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Abstract: The analysis of retinal blood vessels present in fundus images, and the addressing of
problems such as blood clot location, is important to undertake accurate and appropriate treatment
of the vessels. Such tasks are hampered by the challenge of accurately tracing back problems along
vessels to their source. This is due to the unresolved issue of distinguishing automatically between
vessel bifurcations and vessel crossings in colour fundus photographs. In this paper, we present
a new technique for addressing this problem using a convolutional neural network approach to
firstly locate vessel bifurcations and crossings and then to classifying them as either bifurcations
or crossings. Our method achieves high accuracies for junction detection and classification on the
DRIVE dataset and we show further validation on an unseen dataset from which no data has been
used for training. Combined with work in automated segmentation, this method has the potential
to facilitate: reconstruction of vessel topography, classification of veins and arteries and automated
localisation of blood clots and other disease symptoms leading to improved management of eye disease.

Keywords: medical image analysis; machine learning; convolutional neural networks; retinal imaging;
retinal vessels; fundus photography; vessel classification

1. Introduction

Vascular conditions present a challenging public health problem as they become more common
due to global ageing [1]. Vascular conditions are often life-threatening and blood vessel damage caused
from common health issues such as diabetes, hypertension and strokes can lead to significant health
complications. It is, therefore, of great importance to better understand and be able to manage such
conditions. The retina is the only inner organ which can be directly imaged, using a fundus camera,
and also serve as a “window” for the diagnosis of systematic diseases such as: cerebral malaria, stroke,
dementia and cardiovascular diseases [2]. It is also significant that pathologies often affect veins and
arteries differently. For example, in diabetic retinopathy, abnormalities typically occur in veins such
as venous beading which is a significant predictor to the sight-damaging proliferative stage of the
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condition. With the availability of imaging techniques such as colour fundus photography, fundus
angiography and recent optical coherence tomography angiography, there is a significant need for
automated vessel analysis techniques [3,4].

There has been a considerable amount of work, in recent years, aimed at the effective segmentation
of retinal blood vessels in fundus photography, which is a prerequisite step for blood vessel analysis.
Work such as [3–5] has been able to achieve increasingly improved segmentation of retinal vessels.
However, a significant remaining challenge is to distinguish between vessel bifurcations and vessel
crossings. A vessel bifurcation is where a mother vessel branches into two daughter vessels, while a
vessel crossing is where one vessel passes over another but does not connect to it. This is important for
tracking vessels, separating veins from arteries and providing for quantitative analysis of vasculature.

For example, we must be able to trace back along the vessel when a blood clot has been identified.
The current inability to accurately identify vessel crossings after or during vessel segmentations
hinders this. It is also important to monitor progress of a vessel after vein and artery occlusions;
being able to identify and distinguish vessel crossings and bifurcations facilitates this. Automating
the detection and classification of vessel bifurcations and crossings also allows us to aid clinicians
in detecting vascular abnormalities. The vast amount of vessels and vessel junctions within the
retina make this task a laborious one for clinicians; by automating the process we can save time for
treatment while maintaining accuracy. The vasculature can be obtained through vessel tracking or
pixel-based classification. Detecting bifurcations and crossings are critical to either of these vasculature
reconstruction methods. The detected and classified vessel junctions can be used in combination wth
vessel segmentation, or used in vessel tracking methods to detect the source of irregular vasculature.

The previous work on vessel bifurcations and junctions has involved using orientation scores to
detect bifurcations and junctions in retinal images [6]. In contrast to the method we proposed, which is
a fully automated system that uses only the image to determine the diagnosis, the work in [6] required
24 orientation processes for each image before training. However, the results in the paper show that the
features within the image are extractable. There has also been similar orientation-based work in [7,8].

For applications in image analysis and classification, Convolutional Neural Networks (CNNs),
a branch of deep learning, has achieved state of the art results for many problems. The 1970s
saw the introduction of network architectures being used to analyse image data [9]. These had
useful applications and allowed challenging tasks, such as handwritten character recognition [10],
to be achieved. Decades later, there were several breakthroughs in neural networks that lead to
vast improvements in their implementation, such as the introduction of dropout [11] and rectified
linear units [12]. These theoretical enhancements and the accompanying increase in computing
power through graphical processor units (GPUs) meant that CNNs became viable for more complex
image recognition problems. Presently, large CNNs are used to successfully tackle highly complex
image recognition tasks with many object classes to an impressive standard [13,14]. The recent
improvements in image recognition problems mentioned present an opportunity for more efficient
and accurate methods of our vessel problem. CNNs are used in many of the current state-of-the-art
image classification tasks including medical imaging. Hence, we use this method combined with
expert segmented fundus images and skeletonisation [15,16] to detect and classify vessel bifurcations
and crossings within fundus images.

