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Abstract: This paper describes a proposed fractional filter-based multi-scale underwater and
hazy image enhancement algorithm. The proposed system combines a modified global contrast
operator with fractional order-based multi-scale filters used to generate several images, which are
fused based on entropy and standard deviation. The multi-scale-global enhancement technique
enables fully adaptive and controlled color correction and contrast enhancement without over
exposure of highlights when processing hazy and underwater images. This in addition to
the illumination/reflectance estimation coupled with global and local contrast enhancement.
The proposed algorithm is also compared with the most recent available state-of-the-art multi-scale
fusion de-hazing algorithm. Experimental comparisons indicate that the proposed approach yields a
better edge and contrast enhancement results without a halo effect, without color degradation, and is
faster and more adaptive than all other algorithms from the literature.

Keywords: fractional order calculus-based multi-scale contrast operator; hybrid local-global contrast
enhancement; underwater image enhancement processing; hazy image contrast enhancement;
entropy guided fusion

1. Introduction

Hazy and underwater images share similar characteristics in terms of reduced visibility and
low contrast due to the nature of image formation [1,2]. Several single image-based enhancement
and restoration models and algorithms have been proposed to solve this problem [1,2]. However,
they work with varying degrees of success at the cost of increased structural and computational
complexity. Furthermore, color correction combined with these highly complex de-hazing algorithms
have been used to restore underwater images. However, there are relatively few digital hardware
realizations and reduced real-time prospects for such schemes due to a high computational cost.

In this work, we propose a fractional order-based algorithm for the enhancement of hazy and
underwater images. The algorithm performs color correction and multiscale spatial filter-based
localized enhancement. We compare results with other algorithms from the literature and show that
the proposed system is effective with the fastest execution time.

The paper is outlined as follows. The Section 2 provides the background, motivation, and key
contributions of the proposed system. Section 3 presents the proposed algorithms for both underwater
and hazy image enhancement in addition to solutions to problems and modifications. Section 4
presents and compares the results (obtained using the proposed system) to other algorithms from
the literature. The Section 5 explicitly compares the proposed approach against a recent algorithm
from the literature, which further strengthens the justification of the proposed scheme. The Section 6
presents the conclusion.
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2. Materials and Methods

2.1. Underwater Image Processing Algorithms

Underwater image processing algorithms can be classified as either restoration, enhancement,
or color correction and illumination of normalization-based approaches [2] and range from medium
to high computational and structural complexity. The restoration-based algorithms incorporate
de-blurring and de-hazing processes using either Weiner [3] deconvolution or dark channel prior
(DCP)-based techniques, respectively [2]. Examples include algorithms by Galdran et al. [4],
Li et al. [5], Guo [6], Zhao et al. [7], Chiang and Chen [8], Wen et al. [9], Serikawa and Lu [10],
Carlevaris-Bianco et al. [11], and Chiang et al. [12]. Conversely, the enhancement-based algorithms do
not employ any models derived from physical phenomena or prior image information [2]. They utilize
statistical/histogram-based or logarithmic contrast enhancement/stretching and color correction
techniques in their formulation. Examples include works by Iqbal et al. [13], Ghani and Isa [14],
Fu et al. [15], Gouinaud et al. [16], Bazeille et al. [17], Chambah et al. [18], Torres-Mendez and
Dudek [19], Ahlen et al. [20,21], Petit et al. [22], Bianco et al. [23], Prabhakar et al. [24], Lu et al. [25],
and Li et al. [5]. Recently, entropy and gradient optimized underwater image processing algorithms
based on partial differential equations were developed [26,27] and they yielded effective and automated
enhancement surpassing results from previous algorithms.

The illumination normalization-based algorithms attempt to resolve uneven lighting issues in the
acquired underwater image scenes. The algorithms in this class include works by Prabhakar et al. [24],
Garcia et al. [28], Rzhanov et al. [29], Singh et al. [30], and Fu et al. [15].

2.2. Hazy Image Processing Algorithms

Hazy image processing also deals with visibility restoration of image scenes degraded by weather
conditions and can be multi-image or single-image based solutions [31]. Furthermore, hazy image
processing algorithms can also be classified as either restoration or enhancement-based schemes. In the
restoration-based hazy image processing, the de-hazing process is based on the hazy image formation
model [31]. The objective is, therefore, meant to obtain the de-hazed image from the input hazy
image. The algorithms in this class include the popular DCP method by He et al. [32], which has been
adopted and modified in various forms and a review of several DCP-based methods can be found in
Reference [1].

Other schemes include works based on segmentation [33–35], fusion [36,37], geometry [38],
Weighted Least Squares [39], variational [37,40–42], and regularization approaches [34] using sparse
priors [43], other boundary constraints [44], biological retina-based model [45], and multi-scale
convolutional neural networks [46]. The enhancement-based hazy image processing method is based
on directly obtaining the by-product of radiance scene recovery through visibility restoration by
contrast enhancement/maximization. The algorithms in this category utilize contrast limited adaptive
histogram equalization (CLAHE), histogram specification (HS) [47], and Retinex [48–50]. Additionally,
some of these algorithms combine dark channel priors and transmission map extraction with contrast
enhancement for refinement. However, consistently good results are not guaranteed since some images
will depict color fading/distortion and darkening of regions in addition to over-enhancement of
sky/homogeneous regions. Thus, some threshold and segmentation-based algorithms [33–35,51] have
been developed to solve the peculiar problems of these algorithms. Furthermore, recently developed
algorithms using partial differential equations (PDEs) and gradient metric-based optimization were
developed [52,53] to avoid the usage of DCP-based stages and multiple (and manual adjustment of)
parameters. Recently, an Artificial Multiple-Exposure Image Fusion (AMEF) de-hazing algorithm was
proposed by Galdran [54], which represents the current state-of-the-art technology.

