symbol Mean Value

Vn Nominal voltage 3.6 V
Cnom Nominal capacity 2A h
Vup Upper cut-off voltage 2.5 V
Vlow Lower cut-off voltage 4.2 V
Rp Polarization resistance 0.0276 Ω
Cp Polarization capacitance 1435.2 F
Rt Ohmic resistance 0.0726 Ω

The battery tests, Dynamic Stress Test (DST) and Federal Urban Dynamic Stress Test
(FUDST), are conducted to estimate the SoC of the lithium battery. The DST operating
condition test is carried out according to the US Advanced Battery Consortium Battery Test
Manual, which is simplified from FUDST operating conditions. It is easy to operate and
effectively reflect the dynamic charging and discharging characteristics of lithium batteries.
The FUDST is commonly used in industry validation tests such as to test the impact of the
variable power requirements on the battery while the vehicle is in motion. The FUDST
tests the car at its usual peak power condition and the high frequency of the charging and
discharging process caused by acceleration and deceleration. The SoC and SoH tests of
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the battery will be carried out using the above equipment under a constant temperature
condition. A comparison experiment is carried out between the HOSMO and the proposed
FOSMO. The sliding manifolds and the observer control laws under the HOSMO method
are designed as follows:{

si = ei

vi = −ki1|ei|1/2sgn(ei)− ki2
∫

sgn(ei)dt
(54)

where i = 1, 2, · · · , 5. When estimating the SoC, the charge and discharge current I and
the terminal voltage Vt are usually estimated, which are the most basic measurement data
that can be obtained. Figure 4 shows the terminal voltage Vt and the measured current
I of the lithium battery from DST. In Figure 4, it can be intuitively seen that the current
passing through the lithium battery basically fluctuates in the range of −4 A to 2 A, and the
terminal voltage shows a trend of gradual decline. In Figure 5, the SoC state estimation of
the battery was performed by DST testing. Figure 5 shows the true SoC values compared
with the SoC estimation value under the FOSMO method and under the HOSMO method.
Both FOSMO and HOSMO can converge to the actual values of SOC, and there is a certain
drift error between the observation results and the actual value of the SOC. The FOSMO
have better accuracy and faster dynamical response compared with the HOSMO method.
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Figure 4. The current and the terminal voltage of the lithium battery from DST.

The terminal voltage Vt and the measured current I of the lithium battery under FUDST
are shown in Figure 6. We can see that the rate of change of current I and terminal voltage
Vt is faster under the FUDST. Figure 7 shows the actual value of the SoC compared with
the estimated SoC under FOSMO and HOSMO under FUDST. In Figure 7, the estimated
results under the HOSMO and FOSMO can track the actual SOC with high precision, and
there is some drift error between the observed results and the actual values. The proposed
method under FOSMO has a better performance in accuracy and dynamical response, and
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shows much less estimation error. It is smoother than that under HOSMO, owing to the
fractional-order integral observer control law.
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By analyzing the data in Figures 5 and 7, the estimation value of the SoC under DST
and FUDST conditions are conducted with the mean absolute error (MAE), root mean
squared err (RMSE), and mean relative error (MRE), as shown in Table 2. We can conclude
that the real-time estimation error fluctuation in FOSMO is smaller than the HOSMO-based
method, especially the RMSE and MRE, with better performance.

Table 2. The SoC estimation under the DST and FUDST testing.

Operating
Condition Method Mean Absolute

Error (MAE)
Root Mean Squared

Error (RMSE)
Mean Relative

Error (MRE)

DST
HOSMO 0.01536 0.02663 3.698%
FOSMO 0.01042 0.01475 2.126%

FUDST
HOSMO 0.01436 0.01843 4.088%
FOSMO 0.01018 0.01438 2.424%

5.2. SoH-Estimation

The SoC describes the short-term changes in current parameters. While the SoH does
not need to be carried out continuously, it can be obtained by periodic measurement. The
data from the INR 18650-20R cell under DST in Figure 4 is used for the SoH estimation.
In this paper, the SoH algorithm is described by the battery capacity Cn and the internal
resistance Rt.

