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Abstract: Many existing natural scene statistics-based no reference image quality assessment (NR
IQA) algorithms employ univariate parametric distributions to capture the statistical inconsistencies
of bandpass distorted image coefficients. Here, we propose a multivariate model of natural image
coefficients expressed in the bandpass spatial domain that has the potential to capture higher order
correlations that may be induced by the presence of distortions. We analyze how the parameters of
the multivariate model are affected by different distortion types, and we show their ability to capture
distortion-sensitive image quality information. We also demonstrate the violation of Gaussianity
assumptions that occur when locally estimating the energies of distorted image coefficients. Thus,
we propose a generalized Gaussian-based local contrast estimator as a way to implement non-linear
local gain control, which facilitates the accurate modeling of both pristine and distorted images.
We integrate the novel approach of generalized contrast normalization with multivariate modeling
of bandpass image coefficients into a holistic NR IQA model, which we refer to as multivariate
generalized contrast normalization (MVGCN). We demonstrate the improved performance of
MVGCN on quality-relevant tasks on multiple imaging modalities, including visible light image
quality prediction and task success prediction on distorted X-ray images.

Keywords: image quality assessment; generalized contrast normalization; multivariate statistical
modeling; X-ray images

1. Introduction

The perceptual quality assessment of visual media has drawn considerable attention in the recent
past owing to the millions of images and videos captured and shared daily on social media websites,
such as Facebook, Twitter and Instagram. Large-scale video streaming services such as YouTube,
Netflix and Hulu contribute heavily to Internet traffic, which continues to expand rapidly as consumer
demand for content increases. Reliable assessment of picture quality by large groups of human subjects
is an inconvenient, time-consuming task that is very difficult to organize at scale. Thus, objective
no-reference (NR) image quality assessment (IQA) models, which do not require any additional
information beyond the input image, are often deployed in such settings to predict visual quality
automatically and accurately as perceived by an average human subject. These models have also been
successfully used to optimize the image capture process perceptually to improve the perceptual quality
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of the acquired visual signals. In addition, “quality-aware” perceptual strategies are used to compress
visual media to deliver high quality content to consumers over constrained network bandwidths [1].

Many NR IQA algorithms have been proposed recently, which for increased clarity, we will
broadly classify into three categories. (1) Distortion-specific approaches include algorithms that
predict the quality of images afflicted by one or more known distortion types such as blockiness [2],
ringing [3] and blur [4,5] artifacts. These models are difficult to generalize to other distortion types.
(2) Purely data-driven approaches involve the extraction of low-level image features such as color and
texture statistics [6], which are then mapped to subjective image quality scores using regression. More
recently, deep learners have been trained to learn large sets of low level image features, which are
then used to feed classical regressors that map the features to subjective quality space [7]. The general
framework of convolutional neural network-based IQA models involves feeding a pre-processed patch
to convolutional layers, which are often followed by pooling layers. The learned features are then fed
to a combination of fully-connected layers followed by non-linear activation and dropout layers [8,9].
(3) Natural scene statistics (NSS)-based approaches leverage statistical models of natural images and
quantify the severity of distortion by measuring the degree of “unnaturalness” caused by the presence
of distortions. The perceptual image quality is measured as a distance of the distorted image from the
subspace of natural images [10–13].

A number of techniques have been devised for general-purpose NR IQA. The generalized Renyi
entropy and normalized pseudo-Wigner distribution have been used to model the directionality or
anisotropicity of the variance of expected entropy to predict image quality [14]. NSS-based models
have been designed to extract quality-aware features under natural image models in the wavelet [13],
spatial [12] and discrete cosine transform (DCT) domains [15], achieving high correlations with human
opinion scores.

The divisive normalization transform (DNT), which is used to model the nonlinear response
properties of sensory neurons, forms an integral component in the density estimation of natural
images [16]. A commonly-used parametric form of DNT is:

yi = γ
xα

i
βα + ∑j xα

j
(1)

where xi denotes a natural image signal that has been processed with a linear bandpass filter and
{α, β, γ} are parameters that can be optimized on an ensemble of natural image data. As shown
in [17], when bandpass natural images are subjected to DNT with α = 2, they become Gaussianized
with reduced spatial dependencies. The underlying Gaussian scale mixture (GSM) [18] model of the
marginal and joint statistics of natural (photographic) image wavelet coefficients also implies similar
normalization (α = 2) of neighboring coefficients. In our recent work, we developed a generalized
Gaussian scale mixture (GGSM) model of the wavelet coefficients of photographic images, including
distorted ones [19]. This new model factors a local cluster of wavelet coefficients into a product of a
generalized Gaussian vector and a positive mixing multiplier. The GGSM model demonstrates the
hypothesis that the normalized wavelet-filtered coefficients of distorted images follow a generalized
Gaussian behavior, devolving into a Gaussian if distortion is not present. A related approach was
adopted in [20], where a finite generalized Gaussian mixture model (GGMM) was used as a prior
when modeling image patches in an image restoration task.
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Here, we build on the above ideas and propose a generalized Gaussian-based local contrast
estimator, which we use in conjunction with a multivariate density estimator to extract perceptual
quality-rich features in the spatial domain.