Other recent algorithms utilize hybrid methods, deep learning, and convolutional neural network
architectures for de-hazing and include works by References [55–73].
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Physical methods depend on prior image information obtained by capturing the image scenes at
different times under varying conditions using physical hardware/optical equipment such as cameras
and lighting rigs [2]. They may also incorporate multi-image processing schemes for either hazy or
underwater images. However, consistently good results are not assured due to the unpredictable
nature of weather and aquatic medium conditions. In addition, the cost of such hardware imaging
systems is prohibitive and are usually not universally applicable. Such schemes are fully listed
and described in work by Li et al. [5]. Single-image-based software implementations offer the best
outcome when factors such as cost, time, replicability, and convenience are considered since they
do not necessarily require prior knowledge of the environment or an image acquisition process for
operation [2,5]. Thus, the scope of this work is limited to single-image-based enhancement of both
hazy and underwater images.

The primary motivation for this work is to develop fast, practical, and effective algorithms
for underwater and hazy image enhancement that are amenable to hardware implementation for
real-time operation.

2.3. Key Contributions and Features of a Proposed Scheme

The key contributions and features of this work include:

• A modified global contrast enhancement and a multi-scale illumination/reflectance model-based
algorithm using fractional order calculus-based kernels.

• Relatively low-complexity underwater image enhancement algorithm utilizing color correction
and contrast operators.

• Frequency-based approach to image de-hazing and underwater image enhancement using
successive, simultaneous high frequency component augmentation and low frequency
component reduction.

• Feasible hazy and underwater image enhancement algorithm for relatively easier hardware
architecture implementation.

• Avoidance of the dark channel prior based stages and iterative schemes by utilizing combined
multi-level convolution using fractional derivatives.

3. Proposed Algorithms

Underwater image enhancement usually involves some color correction/white balancing in
addition to contrast enhancement process, which is usually a local/global operation. The first step
for reducing the need for such involved local processing was to avoid the over-exposure of bright
regions while enhancing the dark regions. Initial logarithmic solutions were ineffective and flattened
the images in addition to fading colors. Thus, a new formulation for the global contrast operator had
to be devised to achieve this objective. We present the modification and realization of the improved
global contrast operator and spatial filter based system for processing underwater and hazy images.
Furthermore, the simplified scheme using fractional calculus is presented in the form of spatial masks
based on the Grunwald-Letnikov definition [74].

3.1. Selection and Modification of Global Contrast Operator

Previously, extensive experiments were conducted to determine effectiveness on several contrast
stretching algorithms [26]. Due to the adjustable nature of the high and low values by modifying the
percentiles, the contrast stretching (CS) algorithm appeared to be much more versatile than the other
algorithms. However, it works best for faded low-contrast images but not so well for underwater
images since it does not perform adequate color correction unless applied iteratively. Conversely,
some of the other algorithms were too harsh and had no effect or minimal impact on most underwater
images while others resulted in color bleeding. The selected algorithms such as the piecewise linear
transform (PWL) [75] and the gain offset correction (GOC2) [76] were selected for incorporation into
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effective PDE-based formulations [26,27]. This was because some underwater images responded better
to GOC2 (due to its mainly color correction ability) than to PWL (due to its generality) and vice versa.
Thus, there is the need to develop a global contrast operator that would merge the advantages of both
GOC2 and PWL while mitigating their weaknesses.

Since the linear contrast stretch (similar to the PWL and GOC2) does not utilize any edge
enhancement features or region-based methods, it does not enhance noisy edge artefacts. However,
several of these contrast stretching algorithms lead to oversaturation of already bright regions of
the image (whitening out/over-exposure). This is in addition to a threshold effect when applied to
images with bimodal histogram. The linear contrast stretching can be applied to both greyscale and
color images with excellent results similar to the PWL. However, the PWL method also suffers from
the threshold of images when there are distinct regions of dark and light intensity, which leads to
whiting out of bright areas. This is because it truncates values at upper and lower limits to maximum
and minimum possible pixel values in the image without taking into account pixels in those regions.
The linear contrast stretch seeks to expand the range based on the surrounding pixels in the distribution.

Underwater image enhancement usually involves some color correction/white balancing in
addition to contrast enhancement process, which is usually a local/global operation. The GOC2
algorithm adequately processed underwater images, which required mild color correction and
contrast enhancement and, thus, avoided overexposure of highlights unlike most other tested contrast
enhancement algorithms [26]. This necessitated the incorporation of a local contrast operator such
as the CLAHE, which, even though effective, further added to the computational complexity of the
algorithms and introduced additional parameters. The first step to reducing the need for such involved
local processing was to avoid the over-exposure of bright regions while enhancing the dark regions.
Initial logarithmic solutions were not effective and flattened the images in addition to fading colors.
Thus, a new formulation for the global contrast operator had to be devised to achieve this objective.

3.1.1. Gain Offset Correction-Based Stretching (GOCS)

The expression for the GOC2 mapping function [76] is given as shown in Equation (1).

IoGOC2 =

[
L− 1

Imax − Imin

]
(Ii − Imin) (1)

The contrast stretching function is given below.