In Figure 8, the real battery capacity Cn, the estimation results of capacity under
FOSMO and HOSMO are depicted. It can be seen that in FUDST condition the estimates of
Cn under FOSMO can converge to the real value with faster dynamical performance than
that under HOSMO and fluctuate around the reference value. Furthermore, the observed
results and the actual value maintain a drift error owing to the inherent error between
the established mathematical model and the actual system. The estimation results of the
battery’s inner resistance Rt is shown in Figure 9. It shows that the estimation value of
Rt under the proposed FOSMO method has better dynamic response speed and higher
tracking accuracy.
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According to the Figures 8 and 9, Table 3 shows the mean absolute error (MAE), root
mean squared error (RMSE), and mean relative error (MRE) for the estimation value of Rt
and Cn. We can conclude that, in the FOSMO method, the estimation error fluctuation is
smaller than the HOSMO method. The MRE value of capacitance under FOSMO is better,
which noticeably improves the performance of tracking.
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Table 3. The measurement error in SoH estimation.

Test Method Mean Absolute
Error (MAE)

Root Mean Squared
Error (RMSE)

Mean Relative
Error (MRE)

Cn
HOSMO 16.42 F 149.2 F 0.2582%
FOSMO 12.49 F 109.6 F 0.1739%

Rt
HOSMO 0.001938 Ω 0.003795 Ω 2.969%
FOSMO 0.001576 Ω 0.003108 Ω 2.073%

6. Discussion

In this paper, the fractional-order sliding-mode observers are designed for the es-
timation of the SoC and SoH of lithium batteries, and the corresponding experimental
verifications are carried out. The SoC and SoH are the basis of the battery management
system, and accurate estimation values are directly related to efficiency and safety, espe-
cially in vehicle operation. Owing to the nonlinear characteristics of battery reaction and
the interference of many environmental factors, accurate estimation for the battery system
is still a challenge. From the experiment result, we can see that the proposed observers
have better performance in accuracy and rapidity than the HOSMO method. However,
there still exist some deviations between the observed results and the actual values because
of the inherent error between the established model and the actual SoC and SoH. Therefore,
to design observers of higher precision, stronger robustness, and more simplification in
battery management systems is our future work.

7. Conclusions

In the paper, fractional-order sliding-mode observers are proposed to estimate the SoC
and SoH of the lithium cell with high accuracy and rapidity. The uncertainties, including
parameter perturbations and external disturbances, are considered in the system. The main
contributions of the paper can be summarized as: (1) The designed sequential connection of
FOSMOs improve the global accuracy and rapidity of estimation; (2) The fractional-order
sliding manifolds attenuate the chattering in the injection output signals and guarantee
the smooth response of SoC; (3) The experimental tests are carried out under the DST and
FUDST conditions, which verified the superiority of the proposed method compared with
the existing HOSMO method.
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Nomenclature

Voc Open-circuit voltage
Vt Terminal voltage
Vp Polarization voltage
Vn Nominal voltage
Rt Ohmic resistance
Rp Polarization resistance
Cp Polarization capacitance
Cnom Nominal capacity
Cn Rated capacity if battery
∆f Uncertainties disturbance
REoL Resistance at the end of life
A Fractional-order parameter
V̂oc Estimate of open-circuit voltage
V̂p Estimate of polarization voltage
V̂t Estimate of terminal voltage
R̂t Estimate of ohmic resistance

Appendix A

Proof of Theorem 1. Combining the dynamics of the estimation error (17) and sliding
manifold (18) gives:

s1 = Dα
(
−a1e1 + a1

(
Voc − V̂oc

)
− v1

)
+ β1e1

and based on the observer control law (19) and (20), we have:

s1 = Dα
(
a1
(
Voc − V̂oc

)
− v1n

)
(A1)

Differentiating s1 with respect to time t and substituting control law (21) into the
above yields:

.
s1 = Dα+1(a1

(
Voc − V̂oc

)
− v1n

)
= Dα+1(a1

(
Voc − V̂oc

))
− Dα+1v1n

= Dα+1(a1
(
Voc − V̂oc

))
− k1sgn(s1)

Choose a Lyapunov function V1 = 0.5s2
1, then the derivative of V1 is:

.
V1 = s1

.
s1 = a1Dα+1(Voc − V̂oc

)
s1 − k1sgn(s1)s1

≤ a1
∣∣Dα+1(Voc − V̂oc

)∣∣|s1| − k1|s1|
≤
(
a1
∣∣Dα+1(Voc − V̂oc

)∣∣− k1
)
|s1|

i.e.,
.
V1 ≤ −η1

√
2V1/2

1 . According to Lemma 2, the error dynamics (17) can reach s1 = 0 at
t1r ≤ |s1(0)|/η1 and maintain on it, then converge to zero based on Lemma 1. Owing to
s1 = 0, from (21) and (A1) we get:

e2 = Voc − V̂oc = v1n/a1 = D−α−1((k1/a1)sgn(s1))