NSS models have been well studied on an increasing variety of natural imaging modalities,
including visible light (VL), long wavelength infrared (LWIR) [21], fused VL and LWIR [22] and X-ray
images [23]. This kind of statistical modeling of these imaging modalities has led to the development
of new and interesting applications and are of significance to the design of visual interpretation
algorithms. In a like vein, here we explore the effectiveness and versatility of multivariate generalized
contrast normalization (MVGCN) by deploying it in applications arising in two different imaging
modalities; specifically, blind quality assessment (QA) of VL images and the prediction of technician
detection task performance on distorted X-ray images.

The rest of the paper is organized as follows. In Section 2, we describe the generalized contrast
normalization technique, which forms the core of MVGCN. We detail the multivariate statistical image
model in Section 3 and analyze the effects of distortions on the estimated parameters of the multivariate
model. Section 5 describes the first application, whereby MVGCN features are used to predict the
detection task performance of trained bomb experts on X-ray images. The second application is
explained in Section 4, where the MVGCN model is used to drive an NR IQA algorithm. Finally,
Section 6 concludes the paper with possible ideas for future work.

2. Generalized Contrast Normalization

It is well established in the vision science and image quality literature that processing a natural
scene by a linear bandpass operation followed by non-linear local contrast normalization has a
decorrelating and Gaussianizing effect on the pixel values of the images of these natural scenes [24–26].
This kind of processing of visual data mirrors efficient representations computed by neuronal
processing that takes place along the early visual pathway. These statistical models of natural
(photographic) images have been used effectively in applications ranging from low-level tasks such as
image denoising [27–29] and image restoration [30,31], as well as higher level processes such as face
recognition [32,33], object detection [34,35] and segmentation [36,37].

A number of NSS-based IQA algorithms [12,13] operate under the hypothesis that the divisively
normalized bandpass responses of a pristine image follow Gaussian behavior and that the presence of
distortion renders an image statistically unnatural, whereby the characteristic underlying Gaussianity
is lost [17], as depicted in Figure 1, where Gaussianity is a poor fit to the distribution of bandpass,
divisively normalized coefficients of a JP2000(JP2K) compressed image. Here, we propose a way of
collectively modeling both pristine and distorted images, using a generalized contrast normalization
approach that is based on the premise that the divisively normalized bandpass coefficients of both
distorted and undistorted images follow a generalized Gaussian distribution. We refer to the processed
coefficients as mean subtracted generalized contrast normalized (MSGCN) coefficients.

Given a M× N grayscale image of intensity I = [I(i, j)], the MSGCN coefficients Î = [ Î(i, j)] are
computed as:

Î(i, j) =
I(i, j)− µ(i, j)
σgcn(i, j) + C

, (2)

where µ = [µ(i, j)] and σgcn = [σgcn(i, j)] are the local weighted mean (the maximum likelihood

estimate of the mean of a generalized Gaussian density is given by: argminµ

K
∑

k=−K

L
∑

l=−L
|Ik,l(i, j) −

µ(i, j)|γ. Optimizing over each block of size (2K + 1) × (2L + 1) of an image is computationally
expensive; thus, we instead use the sample mean of the coefficients given by (3), as used in [12].):

µ(i, j) =
K

∑
k=−K

L

∑
l=−L

wk,l I(i + k, j + l), (3)
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and local contrast fields defined as:

σgcn(i, j) =

(
(γ + ε)

K

∑
k=−K

L

∑
l=−L

wk,l |I(i + k, j + l)− µ(i, j)|γ
)1/γ

(4)

where i = 1, 2, ..., M, j = 1, 2, ..., N are spatial indices and w = {wk,l |k = −K, ..., K, l = −L, ..., L} is a 2D
isotropic Gaussian kernel normalized to unit volume with K = L = 3 and truncated to three standard
deviations. C and ε are small positive constants used to prevent instabilities. γ is estimated using
the popular moment-matching technique detailed in [38]. The generalized Gaussian corresponds to
a Gaussian density function when γ = 2 and a Laplacian density function when γ = 1. MSGCN
coefficients behave in a similar manner against different distortion types as do mean subtracted
contrast normalized (MSCN) coefficients that are generated under the Gaussian model assumption
(γ = 2) [12]. Distortions such as white noise tend to increase the variance of MSGCN coefficients,
while distortions such as compression and blur, which increase correlations, tend to reduce variance.
The MSGCN model is more generic than the MSCN model and provides an elegant approach to study
the statistics of distorted images.
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Figure 1. (a) JP2K compressed image and (b) its histogram of divisively normalized bandpass
coefficients. The difference between the best generalized Gaussian distribution (GGD) and Gaussian
fits indicates that the generalized Gaussian-based contrast estimator is more appropriate for distorted
coefficients. The computed Kullback–Leibler divergence values of the Gaussian and GGD fits were
found to be KLDgauss = 0.083 and KLDGGD = 0.005, respectively.