IoCS =

[
Imax − Imin
Ihigh − Ilow

]
(Ii − Ilow) + Imin (2)

In Equations (1) and (2), IoGOC2 and IoCS are the enhanced images using GOC2 and CS respectively,
Imax, Imin are maximum and minimum pixel intensities in the input image, Ii, L is the number of grey
intensity levels (L = 256 for unsigned integer, eight-bit-per-pixel (uint8, 8 bpp) image format) while
Ilow and Ihigh are the lower and upper percentiles of the image pixel intensity distribution normally set
at 5% and 95%, respectively.

The faults of the GOC2 lie in the statistics such as maximum and minimum pixel intensity
values utilized in its computation. Since an image, which is already utilizing its full dynamic range,
will not be affected by such statistics, we needed to realize a more influential statistic. The contrast
stretching operator utilizes lower and upper percentiles of the image intensity distribution for its
computation. Consequently, the contrast stretching operator does not suffer over-exposure effects and
performs adequate contrast enhancement. Conversely, the GOC2 performs sufficient color correction
but minimal contrast enhancement. Thus, by replacing the maximum and minimum pixel intensity
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values with the upper and lower percentiles in the formulation, we can realize a new formula for the
global contrast operation as seen in the equation below.

IoGOCS =

[
L− 1

Ihigh − Ilow

]
(Ii − Ilow) (3)

Initial experiments using the 5th and 95th percentiles led to some pixels being over-exposed and,
as we widened the range between the percentiles, the results improved and, in some cases, settled on
the 1st and 99th percentiles for the best results. Increasing the range to its maximum yields a result
similar to GOC2, which is expected since the high and low percentiles now become the maximum and
minimum pixel intensity values. The GOCS is related to the CS in the following form.

IoCS = IoGOCS(Imax − Imin) + Imin (4)

3.2. Proposed Multi-Scale Local Contrast Operator

We present the development of the multi-scale algorithm for local contrast enhancement,
which replaces the CLAHE used in previous work by drastically reducing complexity and
run-time. The initial derivations of the illumination-reflectance estimation part of the algorithm
using integer-based low-pass and high-pass filters can be found in previous work [2]. We focus
on new aspects such as multi-scale, fractional order-based entropy and standard deviation
guided enhancement.

3.2.1. Multi-Scale Fractional Order-Based Illumination/Reflectance Contrast Enhancement
(Multi-fractional-IRCES)

The fractional derivative-based re-definitions for high-pass and low-pass filtering of arbitrary
order α are obtained using the equations below.

IHPF(x, y) = −∇α I(x, y) (5)

and
ILPF(x, y) =

∫
Ω

IHPF(x, y)dΩ = −
∫

Ω
∇α I(x, y)dΩ = I(x, y) +∇α I(x, y) (6)

Leading to the expression using fractional order as seen in Equation (7) below.

Ie(x, y) = −∇α I(x, y) + [I(x, y) +∇α I(x, y)]k (7)

We further extend the application to hazy image enhancement as seen in the equations below.

U(x, y) = Imax − I(x, y) (8)

Uα
e (x, y) = −∇αU(x, y) +

[
−
∫

Ω
∇αU(x, y)dΩ

]k
(9)

Iα
e (x, y) = Uα

emax −Uα
e (x, y) (10)

In the expressions of Equations (5)–(10), k is the power factor, U(x, y) is the inverted image, Imax is
the maximum pixel intensity of the input image, I(x, y), ∇αU(x, y) is the fractional derivative of the
inverted image, and

∫
Ω∇

αU(x, y)dΩ denotes the fractional order integral. Additionally, Uα
e (x, y) is

the enhanced inverted image using fractional order-based operations and Uα
emax is the maximum pixel

intensity of Uα
e (x, y) while Iα

e (x, y) is the de-hazed image using fractional order-based operations.
Additionally, we wish to reduce the computational load of computing both the derivative and
the integral especially in the fractional order-based version. Thus, we simple obtain the fractional
integral of the input image and subtract it from the original image and multiply by the appropriate
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factor to obtain the fractional order derivative. This saves resources especially on digital hardware
implementations since only one operator is utilized and re-used. This is easily expressed as the
equations below.

IHPF(x, y) = I(x, y)− ILPF(x, y) (11)

Io(x, y) = γ[I(x, y)− ILPF(x, y)] + [ILPF(x, y, t)]k (12)

which gives the expressions using fractional order calculus as seen below.

Io(x, y) = γ

[
I(x, y)−

{∫
Ω
∇α I(x, y)dΩ

}]
+

[∫
Ω
∇α I(x, y)dΩ

]k
(13)

The scheme for hazy image enhancement can also be updated accordingly without much effort.
The central idea is that, by further decomposing a low-pass filtered image and enhancing the details at
each level and recombining the results, we would obtain much finer local enhancement. Additionally,
using the fractional order reduces or minimizes the issue of noise enhancement as high frequency
components are amplified at each stage, which further reduces or minimizes the low frequency
components at each stage. Since the haze is a low frequency phenomenon, we expect that such
effects would be greatly reduced after processing without enhancing noise. The entropy and standard
deviation measures are utilized to select the best outcome for the processed image in terms of the value
of the exponent, k. The mathematical expressions for the algorithm are shown in Equations (14)–(20).