This completes the proof. �

Proof of Theorem 2. Substituting the voltage error dynamics (24) into the fractional-order
sliding manifold (25) gives:

s2 = Dα(κa2e1 − κa2e2 − κa2e3 − v2) + β2e2
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When the error dynamics (17) completes the ideal sliding motion, the observation error of
Voc is calculated by (22). Hence, combining (26) and (27), it can be expressed by:

s2 = Dα(−κa2e3 − v2n) (A2)

Differentiating s2 and substituting the control law (28) into it gives:

.
s2 = Dα+1(−κa2e3 − v2n) = −κa2Dα+1e3 − k2sgn(s2)

Considering a Lyapunov function, V2 = 0.5s2
2, the derivative of V2 is expressed as:

.
V2 = s2

.
s2 = −κa2s2Dα+1e3 − k2sgn(s2)s2

≤ −κa2
∣∣Dα+1e3

∣∣|s2| − k2|s2|

Based on (28), it can be obtained that
.

V2 ≤ −η2
√

2V2
1/2. The error dynamics (24) can arrive

at s2 = 0 based on Lemma 2, and then converge to zero from Lemma 1. Then we have the
following from (A2):

e3 = Vp − V̂p = − v2n

κa2
= − k2

κa2
D−α−1sgn(s2)

This completes the proof. �

Proof of Theorem 3. Based on (31) and (32):

s3 = Dα(−a1e3 − v3 + ∆ f ) + β3e3

When the error dynamics (24) take place s3 = 0, the error voltage e3 can be obtained as (29).
Accordingly, combining (33) and (34), the above equation can be rewritten as:

s3 = Dα(−v3n + ∆ f )

Differentiating s3 and substituting the control law (35) into the above yields:

.
s3 = −Dα+1v3n + Dα+1∆ f = −k3sgn(s3) + Dα+1∆ f

A Lyapunov function V3 = 0.5s3
2 is considered. From (35), the derivative of V3 is ex-

pressed as:
.

V3 = s3
.
s3 = −s3Dα+1v3n + s3Dα+1∆ f

= −k3s3sgn(s3) + s3Dα+1∆ f

≤ −k3|s3|+ |s3|
∣∣Dα+1∆ f

∣∣
i.e.,

.
V3 ≤ −η3

√
2V1/2

3 , which means that the error dynamics (31) reaches s3 = 0 in a
finite-time t3r ≤|s3(0)|/η3, and maintains s3 = 0 all the time according to Lemma 2.

This completes the proof. �

Proof of Theorem 4. Based on (42) and (43):

s4 = Dα
(

I
(

C−1
n − Ĉ−1

n

)
− v4

)
+ β4e4 (A3)

from (44) and (45), the above becomes:

s4 = Dα
(

I
(

C−1
n − Ĉ−1

n

)
− v4n

)
(A4)
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differentiating s4 above with respect to time t and substituting the control law (46) into the
above yields:

.
s4 = Dα

(
.
I
(
C−1

n − Ĉ−1
n
)
+ I
(
−

.
CnC−2

n +
.
ĈnĈ−2

n

)
− .

v4n

)
= Dα

(
.
I
(
C−1

n − Ĉ−1
n
)
+ I
(
−

.
CnC−2

n +
.
ĈnĈ−2

n

))
− k4sgn(s4)

(A5)

A Lyapunov function for the error dynamics V4 = 0.5s4
2 is considered, then the derivative

of V4 can be obtained as:

.
V4 = s4

.
s4 = s4Dα

(
.
I
(
C−1

n − Ĉ−1
n
)
+ I
(
−

.
CnC−2

n +
.
ĈnĈ−2

n

))
− s4k4sgn(s4)

≤ |s4|
∣∣∣Dα

( .
I
(
C−1

n − Ĉ−1
n
))∣∣∣+ |s4|

∣∣∣∣Dα

(
I
(
−

.
CnC−2

n +
.
ĈnĈ−2

n

))∣∣∣∣− k4|s4|

i.e.,
.