3. Multivariate Image Statistics

In this section, we use the aforementioned MSGCN coefficients to develop a multivariate NSS
model and a way to extract quality-rich features. The generalized contrast normalization (GCN)
transform is a form of local gain control mechanism that accounts for the non-linear properties
of neurons, resulting from the pooled activity of neighboring sensory neurons [39]. These kinds
of perceptually-relevant transformations account for the contrast masking effect, which plays an
important role in distortion perception [39]. Although the GCN transform, as with other DNTs,
reduces redundancies in visual data, the normalized coefficients of natural images may still exhibit
dependencies in some form (depending on the image content), as depicted in Figure 2. Distortions
such as compression, upscaling and blur, which reduce the amount of complexity of an image and that
induce artificial correlations, tend to affect the MSGCN coefficients in a pronounced way. Increased
statistical interdependencies are observed to occur between neighboring coefficients with increased
distortion strength.
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(a) (b) (c) (d)

Figure 2. (a) Reference images from the LIVE database [40], (b) Scatter plot of adjacent pristine MSGCN
coefficients, (c) JP2K compressed images and (d) Scatter plot of adjacent distorted MSGCN coefficients. The
figure illustrates the dependency of horizontally adjacent mean subtracted generalized contrast normalized
(MSGCN) coefficients of exemplar pristine images. The degree of these dependencies increases with the
distortion severity. The PLCC (Pearson’s linear correlation coefficient) is used as a dependency measure.

3.1. The Multivariate Generalized Gaussian Distribution

Once the MSGCN map of an input image is computed using (2), a 5D multivariate generalized
Gaussian (MVGG) distribution is used to model the joint distribution of five neighboring coefficients
as illustrated in Figure 3.

( i, j ) (i, j + 1)

(i + 1, j - 1) (i + 1, j) (i + 1, j + 1)

Figure 3. Set of adjacent MSGCN coefficients used to form the joint distribution model. The additional
symmetrically placed samples relative to the coordinate (i, j) are not included to reduce the model size
and since it is likely that distortions along the same orientation will be redundant.

MVGG distributions have been extensively studied in the literature [41–44]. We utilize the
Kotz-type distribution [41], which is a form of zero-mean multivariate elliptical distribution defined as:

px(x) =
Γ
(

d
2

)
· s

πd/2Γ
(

d
2s

)
2d/2s|Σ|1/2

· exp
{
−1

2
(xTΣ−1x)s

}
, (5)

where s is a shape parameter that determines the exponential fall-off of the distribution (the higher s,
the lower the fall-off rate), Σ is the scale parameter (matrix) that controls the spread of the coefficients
along different dimensions, d is the dimension of x and Γ(·) is the gamma function:

Γ(z) =
∫ ∞

0
e−ttz−1dt ∀z ≥ 0.

The MVGG distribution becomes a multivariate Laplace distribution when s = 0.5, a multivariate
Gaussian distribution when s = 1 and a multivariate uniform distribution as s→ ∞.
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This form of MVGG distribution has also been used in a reduced-reference IQA framework [45],
in an RGB color texture model [46] of the joint statistics of color-image wavelet coefficients,
a generalized Gaussian scale mixture (GGSM) model of the conditioned density of a GGSM vector [19]
and in a no-reference IQA algorithm [15] to model the joint empirical distribution of extracted DCT
features and subjective scores, where a bivariate version of the MVGG is used. The moment-matching
scheme [41] used to estimate the shape and scale parameters of an MVGG is detailed in the
Appendix A.

3.2. Analysis of the Shape Parameter of the MVGG Distribution

We next analyze how the shape parameter of the MVGG distribution varies when modeling the
joint distribution of adjacent MSGCN coefficients of natural, photographic images from two widely
used databases: the Waterloo exploration database [47] and the Berkeley Segmentation Database
(BSD) [48]. The Waterloo exploration IQA database contains 4744 pristine natural images reflecting a
great diversity of real-world content. The Berkeley Segmentation Database was designed to support
research on image segmentation and contains 300 training images and 200 test images. In our analysis,
we only used ostensibly pristine images to generate MSGCN response maps, toward modeling a
five-dimensional joint empirical distribution of neighboring MSGCN coefficients using an MVGG
density. Figure 4b plots a histogram of the estimated shape parameter values of the MVGG model. The
shape parameter peaked at around the same value (s = 1) on both databases, suggesting that the joint
distribution of MSGCN coefficients of the pristine images may be reliably modeled as a multivariate
Gaussian. This outcome may be viewed as a multivariate extension of the well-established Gaussian
property of univariate normalized bandpass coefficients [18,24–26]. There are, however, a few samples
within the studied collection of natural images where the estimated shape parameter deviated from
s = 1. For example, a few images from the Waterloo exploration database, e.g., those shown in
Figure 4a, contain predominantly flat, highly correlated regions that yielded peakier MVGG fits where
s < 1. Cloudless sky regions (upper left of Figure 4a) are bereft of any objects and cause this effect.
The lower two images of Figure 4a have large saturated over/under-exposed areas and may be viewed
as substantially distorted. Overall, undistorted non-sky images of this type are rare. Conversely,
the images shown in Figure 4c are each almost entirely comprised of heavily textured regions, with
less peaky fits (s > 1). These kinds of images are also unusual.
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Figure 4. Empirical distribution (b) of the estimated shape parameter s obtained by fitting the joint
MSGCN coefficients of pristine images from the Waterloo exploration and the Berkeley Segmentation
Database (BSD) database with an multivariate generalized Gaussian (MVGG). Images yielding values
of s at extremities of the distribution (s ≤ 0.2 and s > 2.0) are shown in (a) and (c), respectively.
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3.3. Effect of Distortions on the Shape Parameter