Ii(x, y) = IHPFi(x, y) + [ILPFi(x, y)]k ; i = 0, 1, . . . , N − 1 (14)

IAk (x, y) =
1
N

N−1

∑
i=0

Ii(x, y); k = 2 (15)

IBk (x, y) =
1
N

N−1

∑
i=0

Ii(x, y); k = 0.5 (16)

eAk = entropy
(

IAk

)
; eBk = entropy

(
IBk

)
(17)

σAk = std
(

IAk

)
; σBk = std

(
IBk

)
(18)

f(x, y) =

{
IAk(x, y),

∣∣ eAk > eBk or σAk > σBk

IBk(x, y),
∣∣ eAk < eBk or σAk < σBk

(19)

fo(x, y) = GOCS[ f (x, y)] (20)

In Equation (14), Ii(x, y) is the enhanced image at level i and N is the number of decomposition
levels while IHPFi(x, y) and ILPFi(x, y) are high-pass and low-pass filtered images obtained at level
i. Based on experiments, we set N = 5. The obtained level images are then aggregated to obtain
the final images IAk or IBk for the different values of the power factor and k in Equations (15) and
(16). The values for the power factor are chosen to be multiples of two (2) due to hardware design
considerations to enable fast computation by bit shifting. This is explained by the fact that the value 0.5
is a multiple of 2 since 2n for n = −1; 2−1 = 1

2 = 0.5 or 000.1. This is a right bit shift by one-bit position
in binary logic for the binary representation of one (1) as 001.0. Conversely 2n for n = 1; 21 = 2, or 010.0.
This makes the operation synthesizable for digital hardware realization since exponential operations
become bit shifting operations, which are much faster.

The respective entropies (eAk , eBk ) and standard deviations (σAk , σBk ) of the aggregated images
are computed in Equations (17) and (18) and used to decide the best image outcome, f (x, y) in
Equation (19), which is then processed with the modified global contrast enhancement algorithm to
obtain the final output image, fo(x, y), in Equation (20). This is based on the simultaneous multi-level
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high frequency component (edges and details) enhancement and multi-level low frequency component
(haze) attenuation.

The diagram of the proposed algorithm for enhancement of both hazy and underwater images
is shown in Figure 1. All processing operations are achieved with spatial filter kernels using
fractional order-based calculus, which yields better results than the integer order in terms of balanced
edge enhancement.J. Imaging 2018, 4, x FOR PEER REVIEW  7 of 22 
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Figure 1. Proposed algorithm (PA) for enhancing hazy and underwater images.

3.2.2. Preliminary Results

After testing several images, it was discovered that some images were better enhanced when using
the 5th and 95th percentiles rather than the 1st and 99th percentiles. The representative images of these
two groups include those unaffected by wide ranges while the other exhibits over-exposure for narrow
ranges. This was partly the reason that the PWL approach was utilized in previous work [27]. Thus,
one approach would be to devise a means of selecting the appropriate percentiles for these two groups
of images. A simple compromise was to set the range between the 2nd and 98th percentiles. However,
we would still be faced with the issue of outlier images, which resist color correction attempts. Thus,
the need for the localized operator to aid in the detail recovery in the otherwise over-exposed regions
when global contrast operations are performed.

3.3. Problems and Solutions

The initial developed scheme worked extremely well for underwater images and several hazy
images. However, problems were observed in other hazy images. These issues included color fading,
distortion, discoloration, image darkening, inadequate haze removal, and over-enhanced edges. Thus,
we devised solutions to some of these problems. The color correction routine was omitted and the
output, f (x, y), was reformulated as Equation (21) below.

f (x, y) =
IAk (x, y) + IBk (x, y)

2
(21)

This improved results and resolved color distortion in the affected hazy images. However,
there was some color fading in RGB and HSI/HSV versions. Thus, we utilized the red-green-blue-
intensity/value (RGB-IV) formulation [77] to improve the color rendition, which resulted in color
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enhancement but with dark images. We also investigated the use of CLAHE to improve local contrast,
which results in drastic improvements. However, enhanced images also exhibited halo effects and color
distortion, which persisted despite a combination with the multi-scale IRCES algorithm. Furthermore,
there was drastic color loss/fading using CLAHE in addition to increased computational complexity,
which defeats the initial objective of the proposed approach. Thus, alternatives were considered to
resolve these issues.

Wavelet-based fusion of IAk(x, y) and IBk(x, y) using mean, minimum, or maximum configurations
was implemented. Good results were observed in images with mostly a uniform haze. Conversely,
sky regions were degraded in hazy images with uneven haze or considerable sky regions. Furthermore,
dark bands and outlines were observed around edges in some processed images. Overall, image results
were inconsistent using this scheme. Thus, we reformulated the multi-scale algorithm after
extensive analysis.

Redundant frequencies, which were unnecessary in hazy image enhancement results,
were observed. This was due to the nature of the generation of the two combined images. IAk (x, y) and
IBk (x, y) lead to unbalanced contributions of frequency components. Constant variance of weights for
both images and corresponding results led to inconsistent results. Thus, a more formalized, systematic
approach was required. Based on the analysis of the Fourier Transform of the images, we require
subtle enhancement of the high frequency components and a drastic reduction of the contributions of
the low frequency components. This informed the reformulation of the multi-scale algorithm for hazy
images as seen in Equation (22) below.

I(x, y) = Umax −U(x, y) (22){
ILPFi (x, y), IHPFi (x, y)

}
= decompose(I(x, y)) (23)

SLPFi =
N−1

∑
x=0

M−1

∑
y=0

ILPFi (x, y) (24)

SHPFi =
N−1

∑
x=0

M−1

∑
y=0

IHPFi (x, y) (25)

Stotal = SLPFi + SHPFi (26)

pLPFi =
SLPFi

Stotal
; pHPFi =

SHPFi

Stotal
(27)

In Equations (22)–(27), U(x, y) and I(x, y) are the original and reversed hazy image, respectively,
while Umax is the maximum pixel intensity value of the image. ILPFi (x, y), IHPFi (x, y), SLPFi and SHPFi

are the low-pass and high-pass filtered images of level (or scale) including i and their respective
summations. The terms Stotal , pLPFi , pHPFi are the total sum and the percentage of low and high
frequency components, respectively. In order to balance the high and low frequency components,
we create new constants, c1 and c2, to be dependent on each other using the percentages.

c1 =
1

pLPFi

; c2 =
1
c1

(28)

After evaluation of the two constants, we use the expression to obtain the enhanced level image
as seen in Equation (29) below.