There are many different architectures for neural networks. Recently residual networks have
achieved impressive results on the highly competitive competition of ImageNet detection, ImageNet
localisation, COCO detection, and COCO segmentation [17]. They were then widely used in the
following 2016 ImageNet competition due to their impressive performance on general large data sets of
small images; such as the MNIST [18] dataset for handwritten digits 0–9 and CIFAR-10 [14], a dataset
of 10 classes of colour images. This network learns from the residual of the identity of the previous
layer of a new layer in order to learn features more effectively. This makes the network ideal for our
patch-based method as the higher level features can distinguish between the background of the retina
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and the bifurcations and crossings. Hence, the Res18 network structure, containing 18 residual layers,
was used in the CNNs throughout this paper.

In this paper, we present a new hierarchical approach, that utilises deep learning, to first
automatically determine the locations of blood vessel bifurcations and crossings in colour fundus
images, and then to distinguish between vessel bifurcation and crossings. We employ an available
segmentation of the vessel structure, although an automatic segmentation procedure could be
incorporated, to identify points along blood vessels. Annotated image datasets with identified vessel
bifurcations and crossings aid our deep learning framework as we use a supervised learning method
to solve this image recognition problem. From the original fundus images of the DRIVE dataset we
created small patches of images using a skeletonisation of the vessels. We use a convolutional neural
network approach which is trained on some of the patches of the fundus images using the expert
ground truth for optimization. A matching network architecture is then used and trained to learn
new convolution filters to distinguish between vessel bifurcations and crossings. The results is a
novel method which is capable of identifying and classifying vessel bifurcations and crossings without
user intervention.

The rest of this paper is organised as follows. In Section 2, we present our new automatic approach
for locating and identifying crossings and bifurcations of retinal vessels, in Section 3 we demonstrate
that proposed method yields robust, state-of-the-art results and in Sections 4 and 5 we present our
conclusions and discuss future work. This paper is an extention of the paper [19] extended and more
substantial results and a refined method for accuracy. The figures used are cited throughout.

2. Methods

Firstly we identifying patches of fundus images z(x). During our experiments we found that the
optimal size for both performance and collection of the patches was 21 by 21 pixels. All of the patches
used throughout this method were of this size. We make use of available vessel segmentations given
as binary functions defined on the domain, and perform a skeletonisation process on this domain.
The patches are then produced along the skeleton so that each contains some of vessel structure.
Furthermore, after creating the patches we train our Res18 convolutional neural network to identify
the patches which include either a bifurcation or a crossings. The res18 neural network contains
18 convolutional layers learned using the residual of the previous convolutional layer as in [17].
The network contains 11,181,570 trainable weight parameters for optimization and the architecture
layout can be found in the supplementary material. Another network with the same architecture is
then trained on the patches that have been graded to have bifurcations and crossings to distinguishing
the type of vessel junction located.

We tested the ability of our algorithm using 40 images from the DRIVE database with manual
segmentations [4]. We also studied the variability between grading and how this relates to the
trained network for each grader. The data split was 30 images for training the neural networks,
leaving 10 for testing. While this may seem a small number for a machine learning approach, our
patch-based method means that the images generated for training numbered more than 100,000
providing sufficient data. Ground truth annotations of vessel crossings and bifurcations were provided
by two graders (G1 and G2).

2.1. Datasets

The images used to implement our framework are from the Digital Retinal Images for Vessel
Extraction (DRIVE) database with manual segmentations [4]. The images in the DRIVE dataset were
obtained from a diabetic retinopathy screening program in The Netherlands. The images were acquired
using a Canon CR5 non-mydriatic 3CCD camera with a 45 degree field of view (FOV) using 8 bits per
colour plane at 768 by 584 pixels.