Having established the relevance of the shape parameter of the MVGG and values it assumes on
pristine images, we next examine how it behaves in the presence of distortions. In this experiment,
we degraded 1000 pristine images from the Waterloo exploration database using three common
distortions: JPEG compression, Gaussian blur and additive white Gaussian noise (AWGN), each
applied at ten different levels. We then followed a similar modeling procedure as that described in the
previous subsection: we fit the 5D empirical joint distribution of MSGCN coefficients of the distorted
images with an MVGG distribution. Figure 5 depicts the way the shape parameter characteristically
varies in the presence of the different degradation types and levels. Gaussian blur (Figure 5a) and
JPEG (Figure 5c) degradations lead to peaky, heavy-tailed MVGG fits and reduced values of s. This
effect becomes more pronounced with increasing distortion strength. Conversely, AWGN (Figure 5b)
degradations increase the randomness and entropy of an image, leading to larger values of s.
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Figure 5. Boxplots of the estimated shape parameter s for three different distortions: (a) Gaussian blur,
(b) AWGN and (c) JPEG compression (MATLAB’s imwrite function is used to control the degree of
JPEG compression by specifying ‘quality’ as the argument in the imwrite function). Outliers were
removed from the plots for better visualization.

The presence of some degradations deviate the distributions of distorted MSGCN coefficients from
multivariate Gaussian behavior. To better understand this effect, we computed the Kullback–Leibler
(KL) divergences between the empirical bivariate joint distribution of vertically adjacent MSGCN
coefficients and its multivariate Gaussian fit, which are shown in Figure 6. Computing the KL
divergence between an empirical 5D joint distribution and its 5D Gaussian fit is computationally
expensive for a large sample size; thus, we resorted to only computing a bivariate joint distribution of
immediate neighbors. As shown in Figure 6b, increases of the AWGN standard deviation produced a
slight decrease in the KL divergence, indicating that the joint distribution of the MSGCN coefficients
becomes more similar to Gaussian, which is not unexpected given that the AWGN is Gaussian.
Degradations such as blur and JPEG compression, which result in peakier MVGG fits, caused larger
KL divergences, which increase with increasing distortion levels.
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Figure 6. Boxplots of the KL divergence between the 2D empirical distributions of MSGCN coefficients
and their multivariate Gaussian fits for three different distortions: (a) Gaussian blur, (b) AWGN and
(c) JPEG compression. Outliers were removed from the plots for better visualization.

3.4. Feature Extraction

Given that the MVGG model can be used to characterize distorted image statistical behavior well,
we can build feature-driven image quality prediction tools. As a first set of “quality-aware” features,
compute the estimated shape parameter s and the five eigenvalues of the estimated covariance (scale)
matrix Σ of the MVGG distribution. The premise behind the choice of these features is that the joint
distribution of neighboring MSGCN coefficients of pristine images follows a multivariate Gaussian
distribution, but the presence of distortion causes deviation from Gaussianity. Since each distortion
affects the coefficient distributions in a characteristic manner, it is possible to predict the type and
perceptual severity of distortions and, hence, the perceived image quality.

As shown in Figure 2, even after the application of the GCN transform, the MSGCN responses
remain correlated on images degraded by correlation-inducing distortions such as compression and
blur. Such distortions lead to more polarized eigenvalues of the estimated covariance matrix than do
other distortions (AWGN). In order to demonstrate the effect of distortions on the eigenvalues, we use
the ratio of the minimum and maximum eigenvalues (λmin/λmax) of the estimated scale matrix Σ from
the best 2D MVGG fit to the vertically adjacent MSGCN coefficients. We also fit a 5D MVGG to the five
neighboring coefficients (as shown in Figure 3). Figure 7 shows the boxplots of the ratio λmin/λmax

over all images from the LIVE database [40], but classified by distortion type. The pattern of variation
of the eigenvalues of the estimated covariance matrix in the presence of different distortion types is
indicative of the rich perceptual quality information captured by eigenvalues.

The pairwise products of adjacent MSGCN coefficients, like those of MSCN coefficients, also
exhibit statistical regularities on natural, photographic images. We follow a similar modeling approach
as that described in [12] and use a zero-mode asymmetric generalized Gaussian distribution (AGGD)
to fit the pairwise products along four directions whose density is defined as [12]:

f (x; α, σ2
l , σ2

r ) =



α

(βl + βr)Γ(
1
α
)

exp
(
−
(
−x
βl

)α)
, x < 0

α

(βl + βr)Γ(
1
α
)

exp
(
−
(

x
βr

)α)
, x ≥ 0,

(6)

where:

βl = σl

√
Γ(1/α)

Γ(3/α)

and:

βr = σr

√
Γ(1/α)

Γ(3/α)
.
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Figure 7. Boxplots of the ratio of the minimum and maximum eigenvalues of the estimated covariance
matrix Σ of (a) two-dimensional MVGG fit and (b) five-dimensional MVGG fit over all reference and
distorted images from the LIVE database; “WN” is white noise; “GBLUR” is Gaussian blur; and “FF”
is fast fading Rayleigh channel.