Ii(x, y) = c1[IHPFi(x, y)] + [ILPFi(x, y)]c2 (29)
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The level images are subsequently added to obtain the enhanced image, which is shown in
Equation (30).

f (x, y) =
1

D− 1

D−1

∑
i=0

Ii(x, y) (30)

The de-hazed image, U′(x, y) is obtained by inverting the image as shown Equation (31).

U′(x, y) = fmax − f (x, y) (31)

Based on experiments, we set c1 and c2 as 1.21 and 0.8264, respectively, since they are always
constant. These are the default values for balanced enhancement of high and low frequency
components to avoid visual artefacts. However, the values may be increased or decreased gradually
for maximum visual effect in certain images. This new formulation solves the edge over-enhancement,
color distortion, and halo effect problem. The results are shown in Figure 2 for processed images
using previous and improved configurations of PA (test images used were obtained from the
University of Texas at Austin Laboratory for Image & Video Engineering (LIVE) dataset, which can
be downloaded from the website: http://live.ece.utexas.edu/research/fog/fade_defade.html) [78].
Note the elimination of the color distortion and reduced degree of noise enhancement for images in
Figure 2b when compared to Figure 2a.

J. Imaging 2018, 4, x FOR PEER REVIEW  9 of 22 

 

processed images using previous and improved configurations of PA (test images used were obtained 
from the University of Texas at Austin Laboratory for Image & Video Engineering (LIVE) dataset, 
which can be downloaded from the website: http://live.ece.utexas.edu/research/fog/fade_defade.html) 
[78]. Note the elimination of the color distortion and reduced degree of noise enhancement for images 
in Figure 2b when compared to Figure 2a. 

   
(a) 

  
(b) 

Figure 2. Processed images using (a) previous configuration (b) improved configuration of PA. 

The estimated computational complexity of the proposed approach is given as 𝑂(𝑁𝑀𝑤ଶ𝐷) for 
D levels using the spatial window size and w of the fractional order-based filter for an image with N 
rows and M columns. Additionally, the algorithm can be speeded up by exploiting symmetric 
convolutional structures to reduce the number of multiplications and additions. 

4. Results 

We present the result comparisons of the proposed approach (PA) with other algorithms from 
the literature. We utilize metrics such as entropy (E), (relative) average gradient (RAG) [79], global 
contrast factor (GCF) [80], and colorfulness or color enhancement factor (CEF) [81] for underwater 
images. For hazy images, we utilize the RAG, ratio of visible edges, Qe [1], and saturation 
parameter/percentage of black or white pixels, and σ [1] to evaluate results. Higher values indicate 
better results for all the used metrics except for the saturation parameter metric where lower values 
imply improvement. 

The hardware specifications of the computing platform are PC with Intel® Core i7-6500U 
x64-based processor (Intel, Santa Clara, CA, USA) at 2.5 GHz/2.59 GHz, 12 GB RAM running 64-bit 
OS (Microsoft® Windows™ 10 Home, Redmond, Washington, WA, USA) and NVIDIA® GeForce™ 
940M GPU with a compute capability of 5.0 (NVIDIA, Santa Clara, CA, USA). 

  

Figure 2. Processed images using (a) previous configuration (b) improved configuration of PA.

The estimated computational complexity of the proposed approach is given as O
(

NMw2D
)

for D
levels using the spatial window size and w of the fractional order-based filter for an image with N rows
and M columns. Additionally, the algorithm can be speeded up by exploiting symmetric convolutional
structures to reduce the number of multiplications and additions.

4. Results

We present the result comparisons of the proposed approach (PA) with other algorithms
from the literature. We utilize metrics such as entropy (E), (relative) average gradient (RAG) [79],
global contrast factor (GCF) [80], and colorfulness or color enhancement factor (CEF) [81] for
underwater images. For hazy images, we utilize the RAG, ratio of visible edges, Qe [1], and saturation
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parameter/percentage of black or white pixels, and σ [1] to evaluate results. Higher values indicate
better results for all the used metrics except for the saturation parameter metric where lower values
imply improvement.

The hardware specifications of the computing platform are PC with Intel® Core i7-6500U
x64-based processor (Intel, Santa Clara, CA, USA) at 2.5 GHz/2.59 GHz, 12 GB RAM running 64-bit
OS (Microsoft® Windows™ 10 Home, Redmond, Washington, WA, USA) and NVIDIA® GeForce™
940M GPU with a compute capability of 5.0 (NVIDIA, Santa Clara, CA, USA).

4.1. Underwater Images

4.1.1. Subjective Evaluation

Even though objective metrics have been used for underwater image enhancement and restoration
evaluation, they were initially developed for images acquired on land. Thus, some measures have
been developed for subjective evaluation of underwater images. These include the Underwater
Color Image Quality Evaluation (UCIQE) metric proposed by Yang and Sowmya [82] and the
underwater image quality metric (UIQM) [83]. However, the colorfulness parameter, which is
utilized in this scenario, is incorporated into the UCIQE metric. The colorfulness and the color
enhancement factor have high correlations with the subjective, human-based mean opinion score
(MOS) [81]. Additionally, according to Reference [82], “CIELAB color space-based subjective evaluation
indicates that sharpness and colorful factors are highly correlated with the subjective image quality
perception.” Additionally, they note that “subjective quality metrics give the most reliable outcomes
but are expensive, time-consuming, and impractical for real-time implementation and system
integration” [82]. These real-time and integration concerns are the very objectives of the realization of
the proposed algorithm.