V4 ≤ −η4
√

2V1/2
4 , which means that the error dynamics (42) can approach s4 = 0 in a

finite time t4r ≤ |s4 (0)| /η4 according to Lemma 2. When s4 = 0, from (A4) we have:

1
Cn
− 1

Ĉn
=

v4n
I

Define the error of the capacity ecn = Cn − Ĉn, then the signum function of the ecn is:

sgn(ecn) = sgn(Cn − Ĉn) = −sgn( 1
Cn
− 1

Ĉn
) = −sgn( v4n

I )

= −sgn( k4
I D−α−1sgns4)

The estimation of Cn is designed by:

.
Ĉn = −(Fcn + kcn)sgn(

k4

I
D−α−1sgns4) = (Fcn + kcn)sgn(ecn) (A6)

where kcn is a positive constant, Fcn is defined in (39), and the derivative of ecn is ex-
pressed as:

.
ecn =

.
Cn −

.
Ĉn =

.
Cn − (Fcn + kcn)sgn(ecn)

A Lyapunov function Vcn = 0.5e2
cn is considered, and its derivative is shown below:

.
Vcn = ecn

.
ecn = ecn

.
Cn − ecn(Fcn + kcn)sgn(ecn)

≤ |ecn|
∣∣∣ .
Cn

∣∣∣− |ecn|(Fcn + kcn) ≤ −kcn|ecn| < 0

which means that ecn can converge to zero from ecn(0) 6= 0 in finite time based on the
Lemma 2, and Ĉn in (A6) can track Cn in finite time, i.e., Ĉn = Cn.
This completes the proof. �

Proof of Theorem 5. When e4 converges to zero, Ẑsoh = Ẑ can be obtained and notice
that Ẑ = Z. Hence, we have V̂oc

(
Ẑsoh

)
= Voc(Z), and the error dynamics (49) becomes:

.
e5 = −a1e5 +

(
1/Cn − 1/Ĉn +

(
Rt − R̂t

)
/
(

RpCp
))

I − v5 (A7)

substituting (51), (52), and (A7) into (50) gives:

s5 = Dα
(
−a1e5 +

(
1

Cn
− 1

Ĉn
+ Rt−R̂t

RpCp

)
I − v5

)
+ β5e5

= Dα
((

1/Cn − 1/Ĉn +
(

Rt − R̂t
)
/
(

RpCp
))

I − v4n − v5n
)
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After (42) reaches the sliding motion s4 = 0, we have 1/Cn − 1/Ĉn = u4n/I and yield:

s5 = Dα
(

I
(

Rt − R̂t
)
/
(

RpCp
)
− v5n

)
(A8)

Differentiating s5 with respect to time t gives:

.
s5 = Dα+1(I

(
Rt − R̂t

)
/
(

RpCp
)
− v5n

)
= Dα

( .
I
(

Rt − R̂t
)
/RpCp

)
+ Dα

(
I
(

.
Rt −

.
R̂t

)
/RpCp

)
− k5sgn(s5)

Considering a Lyapunov function V5 = 0.5s5
2 and taking the derivative of V5, we get

.
V5 = s5

.
s5

= s5Dα
( .

I
(

Rt − R̂t
)
/RpCp

)
+ s5Dα

(
I
(

.
Rt −

.
R̂t

)
/RpCp

)
− s5k5sgn(s5)

≤ |s5|
∣∣∣Dα

( .
I
(

Rt − R̂t
)
/RpCp

)∣∣∣+ |s5|
∣∣∣∣Dα

(
I
(

.
Rt −

.
R̂t

)
/RpCp

)∣∣∣∣− k5|s5|

which proves that the error dynamics (49) can hit s5 = 0 in a finite time t5r ≤ |s5(0)|/η5
based on Lemma 2. On the ideal fractional-order sliding-mode manifold s5 = 0, from (a-8)
we can define the battery inner resistance error as:

ert = Rt − R̂t =
RpCp

I
v5n

Considering observer control law (53), we have:

ert =
RpCp

I
D−α−1(k5sgn(s5))

The estimation of Rt can be obtained by:

.
R̂t = (Frt + kr)sgn

(
RpCp

I
D−α−1(k5sgn(s5))

)
= (Frt + kr)sgn(ert) (A9)

where kr is a positive constant, and Frt is defined in (40). If a Lyapunov function is chosen
as Vtr = 0.5e2

rt, then it can be deduced as:

.
Vrt = ert

.
ert

= ert

( .
Rt − (Frt + kr)sgn(ert)

)
≤ −kr|ert| < 0

which can be concluded that ert can converge to zero from ert(0) 6= 0 and R̂t in (A9) can
track Rt in finite time, i.e., R̂t = Rt.
This completes the proof. �
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