The AGGD parameters (α, βl , βr) are estimated using the moment-matching technique described

in [49]. In addition to (α, βl , βr), AGGD mean µ = (βl − βr)
Γ(2/α)

Γ(1/α)
yields a fourth quality-aware

feature. Extracting these four parameters along four orientations (H, V, D1 and D2) given by:

H(i, j) = Î(i, j) Î(i, j + 1)

V(i, j) = Î(i, j) Î(i + 1, j)

D1(i, j) = Î(i, j) Î(i + 1, j + 1)

D2(i, j) = Î(i, j) Î(i + 1, j− 1),

where i ∈ {1, 2, 3, ..M− 1} and j ∈ {1, 2, 3, ..N − 1} are spatial indices, yields a total of 16 features.
In order to capture even higher-order correlations caused by complex distortions, we model

the joint paired-product response map along the four directions (H, V, D1 and D2) using a
four-dimensional MVGG distribution. The eigenvalues of the estimated covariance matrix of the
4D MVGG density are extracted as an additional set of four quality-relevant features. Since all of the
features are extracted at two scales, a total of 26× 2 = 52 perceptually-relevant quality-aware MVGCN
features are computed. A brief summary of all of these features and their methods of computation
is laid out in Table 1. In subsequent sections, we study the effectiveness of the MVGCN features by
applying them to multiple image quality-relevant tasks.

Table 1. Feature summary of joint MSGCN(m), paired-products (pp) and joint paired-products (j)
coefficients. All features are extracted at two scales.

Feature ID Feature Description Computation Procedure

m1 shape 5D MVGG fit to MSGCN coefficients
m1–m5 eigenvalues of scale matrix 5D MVGG fit to MSGCN coefficients

pp1–pp4 shape, mean, left variance and right variance AGGD fit to H pairwise coefficients
pp5–pp8 shape, mean, left variance and right variance AGGD fit to V pairwise coefficients
pp9–pp12 shape, mean, left variance and right variance AGGD fit to D1 pairwise coefficients
pp13–pp16 shape, mean, left variance and right variance AGGD fit to D2 pairwise coefficients

j1–j4 eigenvalues of scale matrix 4D MVGG fit to H, V, D1 and D2 ppcoefficients
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4. Quality Assessment of Visible Light Images

In order to demonstrate the quality-rich feature extraction capabilities of the MVGCN model, we
utilized them for the blind image quality assessment task. We compared the performance of MVGCN
against a number of well-known NR IQA algorithms, such as SSEQ [50], CORNIA [51], CNN-IQA [8],
BLIINDS [15], NIQE [10], BRISQUE [12] and DIIVINE (to be consistent with other algorithms, we
utilized the single step framework of DIIVINE, directly mapping the features to MOS/differential
mean opinion scores (DMOS) while skipping the distortion identification stage) [13] (all of which are
publicly available) and two full reference (FR) IQA algorithms: PSNR and MS-SSIM [52]. We conducted
our experiments on four widely-used IQA databases, namely: LIVE [40], TID08 [53], CSIQ [54] and
LIVE in the Wild Challenge [55]. In all of the experiments, each model was trained on 80% of the
database while the other 20% was used for testing. A support vector regressor (SVR) was used with the
radial basis function (RBF) to map quality features to the DMOS after determining its parameters using
five-fold cross-validation on the training set. The train-test splits were carried out in a manner to ensure
that the training and test sets would not share reference images, so that the performances of the models
would reflect their ability to learn distortions, without bias from overfitting on image content. A total
of 100 such splits was performed, and the median Spearman’s rank ordered correlation coefficient
(SROCC) and Pearson’s linear correlation coefficient (PLCC) computed between the predicted quality
scores and the DMOS are reported in Table 2. The overall results reported in Table 2 were computed
by first applying Fisher’s z-transformation [56] given by:

z =
1
2

ln
1 + r
1− r

, where r is SROCC or PLCC, (7)

then averaging the transformed correlation scores for each method across each database and finally
applying the inverse Fisher’s z-transform.

Table 2. Median Spearman’s rank ordered correlation coefficient (SROCC) and Pearson’s linear
correlation coefficient (PLCC) across 100 train-test trials on the LIVE, CSIQ, TID08and LIVE Challenge
databases. The best two no reference image quality assessment (NR IQA) models are boldfaced and FR
IQA models are italicized.