As noted by El Khoury et al. [84], no single algorithm can yield the best or worst performance for
all images. In addition, they state that color and sharpness are always utilized in de-hazing evaluation.
Thus, the use of colorfulness, gradient, and sharpness measures are justified. More than 50 underwater
images from the literature and the Internet were used in the experiment. Some duplications were
permitted due to the varying resolutions and formats of some images since this is another challenge of
underwater image evaluation. The images used are shown in Figure 3a while the enhanced images
are shown in Figure 3b. The original images were obtained from the website: https://github.com/
IsaacChanghau/ImageEnhanceViaFusion [85].
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The high-boost filter configuration results in brighter images as opposed to using the high-pass
filter configuration (HBFC). However, the contrast and edge enhancement using the high-boost filter
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version (HPFC) is slightly less when compared to the high-pass filter version. The global contrast
operator was unmodified for all experiments. The PA performs well for a majority of the images except
for images with non-overlapping color channel histograms.

4.1.2. Comparison with Other Algorithms

In Figure 4, we use visual results from Reference [86], which is appended with the visual results
of PA using both HPFC and HBFC versions. For the video frames in Figure 4(1) from Reference [86],
PA yields the sharpest detail, contrast enhancement, and color correction with the least color distortion
when compared to the other methods apart from the method by Ancuti et al. [87] unlike Li et al. [88].
In Figure 4(2), PA yields the sharpest and best color corrected image when compared to results obtained
by Emberton et al. [86,89] and Drews-Jr et al. [90]. This is verified in terms of the colorfulness metric
used to compute the CEF, which closely correlates with the mean opinion score (MOS) based on the
human subjective evaluation [81].
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Figure 4. (1) Image results from Reference [86] (http://dx.doi.org/10.1016/j.cviu.2017.08.003; http:
//creativecommons.org/licenses/by/4.0/) amended with visual results of PA: (a) Original first video
frames of sequences S1 to S6 (b) Ancuti et al. [87], (c) Li et al. [88], and (d) Emberton et al. [86].
(e) PA (HBFC) (f) PA (HPFC). (2) (A) Original image [4] processed with algorithms proposed by
(B) Drews-jr et al. [90], (C) Emberton et al. [89], (D) Emberton et al. [86], (E) PA (HBFC), and (F) PA
(HPF.C).

In Table 1, we verify the quality of the results of PA compared with the other algorithms using CEF,
UCIQE, and UIQM. The bolded values indicate best results in all tables. The table shows that PA has
the most consistent and highest values for the previously mentioned metrics. In Emberton et al. [86],
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it was claimed that the standard deviation of chroma, σc, correlates well with subjective evaluation.
Thus, we replicate the table from Reference [86] and only select the σc and UCIQE values, which are
also computed for the results obtained with PA. The results are shown in Table 1a. The contrast of the
luminance (not shown) is consistently highest for PA even though it is not correlated with subjective
evaluation and was omitted. Once more, PA yields the most consistent high scores for both metrics.

Table 1. Comparison of PA with various algorithms from (a) and (b) Emberton et al. [86].

(a)

Algos Ancuti et al. [87] Li et al. [88] Emberton et al. [86] PA

Images

Measures
σc UCIQE σc UCIQE σc UCIQE σc UCIQE

S1 0.44 0.69 0.36 0.61 0.44 0.66 0.15 0.58
S2 0.44 0.67 0.33 0.57 0.42 0.61 0.26 0.88
S3 0.49 0.69 0.34 0.59 0.40 0.68 0.59 1.31
S4 0.23 0.63 0.22 0.50 0.29 0.61 0.38 0.99
S5 0.23 0.60 0.18 0.46 0.26 0.55 0.28 0.90
S6 0.19 0.58 0.11 0.39 0.25 0.54 0.19 0.68

Mean 0.34 0.65 0.27 0.53 0.35 0.61 0.31 0.89

(b)

Measures

Algos

Drews-Jr [90] Emberton et al.1 [89] Emberton et al.2 [86] PA(HBFC) PA(HPFC)

CEF 0.76 0.78 0.59 1.57 1.14
UIQM 2.59 1.97 2.06 3.79 3.57
UCIQE 0.59 0.66 0.65 0.64 0.80

σc 0.21 0.44 0.37 0.20 0.25

In Table 1b, PA yields the most colorful and enhanced image, which is shown by the CEF, UIQM,
and UCIQE values. Though PA is not optimized as previous or contemporary methods, it is easily the
fastest algorithm among the available implementations with acceptable visual outcomes. Furthermore,
its multiple applications (alluded to in previous work) and real-time amenability compensates for its
minimal impact on the underwater images with non-overlapping histograms. Furthermore, additional
experiments showed that the HBFC and HPFC configurations work differently for various images.
The percentiles of the global contrast enhancement function are fixed for all experiments to maintain
consistency. Only the fractional order and gain are used to switch from HBFC to HPFC. However,
the fractional order is kept constant to also maintain consistency. Thus, only the filter gain is the tuning
parameter to switch between the two filter configurations.

4.2. Hazy Image Enhancement Results

We compare PA against available de-hazing implementations with respective parameters, which is
stated by the authors in their papers [53].

• DCP (standard and fast versions) by He, et al. [32]: constant coefficient, ω = 0.95, patch size,
Ω = 15, regularization parameter, λ = 0.0001 (standard version) and radius of guided filter, r = 24
(fast version).