Moreover, we use the IOSTAR dataset [6,20] for testing the robustness of the method.
Our networks are trained on the DRIVE Dataset, but all of them are tested on the unseen IOSTAR
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dataset for further validation. The IOSTAR dataset is made of the images taken with EasyScan camera
(provided by i-Optics B.V., The Hague, The Netherlands). The original images have a resolution of
1024 by 1024 (14 µm/px), and a 45 degree field of view. For the moment, vessels, bifurcations and
crossings of 24 images have been annotated and corrected by two different experts, the same experts
that graded the DRIVE dataset. For testing on the IOSTAR dataset, which has the same field of view as
DRIVE, the images were resized using bilinear interpolation to the dimensions of the DRIVE images.
Patches were then extracted in the same way with both datasets to allow for fair comparison purposes.
This process can be used to compare with any dataset of varying image size.

The datasets were graded separately by 3 expert graders to compare variability between the
networks and between the graders themselves. The graders labelled bifurcations by clicking as close
to the centre of the junction as possible. This allowed for it to be a simple operation so that the graders
focus could remain on image.

2.2. Skeletonisation and Patch Extraction

We consider patches of the fundus images centred along the segmented vessels. In order to restrict
the number of patches for training to a manageable number, and reduce bias, we aim to reduce to
segmentation of the vessels to a skeleton and consider regions centred only on these points. We achieve
this by performing a skeletonisation of the level set function φ(x) for each image.
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We achieve this by iterating as in Equation (2), beginning with l1
0 = 0 and cycling through i ∈ {1, 2},

j ∈ {0, 1, 2, 3}.

Figure 1. Kernel functions for skeletonisation [19] Reproduced with permission.

Following this, we extract the patches by cropping the image z(x) to 21× 21 pixel windows Θp

centred on points p in the set Υ of points considered the foreground of the skeletonised vessel map.
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The patch size was selected so that bifurcations, and crossings and branches, in the vessel would fit
within one patch. The patches are given by:

Θp = {q ∈ Ω | |p− q| ≤ 10}, p ∈ Υ = {p ∈ Ω | ϕ(p) = 1}.

In the training stage, the set of patches (Θ) of the images in the training set are used to train the neural
network to identify whether a bifurcation or crossing is contained in the image patch. In the test stage,
the trained CNN classifies the patches accordingly. This step is described below.

2.3. Junction Distinction—CNN C1

To identify the vessel bifurcations and crossings within the patches created we train our CNN
on a high-end Graphics Processor Unit (GPU). The large random access memory of the Nvidia K40c
means that we were able to train on the whole dataset of patches at once. The Nvidia K40c contains
2880 CUDA cores and comes with the Nvidia CUDA Deep Neural Network library (cuDNN) for GPU
learning. The deep learning package Keras [21] was used alongside the Theano machine learning back
end to implement the network. After training, the feed forward process of the CNN can classify the
patches produced from a single image in under a second.

(a) (b) (c)

(d) (e) (f)

Figure 2. Example outcomes of first part of algorithm: locating bifurcations and crossings. (a) Fundus
Image z(x); (b) Vessel Map φ(x); (c) Skeletonisation ϕ(x); (d) Patch Boundaries; (e) Patch Classification;
(f) Junction Location. Reproduced with permission from [19].

We used the Res18 network architecture [17] as deep levels of convolution were required to
distinguish the vessel junction type in our small patches. The residual layers incorporate activation,
batch normalisation, convolutional, dense and maxpooling layers. We also use L2 regularisation to
improve weight training. There were approximately 100,000 patches for training and 30,000 for testing
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in the junction distinction problem. The classes were weighted as a ratio of junction to background
due to the fact that bifurcations and crossings in the training and testing patches were sparse at a ratio
of 1:39. The network was optomised using Adam stochastic optimisation for backpropegation [22].
The network was trained to classify the patches to give a binary classification of either vessel junction
or background. Gaussian initialisation was used within the network to reduce initial training time.
The loss function used for the optimisation was the widely used categorical cross-entropy function.
Training was undertaken until reduction of the loss plateaued to obtain optimal results. These results
can be seen in Figure 2.