DB
LIVE TID08 CSIQ Challenge Overall

SROCC PLCC SROCC PLCC SROCC PLCC SROCC PLCC SROCC PLCC

PSNR 0.892 0.883 0.561 0.571 0.803 0.800 - - 0.756 0.758
MS-SSIM 0.953 0.942 0.860 0.845 0.913 0.896 - - 0.894 0.888

SSEQ 0.889 0.889 0.635 0.680 0.691 0.749 0.476 0.515 0.695 0.732
CORNIA 0.944 0.946 0.683 0.742 0.696 0.768 0.621 0.658 0.762 0.800
BLIINDS 0.927 0.930 0.662 0.697 0.739 0.784 0.503 0.538 0.738 0.764

NIQE 0.912 0.907 0.258 0.346 0.632 0.721 0.458 0.502 0.642 0.682
CNN-IQA 0.946 0.948 0.722 0.750 0.854 0.878 0.575 0.556 0.820 0.832
BRISQUE 0.940 0.943 0.600 0.654 0.738 0.758 0.602 0.636 0.741 0.768
DIIVINE 0.897 0.897 0.594 0.636 0.737 0.751 0.600 0.623 0.713 0.732
MVGCN 0.946 0.947 0.688 0.735 0.735 0.775 0.622 0.646 0.771 0.796

Learning-based algorithms that involve a training stage to learn optimal parameters are sometimes
susceptible to overfitting, especially when trained and tested on the same database, due to similar
modeling of distortions, similar experimental conditions and other factors. The main objective of NR
IQA algorithms is their ability to generalize well on other datasets. To demonstrate the generalization
capabilities, we trained the NR IQA models on one entire database and evaluated their performance
on common distortion types from other databases, including: JPEG2000 (JP2K) and JPEG compression,
Gaussian blur and AWGN. Table 3 reports the database-independence performance of MVGCN, while
Table 4 compares its aggregate performance against other NR IQA models across four leading IQA
databases. We used the non-parametric Wilcoxon rank-sum test to conduct the statistical significance
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analysis (reported in Table 5) between different algorithms across multiple databases. As can be noted
from the tables, MVGCN performed better than several leading NSS-based NR IQA algorithms and
competed well against CORNIA [51], which uses raw image patches in an unsupervised manner
to learn a dictionary of local descriptors. CORNIA extracts a 20,000D feature vector and is much
more computationally expensive than MVGCN, as shown in the time complexity analysis results
reported in Table 6. Although CNN-IQA performed better than other models on the CSIQ and TID08
databases, it failed to deliver comparable performance on the LIVE Challenge database, which consists
of authentic real-world distortions. This raises questions on the practical application of such models
and limits their use in real-world scenarios.

Table 3. SROCC for database independent experiments on MVGCN across multiple IQA databases.
Rows: training dataset; columns: testing dataset. The overall performance is calculated for each
training database.

Train/Test LIVE TID08 CSIQ TID13 Overall

LIVE - 0.927 0.905 0.922 0.919
TID08 0.841 - 0.678 0.876 0.813
CSIQ 0.787 0.801 - 0.765 0.785
TID13 0.839 0.955 0.662 - 0.862

Table 4. Aggregate results of database independent tests for various IQA models. The best two NR
IQA models are boldfaced.

Model Overall SROCC Overall PLCC

SSEQ 0.810 0.833
CORNIA 0.865 0.881
BLIINDS 0.824 0.840
DIIVINE 0.840 0.844
BRISQUE 0.809 0.813
MVGCN 0.854 0.863

Table 5. Results of the statistical significance test performed between SROCC values of different NR
IQA algorithms across four databases. The elements in each cell correspond to the following databases
(from left to right): LIVE, CSIQ, TID08 and LIVE Challenge. ‘1’ means that the row algorithm is
statistically superior to the column algorithm with a confidence of 95%; ‘0’ signifies statistically worse;
and ‘-’ means statistical equivalence.

SSEQ BRISQUE CORNIA NIQE DIIVINE BLIINDS MVGCN

SSEQ –––– 0010 0-00 0111 ––10 0000 0000
BRISQUE 1101 –––– 0100 1111 1––– 1-01 ––00
CORNIA 1-11 1011 –––– 1111 1-11 10-1 –0––

NIQE 1000 0000 0000 –––– 1000 0000 0000
DIIVINE ––01 0––- 0-00 0111 –––– 0-01 0-00
BLIINDS 1111 0-10 01-0 1111 1-10 –––– 0-00
MVGCN 1111 ––11 –1–– 1111 1-11 1-11 ––––
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Table 6. Comparison of median time taken per image to extract features by different NR IQA algorithms
on a 4-GHz quad-core processor with 32 GBs of RAM. The median is computed over all distorted
images from the LIVE database.

Algorithm Time (in sec)

SSEQ 0.77
CORNIA 2.10
BLIINDS 27.66
DIIVINE 9.28
BRISQUE 0.03
MVGCN 0.08

5. Predicting Detection Performance on X-Ray Images

In previous work, we studied the natural scene statistics (NSS) of X-ray images and found that
the NSS modeling paradigm applies quite well to X-ray image data, although the model is somewhat
different from that of visible light (VL) images [23,57]. In prior work, we used a nominal set of
X-ray NSS features along with standardized objective image quality indicators (IQIs) to analyze the
relationship between X-ray image quality and the task performance of professional bomb technicians
who were asked to detect and identify a collection of diverse potential threat objects.