• Color Attenuation Prior (CAP) by Zhu, et al. [91]: scattering coefficient, β = 0.95 or 1; linear
coefficients: θ0 = 0.1893, θ1 = 1.0267, θ2 = −1.2966; transmission lower and upper bounds:
t0 = 0.05, t1 = 1, regularization parameter, ε = 0.001.

• Multi-Scale Convolutional Neural Network by Ren et al. [46]: γ = 1.3 for canyon image and
0.8 ≤ γ ≤ 1.5 for other images.

• Artificial Multi-Exposure-based Fusion (AMEF) by Galdran [54]: clip limit value, c as specified.
• PDE-Retinex set to the default parameters for minimal run-time: ∆t = 0.25, ksat = 1.5.
• PDE-IRCES set to the default parameters for minimal run-time: ∆t = 0.25.
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The original method by He et al. took about a minimum of 30 s on the current platform for
small images. Thus, we focused on the fast version using guided filters. We also present results and
comparisons for hazy image contrast enhancement with algorithms from the literature using 53 real
benchmark images employed in de-hazing experiments. In addition, the FRIDA3 dataset [92,93]
consisting of left and right views of 66 synthetic images was also tested. The algorithms include
Tarel and Hautiere [94], Dai et al. [95], Nishino et al. [96], He et al. [32], Galdran et al. [41], Wang and
He [97], Zhu et al. [91], Ren et al. [46], Ju et al. [98], partial differential equation-based single scale
Retinex GOC-CLAHE (PDE-GOC-SSR-CLAHE or PDE-Retinex) [52], PDE-IRCES [53], and PA. All test
images (apart from FRIDA3) used were obtained from the University of Texas at Austin Laboratory
for Image & Video Engineering (LIVE) dataset, which can be downloaded from the website: http:
//live.ece.utexas.edu/research/fog/fade_defade.html) [78]. More detailed and extensive results can
be found in additional material [99,100].

Additionally, we present the numerical results for the available algorithm implementations
compared with PA in Table 2. The bolded values indicate the best results.

Table 2. RAG, ratio of visible edges, and saturation parameter values for images processed with
He et al. [32], Zhu et al. [90], Ren et al., PDE-GOC-SSR-CLAHE [52], PDE-IRCES [53], and PA.

Images

Algos He, et al. [32] Zhu, et al. [91] Ren et al. [46] PDE-GOC-SSR-CLAHE [52] PDE-IRCES [53] PA

(Ω = 0.95, w = 15,
A = 240, r = 24)

β = 0.95,1; θ0 = 0.1893;
θ1 = 1.0267; θ2 = −1.2966;

Guided filter: r = 60;
t0 = 0.05; t1 = 1; ε = 0.001

γ = 1.3
(canyon image)
0.8 ≤ γ ≤ 1.5

(others)

∆t = 0.25;
ksat = 1.5 ∆t = 0.25

Tiananmen
1.8455

/0.9606
/0.1879

1.1866
/1.0041
/0.0814

1.5649
/0.8734
/0.1288

2.8225
/1.0386
/0.0625

2.3219
/1.1614

/0

4.4410
/1.4514
/0.1688

Cones
1.4977

/1.1478
/0.3878

0.9704
/1.0873
/0.2499

1.3818
/1.1042
/0.2956

2.7516
/1.1999
/0.2733

2.5881
/1.2064

/0

4.9702
/1.4620
/0.3142

City1
1.1914

/1.0332
/0.1336

0.9303
/1.0075
/0.2002

1.2989
/1.0232
/0.2002

1.7762
/1.1164
/0.0562

2.4080
/1.3458
/0.00375

3.8282
/1.4898
/0.1712

Canyon
1.7481

/1.1057
/0.3796

1.2880
/1.0679
/0.2412

1.4564
/1.0319
/0.0446

2.5408
/1.2070
/0.3103

2.5224
/1.19684
/0.00019

3.9892
/1.7903
/0.2412

Canon
3.2903

/1.0857
/0.3947

1.7127
/0.9089
/0.3198

2.6871
/1.0832
/0.3831

2.8059
/1.1188
/0.3947

2.8783
/1.3450
/0.00004

8.0224
/1.5785
/0.3942

Mountain
1.7105

/0.9348
/0.0787

1.2092
/0.9307
/0.0984

1.6005
/0.9784
/0.0074

2.7275
/1.0202
/0.0074

2.9827
/1.2977
/0.00007

6.5399
/1.5503
/0.0244

Brick House
1.2006

/0.9747
/0.1172

0.8597
/1.1395
/0.0730

1.2118
/1.0030
/0.1288

1.0836
/1.1135
/0.1021

1.4105
/1.2789

/0

3.0014
/1.3563
/0.0983

Pumpkins
1.5927

/0.9501
/0.1581

0.9311
/0.6726
/0.1333

1.4753
/0.9511
/0.1764

2.4539
/1.0361
/0.1516

2.2777
/1.1626
/0.0001

3.3553
/1.6469
/0.2329

Train
1.5206

/1.0090
/0.1664

0.9797
/1.0509
/0.3265

1.2036
/1.0203
/0.2412

1.5190
/1.1106
/0.3005

2.2569
/1.3589
/0.0038

4.3014
/1.5151
/0.2594

Toys
2.2566

/0.9712
/0.3840

1.6711
/1.0117
/0.2865

2.1568
/0.9576
/0.2827

2.9813
/1.1095
/0.3379

2.1367
/1.2887
/0.00002

4.2837
/1.5937
/0.3736

Results indicate that RAG and the ratio of visible edge values are the highest for PA, which was
followed by PDE-GOC-SSR-CLAHE, He et al., and Ren et al. Thus, these two metrics indicate
maximum edge enhancement corresponding to increased visibility and haze removal. The value of the
Canon image yields the highest RAG value and the image result (not shown) depicted a drastic edge
and detail enhancement.