2.4. Locate the Centres

Following the neural network classification, which tell us if a bifurcation or crossing is contained
within a patch, we aim to find the locations of the points.

t(q) = ∑
p∈Υ

sp(q, l), sp(q, l) =

{
l1
p if q ∈ Θ(p)
0 otherwise

(3)

We achieve this by forming the cumulative sum image shown in Equation (3) and taking the local
maxima r ∈ Υ as points of interest. We then aim to determine whether points are at crossings
or bifurcations.

2.5. Junction Classification C2

We extract the patches Θ(r) and use these to train a neural network to distinguish between
crossings and bifurcations as shown in Figure 3. The second neural network was trained with the
Res18 architecture, like the first. Using a relatively small training set of patches, as from our images
the majority of patches did not contain bifurcations and crossings, we trained our network in similar
fashion to that used in the previous step. Weighted classes were introduced again to cater for the
imbalance, in that images from the bifurcation class were substantially more prominent than that of
the cross class.

Depending on the patch method there were around 800–2500 patches containing a junction that
was used for training which can be seen in Figure 4. In all methods there were approximately twice as
many junction patches containing bifurcation vessels compared to patches containing vessels crossing.
Training was performed until a plateau in the reduction of the loss function was reached indicating no
further improvement.

(a) (b) (c)

Figure 3. Example outcomes of second part of algorithm: classifying bifurcations and crossings as
bifurcations and crossings. (a) Identified bifurcations and crossings; (b) bifurcation Points; (c) Vessel
Crossings. Reproduced with permission from [19].
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Figure 4. Example of C2 input. Rows 1 and 2 (resp. 3 and 4): training patches with crossings (resp.
bifurcations) and their enhanced counterparts for presentation. The neural networks were able to
achieve good results using the patches without enhancement. Reproduced with permission from [19].

3. Results

We present our results on a patch by patch basis as well as in the fundus image form with vessel
bifurcations and splittings labeled. The patch detection and classification information is then used
to in a probability map type reconstruction of the fundus image to produce the final appropriate
vessel bifurcations and splittings, as demonstrated in Figures 5 and 6. Here we present both the patch
accuracy results and the final classified and vessel type distinguished images. We measure sensitivity,
specificity and accuracy of the final image-based result as follows. Since the region of a junction is not
restricted to a single point, we allow a region r(x, y) of 10 pixels either side of an annotated point at
(x, y) to be considered the correct region. That is, we split each image domain Ω into two sets

Ω1 = {(x, y)|j ∈ r(x, y)}, Ω2 = Ω\Ω1

where j denotes a junction point location. Ω1 is considered the true (junction) set and Ω2 is considered
the background set. We then calculate error measures based on this and report the mean measures.

For validation we used the test images from the DRIVE dataset. Furthermore, we used the
separate IOSTAR dataset, and another expert grader (G3), for testing and comparison of the patch
detection and classification method. We show in Tables 1 and 2 the results of training our neural
networks on the data provided by graders 1, 2 and 3. In each case, we use patches extracted from
30 images from the DRIVE dataset to train our network.This relates to 101,416 patches of vessel
junctions and 216,756 other patches. From the 101,416 patches there are 67,650 patches of vessel
crossings and 33,766 patches of vessel bifurcations. This network is then tested by using our network to
classify patches from the remaining ten images of the DRIVE dataset. This relates to 72,980 non-vessel
patches and 31,026 vessel patches of which 9176 are vessel crossings and 21,850 are vessel bifurcations.
We compare the results with the annotations provided by the grader in question, achieving high
accuracies of 0.76, 0.76 and 0.77 for graders 1, 2 and 3 respectively. Furthermore, we use the trained
network to classify images from the IOSTAR dataset, comparing with the annotations provided. With
each trained network, the accuracy is lower for this unseen dataset, but the sensitivity is retained.
The IOSTAR dataset gave us 132,064 non-vessel junction patches and 52,878 vessel junction patches
with 14,228 vessel crossings and 38,650 vessel bifurcations. Following the detection, we resolve the
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patch-based results into the original images in order to identify individual junctions and to measure
the detection performance for each image. Tables 3 and 4 shows the results obtained from the networks
trained by the first annotations of grader 2 and grader 3 and tested on the 10 remaining test images
of the DRIVE dataset. The results were compared with the annotations of grader 1 (G1A1), the first
and second annotations of grader 2 (G2A1 and G2A2) as well as the first and second annotations
of grader 3 (G3A1 and G3A2). Excellent performance of 81% is achieved for the network trained
and tested on grader 2’s first annotation. The result is similar when comparing to the other graders.
Good performance of 74% is also achieved for the network trained and tested on grader 3’s first
annotation with similar, and even improved, results when comparing to other annotations. We retain
good accuracy for the classification task, as shown in Table 5 and Figures 7 and 8, achieving accuracies
of ≥0.70 for distinguishing between detected vessel crossings and bifurcations. The results were a
little lower for the IOSTAR dataset but this, and the detection results, may be improved by including
some of this data in the training of the networks.