To analyze the effects of image quality on task performance, we conducted a human task
performance study in which professional bomb technicians were asked to detect and identify
improvised explosive device (IED) components in X-ray images that we created, degraded and
presented to them in an interactive viewing environment [58]. Certain commercial equipment,
instruments, or materials are identified in this paper in order to specify the experimental procedure
adequately. Such identification is not intended to imply recommendation or endorsement by the U.S.
government, nor is it intended to imply that the materials or equipment identified are necessarily the
best available for the purpose. The degradations included spatially correlated noise, reduced spatial
resolution and combinations of these. The NIST-LIVE database of ground truth judgments of bomb
experts was then used to evaluate the predictive performance of the objective X-ray image quality
features. More details regarding the task performance study protocols can be found in [59].

Given that the MVGCN model provides a powerful NSS-based perceptual image quality feature
extractor, we examined its performance against other NSS-based models and also against conventional
IEEE/ANSI N42.55 [60] metrics. We hypothesized that the presence of degradations would change the
characteristic statistical properties of the MSGCN coefficients of X-ray images, which would allow the
MVGCN model to better capture degradations and would better correlate with the outcomes of expert
detection and identification tasks conducted on degraded X-ray images.

The models used for comparison are the quality inspectors of X-ray images (QUIX) model [57],
the IEEE/ANSI N42.55 standard [60] and combinations of these. QUIX features are a set of simple
and efficient NSS-based perceptual quality features that accurately predict human task performance.
In [57], QUIX considers only horizontal and vertical correlations while extracting features denoted as
‘pp’ features. In order to be consistent and to have a fair comparison against QUIX, we developed a
reduced feature version of MVGCN, which we refer to as MVGCN-X-ray, which does not include the
products of diagonal coefficients as part of the paired-product modeling and corresponding MVGG
fits. A summary of the MVGCN-X-ray features used and the feature extraction procedure is described
in Table 7.

Image quality indicators (IQIs) are a set of standard objective image quality metrics defined in
IEEE/ANSI N42.55 [60]. These IQIs are determined by analysis of images of a standard test object under
test conditions. In our analysis, we used eight IQIs, including “steel penetration”, “spatial resolution”,
“organic material detection”, “dynamic range”, “noise” and three other descriptive features that are
extracted from the spectral distribution of the measured modulation transfer function (MTF), noise
equivalent quanta (NEQ) and noise power spectrum (NPS).
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Given that CORNIA is among the top performing IQA algorithms, albeit much more
computationally expensive, as observed in the previous application, we compared its time complexity
against MVGCN on X-ray images. CORNIA required about 50-times more time than MVGCN-X-ray
did (as reported in Table 8) to extract features from high spatial-resolution (the size of the studied
X-ray images is of the order of 6000× 5000 pixels) X-ray images.

Table 7. Feature summary for joint MSGCN (m), paired-products (pp) and joint paired-products (j)
coefficients for the X-ray application. All features are extracted at two scales.

Feature ID Feature Description Computation Procedure

m1 shape 3D MVGG fit to MSGCN coefficients
m1–m3 eigenvalues of scale matrix 3D MVGG fit to MSGCN coefficients

pp1–pp3 shape, mean and right variance AGGD fit to H pairwise coefficients
pp4–pp6 shape, mean and right variance AGGD fit to V pairwise coefficients

j1–j2 eigenvalues of scale matrix 2D MVGG fit to H and V pp coefficients

Table 8. The time complexity comparison between CORNIA and MVGCN-X-ray to extract features
from an X-ray image of size 6329× 5380 on a 4-GHz quad-core processor with 32 GBs of RAM.

Algorithm Time (in s)

CORNIA 542.42
MVGCN-X-ray 9.61

To evaluate performance, we divided the NIST-LIVE database on the basis of component
and clutter combinations. The component categories include IED components: “power source”,
“detonator”, “load”, “switch” and “metal pipe”, which are labeled by professional bomb technicians, if
found in an image, else labeled as not found. Here, we consider the task of measuring the accuracy of
objective image quality models to predict the detection performance of experts. We further divided
each category into four clutter types: clutter (laptop), shielding (steel plate), clutter with shielding and
no clutter. Clutter/shielding was added to some images to make the detection task more challenging.

We then devised a binary classification framework whereby features were mapped to a binary
variable indicating whether the component was successfully identified by an expert. We used a
logistic regression model to be consistent with [57]. The data from each component-clutter category
were divided into an 80% training set to learn logistic function parameters, which were then used
to predict on the remaining 20% test set. We used a similar performance evaluation methodology
as followed in [57]: generated random disjoint train-test splits and computed median log loss and
area-under-the-ROC-curve (AUC) scores over 1000 iterations (reported in Table 9). A smaller value
of log loss and a larger value of AUC indicate superior classification performance, implying better
correlation with human judgments.