The PA can also be configured to process only the intensity channel for hazy images using the
HSI and HSV color spaces to avoid hue distortion. However, the algorithm was initially conceived in
the RGB space to enable the processing of both underwater and hazy color images without a need for
modification. We also present the runtimes of PA in comparison with the other approaches in Table 3
and Figure 5 to further showcase the low computational complexity of the algorithm. The bolded

http://live.ece.utexas.edu/research/fog/fade_defade.html
http://live.ece.utexas.edu/research/fog/fade_defade.html


J. Imaging 2018, 4, 108 14 of 22

values indicate the best results. Only the method by Ren et al. is fully optimized for GPU computation
with PA and other algorithms using parallel computation where possible. Results indicate that PA is
the fastest algorithm of all the compared ones. Furthermore, the revised formulation combined with
the RGB-IV does not increase run-time considerably except for images with very large dimensions.
Nevertheless, the run-time is still much less than the algorithms by He et al., Zhu et al., and Ren et al.
The revised scheme is also much easier to implement in digital hardware than the earlier version due
to spatial filter structures.

Table 3. Runtimes for hazy images processed with He et al. [32], Zhu et al. [91], Ren et al., AMEF,
PDE-GOC-SSR-CLAHE [52], PDE-IRCES [53], and PA.

Images

Algos

He et al. [32] Zhu et al. [91] Ren et al. [46] AMEF [54] PDE-GOC-SSR-
CLAHE [52]

PDE-IRCES
[53] PA

Tiananmen (450 × 600) 1.253494 0.991586 2.362754 1.4088 3.530989 2.330879 0.480659
Cones (384 × 465) 0.850155 0.661314 1.651447 1.0506 2.381621 1.555098 0.268909
City1 (600 × 400) 1.094910 0.875287 2.070620 1.2709 3.203117 2.183417 0.283372

Canyon (600 × 450) 1.237655 0.972741 2.529734 1.5066 3.821395 2.306129 0.309343
Canon (525 × 600) 1.431257 1.135376 2.890541 1.6958 4.187972 2.717652 0.374638

Mountain (400 × 600) 1.129231 0.880835 2.358143 1.2985 3.158335 2.055685 0.360240
Brick house (711 × 693) 2.230871 1.667610 5.234674 2.3618 6.395965 4.385789 1.102332
Pumpkins (400 × 600) 1.125475 0.901815 2.253179 1.5018 3.152969 2.143529 0.407310

Train (400 × 600) 1.105757 0.849072 2.075004 1.2935 3.178277 1.995436 0.365481
Toys (360 × 500) 0.844945 0.657376 1.578068 1.0387 2.429651 1.545031 0.260878
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5. Visual Comparison of AMEF and PA and Discussion

The key components of the enhancement capability of AMEF are the CLAHE and Gamma
Correction (GC) algorithm. Unlike the PDE-GOC-CLAHE, which included the CLAHE and minimized
its negative effects [52], the AMEF does not possess such features. We directly compare and present
a sample of visual results of the state-of-the-art AMEF with PA in Figures 6–9. Based on visual
observation, AMEF generally yields poor results without constant tuning of the clip limit, Figure 6c
shows that PA can replicate the results of the AMEF by utilizing a high-boost filter with slightly
better contrast than AMEF without CLAHE. Adding CLAHE to PA yields better results than AMEF
with CLAHE.
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The AMEF de-hazing algorithm yields images with halos and color distortion similar to or worse
than the CLAHE-based or Retinex-based de-hazing algorithms, which is seen in the Brick house image
in Figure 7b. The AMEF is mainly suited to images with thick haze as seen in the Train image in
Figure 7b even though there is color fading. The Horses image was processed using c = 0.03 for AMEF
and PA was processed using both filter settings, which is shown in Figure 8. This is one of the images
where AMEF performs adequately even though any slight increase in c leads to heavy color distortion.
Increasing the clip limit of the CLAHE in the AMEF leads to increased color distortion.

Additionally, the AMEF algorithm is neither optimized nor adaptive and requires constant tuning
of this clip limit parameter to obtain the best results for each hazy image. This makes the AMEF
algorithm impractical for effective batch (or real-time image de-hazing) processing since these issues
were consistently observed using several benchmark hazy images. Ultimately, PA is much faster than
the AMEF algorithm while yielding good enhancement results without halos, color degradation, or the
need to constantly adjust parameters. Additionally, the AMEF is unable to enhance underwater images
while PA effortlessly performs this operation, which is seen in Figure 9.

6. Conclusions

A fast, adaptive, and versatile multi-scale, fractional order-based hazy and underwater image
enhancement algorithm with a relatively simplified structure suitable for hardware implementation
has been proposed and developed. The earlier problems of the algorithm were addressed by automated
balanced weighting of the filtered images used in the fusion process. The adherence to image entropy
and standard deviation features coupled with global and local contrast enhancement ensures that
visibility is greatly improved in the final result. Furthermore, comparisons with a recent state-of-the-art,
multi-scale algorithm shows that the proposed approach is unmatched in several aspects such as
speed, consistency, versatility, adaptability, and flexibility. Results show that the proposed scheme
achieves the stated objectives and can be easily realized in hardware systems for fast image processing
in challenging imaging environments.
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