Table 1. CNN-based Detection results.

Training on Grader 1

Test Set Accuracy Sensitivity Specificity

G1A2 0.7622 0.7398 0.7714
IOSTAR 0.7349 0.5225 0.8199

G1A1 0.8055 0.6244 0.8688

Grader 2

Test Set Accuracy Sensitivity Specificity

G2A2 0.7620 0.7472 0.7681
IOSTAR 0.6302 0.7639 0.5767

G1A1 0.7537 0.7704 0.7479

Grader 3

Test Set Accuracy Sensitivity Specificity

G2A2 0.7654 0.7408 0.7756
IOSTAR 0.6586 0.7466 0.6234

G1A1 0.7574 0.7664 0.7543

Table 2. Confusion Matrices for CNN-based Detection results. BG denotes background, JC denotes
junctions. True labels are along rows, predicted along columns.

Training on Grader 1

G1A2 BG JC IOSTAR BG JC G1A1 BG JC
BG 56,732 7926 BG 108,284 25,248 BG 66,969 10113
JC 16,811 22,537 JC 23,780 27,630 JC 10,115 16,809

Grader 2

G2A2 BG JC IOSTAR BG JC G1A1 BG JC
BG 56,847 7701 BG 76,161 12,484 BG 57,651 6181
JC 17,056 22,762 JC 55,903 40,394 JC 19,433 20,741

Grader 3

G2A2 BG JC IOSTAR BG JC G1A1 BG JC
BG 57,039 7896 BG 82,329 13,399 BG 58,143 6290
JC 16,504 22,567 JC 49,735 39,479 JC 18,941 20,632
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Table 3. Image-based Detection results.

Grader 2

Tested on G1A1 G2A1 G2A2 G3A1 G3A2
Sensitivity 0.9300 0.8474 0.8474 0.8923 0.9023
Specificity 0.7836 0.8090 0.8024 0.7991 0.7998
Acccuracy 0.7968 0.8148 0.7157 0.8114 0.8129

Grader 3

Tested on G1A1 G2A1 G2A2 G3A1 G3A2
Sensitivity 0.9869 0.9354 0.9637 0.9634 0.9731
Specificity 0.7603 0.7227 0.7135 0.7100 0.7107
Acccuracy 0.7199 0.7516 0.7436 0.7388 0.7405

Table 4. Confusion Matrices for CNN-based Classification results. BF denotes bifurcations, CR denotes
crossings. True labels are along rows, predicted along columns.

Training on Grader 1

G1A2 BF CR IOSTAR BF CR

BF 13,289 2068 BF 12,375 1907
CR 2379 4801 CR 7821 5527

Grader 2

G2A2 BF CR IOSTAR BF CR G1A1 BF CR

BF 12,250 3158 BF 14,430 3262 BF 11,468 2547
CR 3780 3574 CR 15,095 7607 CR 2951 3775

Grader 3

G3A2 BF CR IOSTAR BF CR G1A1 BF CR

BF 12,046 2585 BF 15,475 2820 BF 11,414 2387
CR 3864 4072 CR 13,381 7803 CR 2929 3902

Table 5. CNN-based Classification results.