We also demonstrated in [57] that QUIX features and IQIs supply complementary information,
which when combined into a single predictor performed better than either of them in isolation.
Under a similar premise, we augmented MVGCN-X-ray features with IQIs to obtain similar benefits
in performance. As shown in Table 9, the combination of MVGCN-X-ray with IQIs yielded better
performance than any of the other features in isolation, while competing well against the combination
of QUIX and IQIs. The improvement in performance of the combination can be attributed to the capture
of different levels of distortion-sensitive higher-order correlations by the MVGCN-X-ray features and
by complementary X-ray image quality information supplied by IQIs.
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Table 9. Median log loss and AUC scores across 1000 train-test trials on different component-clutter
combinations. The best two feature groups for each component-clutter category are boldfaced. IQI,
image quality indicator; QUIX, quality inspectors of X-ray images.

IQIs QUIX MVGCN-X-ray QUIX + IQIs MVGCN + IQIs

Component Clutter Type log-loss AUC log-loss AUC log-loss AUC log-loss AUC log-loss AUC

Power source Clutter 0.485 0.867 0.489 0.831 0.500 0.820 0.451 0.877 0.503 0.863
Power source Shield 0.528 0.863 0.502 0.900 0.500 0.900 0.526 0.880 0.506 0.888
Power source Shield with Clutter 0.312 0.591 0.205 0.833 0.178 0.864 0.205 0.900 0.176 0.864
Power source No Clutter 0.496 0.886 0.579 0.863 0.544 0.844 0.480 0.895 0.470 0.889

Detonator Clutter 0.200 0.933 0.229 0.944 0.191 0.962 0.213 0.938 0.199 0.921
Detonator Shield with Clutter 0.624 0.875 0.526 0.875 0.337 0.875 0.512 0.875 0.340 0.875
Detonator No Clutter 0.455 0.944 0.395 0.944 0.407 0.944 0.346 0.944 0.344 0.944

Load Clutter 0.163 0.944 0.137 0.944 0.131 0.944 0.134 0.944 0.133 0.944
Load No Clutter 0.505 0.852 0.622 0.883 0.561 0.861 0.592 0.861 0.559 0.889

Switch Clutter 0.318 0.932 0.275 0.936 0.228 0.941 0.249 0.927 0.213 0.932
Switch Shield 0.369 0.932 0.311 0.936 0.350 0.941 0.326 0.927 0.351 0.932
Switch No Clutter 0.414 0.928 0.506 0.872 0.476 0.872 0.407 0.907 0.406 0.920

Metal pipe Clutter 0.291 1.000 0.397 0.125 0.346 0.500 0.304 1.000 0.264 0.875
Metal pipe Shield 0.394 1.000 0.511 1.000 0.477 0.462 0.478 1.000 0.453 1.000
Metal pipe Shield with Clutter 0.432 0.905 0.472 0.905 0.443 0.917 0.363 0.952 0.375 0.952

Weighted Average 0.402 0.881 0.414 0.874 0.382 0.870 0.373 0.912 0.357 0.906

6. Conclusions

We designed a multivariate approach to NR IQA, which uses generalized contrast normalization,
a form of DNT that is more suitable to model degraded image coefficients. We investigated the
effect of degradations on the estimated shape and eigenvalues of the estimated covariance matrix of
MVGG fit to the joint distribution of neighboring MSGCN coefficients. Further, we demonstrated
applications of the MVGCN model to the blind QA of visible light images and on the prediction of
threat object detection and identification by trained experts on degraded X-ray images, achieving near
state-of-the-art performance in both applications.

There are a number of possible future directions. It is of interest to utilize the MVGCN model
to design a spatio-temporal model of normalized bandpass video coefficients for video QA. The
aforementioned multivariate modeling approach is also possibly extensible to other NSS models that
utilize univariate parametric distributions of bandpass image coefficients. Furthermore, studying
the statistics of other imaging modalities such as millimeter-wave, computed tomography (CT) and
multi-view X-ray images also is a potential future direction of exploration.
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Appendix A

If x is distributed as a zero-mean MVGG (5), then the following properties follow [41]:

Var(x) =
21/sΓ( d+2

2s )

dΓ( d
2s )

Σ (A1)

γ1(x) = 0 (A2)

γ2(x) =
d2Γ( d

2s )Γ(
d+4
2s )

Γ2( d+2
2s )

− d(d + 2) (A3)

where γ1 and γ2 denote multivariate skewness and kurtosis coefficients, respectively. A number
of methods have been studied to estimate the shape (s) and scale (Σ) parameters of an MVGG
distribution, including the recursive maximum likelihood estimation [61], the method of moments [41]
and the Fisher scoring algorithm [46]. We utilize the efficient and reliable moment-matching technique
described in [41]. Specifically, given a set of N i.i.d. d-dimensional MVGG vectors, x1 . . . xN , compute
the sample multivariate kurtosis coefficient as in [62]:

γ̂2(x1 . . . xN) =
1
N

N

∑
i=1

(xT
i S−1xi)

2 − d(d + 2), (A4)

where S is the sample covariance. Equations (A3) and (A4) are used to estimate s, which is then
substituted into Equation (A1) to compute Σ, where Var(x) is replaced by the sample covariance S.
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