Grader 1

Test Set Accuracy Sensitivity Specificity

G1A2 0.8027 0.6989 0.8482
IOSTAR 0.6479 0.7435 0.6127

Grader 2

Test Set Accuracy Sensitivity Specificity

G2A2 0.6952 0.5309 0.7642
IOSTAR 0.5456 0.6999 0.4887

G1A1 0.7349 0.5971 0.7953

Grader 3

Test Set Accuracy Sensitivity Specificity

G3A2 0.7142 0.6117 0.7571
IOSTAR 0.5896 0.7345 0.5363

G1A1 0.7423 0.6204 0.7958



J. Imaging 2018, 4, 4 10 of 14

(a) (b) (c)

(d) (e) (f)

Figure 5. Example of identifying bifurcations and crossings in fundus images. (a), (b), (d) are left eye
fundus images and (c), (e) and (f) are right eye fundus images. Reproduced with permission from [19].

(a) (b)

Figure 6. Both (a) and (b) examples from the test set that have been run through the alrogithm. Here
we demonstrate how the patch classification leads to the building up of a vessel map from identifying
and classifying the vessel junctions and reconstructing the classified patches. The detected junctions are
shown on the fundus image showing that the algorithm clearly identifies junction points. Reproduced
with permission from [19].
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(a) (b)

(c) (d)

Figure 7. (a) and (c) show the identified bifurcations (a) and crossings (c) for an example image
from the DRIVE dataset. The results are shown along with the annotations provided by each grader.
The annotation of grader 1 is shown by a red x, grader 2 by a blue x and green o, grader 3 by a cyan
x and black o; (b) and (d) are zoomed in to demonstrate the negligible difference in the classification
of the vessel bifurcation (b) and crossing (d) from the grader’s annotations and the consistency in the
annotations provided. Reproduced with permission from [19].

(a) (b) (c)

Figure 8. Cont.
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(d) (e) (f)

(g) (h) (i)

(j) (k) (l)

Figure 8. Example of distinguishing between crossings and bifurcations in fundus images. Rows
one shows the classified bifurcations in (a–c) and row two the respective crossings in (d–f). Likewise,
row three shows the classified birfucations in (g–i) and row four the respective crossings in (j–l).
Reproduced with permission from [19].

4. Discussion

We have produced a method that can learn to detect and classify vessel bifurcations and crossings
using a very small dataset of 40 fundus images images that had been manually classified for bifurcations
and crossings and their type. Using the CNN C1, we managed to detect the bifurcations and crossings
to an impressive detection accuracy of over 90% due in part to the relatively large amount of patches
containing bifurcations and crossings. Along with the skeletonisation, our deep learning classification
C2 for vessel type gave us a high accuracy. The classifications statistics are similar to that of the
intravariability between graders and hence the method has more chance of reaching higher results
should a consistent grading be given within the patches. This can be seen by the higher testing results
on the third grader. Increasing the size of our dataset would allow better distinction in the classification
of the vessel bifurcations and crossings. It is worth noting that junction type training was undertaken
on a couple of thousand patches and tested on around 800. Through training on more images the
model could be fine tuned to refine the filters and increase distinction accuracy.
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The current algorithm works well for images which have been manually segmented but this
time-consuming task could be further extended to incorporate automatic segmentation techniques [3].
A further very useful extension would be to automatically determine whether the artery or vein is in
front given arteriovenous crossings, along with consideration of intra and inter-observer variability.
In order to better identify and classify bifurcations and crossings with other nearby bifurcations and
crossings, it would be useful to consider extending our method to a multi-scale approach. Furthermore,
while we have included images with different vessel pathologies due to diseases such as retinopathy,
using datasets containing other retinal diseases this could be studied further to investigate how this
affects the detection and classification of vessel junctions.

5. Conclusions

The challenging task of detecting and classifying vessel bifurcations and crossings in fundus
images is achieved to a high level of accuracy using our method. The variability over datasets without
training on the dataset represents a robust algorithm for unseen images. The ability to expand on
this method to make the detection both quicker and more accurate than manual classification is
possible. These preliminary results demonstrate that the overall framework, including the deep
learning approach proposed, is a viable technique to accurately find and identifying vessel bifurcations
and crossings with little training data. More extensive testing of this framework could be undertaken to
assess the transferability of these results and patch sizes to different size images from different datasets.
However, there is no reason why this framework would not be directly applicable to another dataset.

Supplementary Materials: The following are available online at www.mdpi.com/2313-433X/4/1/4/s1.
The supplementary material shows the architecture of the neural network used in this work. The arrows
indicate the links between layers and the network runs from the input at the top of the image to the output at the
bottom of the image.
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