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Abstract: Breast density is considered to be one of the major risk factors in developing breast
cancer. High breast density can also affect the accuracy of mammographic abnormality detection
due to the breast tissue characteristics and patterns. We reviewed variants of local binary pattern
descriptors to classify breast tissue which are widely used as texture descriptors for local feature
extraction. In our study, we compared the classification results for the variants of local binary patterns
such as classic LBP (Local Binary Pattern), ELBP (Elliptical Local Binary Pattern), Uniform ELBP,
LDP (Local Directional Pattern) and M-ELBP (Mean-ELBP). A wider comparison with alternative
texture analysis techniques was studied to investigate the potential of LBP variants in density
classification. In addition, we investigated the effect on classification when using descriptors
for the fibroglandular disk region and the whole breast region. We also studied the effect of
the Region-of-Interest (ROI) size and location, the descriptor size, and the choice of classifier.
The classification results were evaluated based on the MIAS database using a ten-run ten-fold
cross validation approach. The experimental results showed that the Elliptical Local Binary Pattern
descriptors and Local Directional Patterns extracted most relevant features for mammographic
tissue classification indicating the relevance of directional filters. Similarly, the study showed
that classification of features from ROIs of the fibroglandular disk region performed better than
classification based on the whole breast region.

Keywords: breast density classification; risk estimation; local binary patterns; texture descriptors

1. Introduction

It is estimated that one in eight women have the chance of getting breast cancer in their life time [1].
Cancer mortality rates show a slight decline compared to 2012 (15.2/100,000) and the predicted 2020
rate is 13.4/100,000 in Europe [2]. While there is no clear evidence of any single factor which caused
the decreasing mortality rate in recent years, the most likely cause has been early diagnosis, treatment
and care over the last few decades [2–5]. Though physical examination is recommended, with this it is
difficult to determine breast cancer in its early stages. A variety of medical imaging modalities help in
early diagnosis of breast cancer; e.g., mammography, MRI, ultrasound and tomosynthesis. Irrespective
of advanced imaging modalities, mammography is still considered as the golden standard for breast
screening programs. Mammography provides the radiologist with a visualization of the internal tissue
structure of the breast along with information of the amount of glandular and connective tissue relative
to the fatty tissue in the breast [6–8]. Mammographic density, the relative amount of radiodense
tissue, has been considered as a strong risk factor for developing breast cancer (together with gender,
age, gene-mutations and family history) [9]. According to many studies, women with high breast
density have a higher tendency to develop breast cancer with a two to six-fold increased risk compared
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to women with low breast density [6,7,10–12]. In addition, studies have shown that the sensitivity
performance of Computer-Aided Detection (CAD) systems to localize breast abnormalities decreases
with increased breast density [13,14]. Glandular tissue in mammographic images is represented as
brighter areas while the darker regions represent fatty tissue.

There are different breast classification schemes in the literature based on the breast tissue
features used. It has been shown that there is a strong correlation between the breast parenchymal
patterns/density and the risk of developing breast cancer and Wolfe et al. classified breast density
into five categories [15]. Thereafter, Boyd et al. [16] classified density into six groups based on the
proportion of fibroglandular tissue in the breast region. Similar to Wolfe, Tabár et al. [17] classified
mammographic images based on the parenchyma rather than on the proportion of breast density. In our
study, we used the MIAS dataset, and we classified the mammograms into three categories; Fatty (F),
Glandular (G) and Dense (D), based on the tissue structure. As the MIAS dataset provide a three class
density classification (F, G, D) as a ground truth and is publically available, we use it in our work.
Using three classes helps in controlling the inter and intra- validation variation effect while classifying
the mammographic images by different radiologist [18,19]. Example of mammographic images with
different tissue type from MIAS dataset are shown in Figure 1. To standardize the mammography
density reporting and to minimize the confusion in density interpretations, the American College
of Radiology’s Breast Imaging Reporting and Data System (Birads) was developed as a benchmark
and quality assurance tool. According to the American College of Radiology (ACR), using the
latest (version 5) classification and evaluation of breast tissues used four categories [20]. Similarly,
The mammographic density used to be classified into two categories as fatty and dense where the
BIRADS I and II considered as fatty while BIRADS III and IV categorized as dense. In order to show
the relationship between each category, Muhimmah et al. [21] have performed a comparative study
based on mammographic risk assessment.

The classification of mammographic images based on tissue type density and mammographic risk
estimation was initiated by Wolfe [15], which was followed by the development of different automatic
techniques for breast tissue classification. Developing automatic methods for breast density estimation
and classification are appropriate as the sensitivity for detection in mammographic images decreases
with the increase in breast density [22]. Most CAD systems have used either segmented breast tissue
or a pre-selected breast tissue Region-of-Interest (ROI) for further feature extraction and classification.
Diverse features have been used such as histograms [23–25], intensity distribution [26], texture based
approaches [27–29]. While Oliver et al. [6,29] used features based on texture and morphology of tissue
patterns, Mustra et al. [30] used GLCM features, Petroudi et al. [12] used textons and statistical features
to capture mammographic appearance, Vallez et al. [31] focused on a novel weighted voting tree
classification scheme while Bovis et al. [32] used texture features from spatial grey level dependency
matrices (SGLD), Fourier power spectrum, Law’s texture measures, and discrete wavelet transform for
breast density classification. A detailed study on the datasets and density classification is shown in
Table 1 and [33] as the datasets, number of images chosen by researchers are different. With the advent
of deep learning in image processing and classification, the technique has been gaining more attention
in medical image processing [34,35] worldwide for segmentation and classification processes. Various
studies have been performed using deep learning for density classification resulting in promising
classification models [36–39]. But most of the deep learning methods focused on binary classification
(fatty or dense) of mammographic breast density.
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Table 1. A summary of existing approaches on breast density classification indicating authors, years of publication, techniques, experimental data for test, and classification.

Author Features Classifiers Dataset Number of
Images Result Density

Class Year

Karssemeijer [40] Grey level histograms KNN Nijmegen 615 65.0% BIRADS I-IV 1998

Blot and Zwiggelaar [41]
Texture
GLCM KNN MIAS 265 65.00% Fatty, Glandular and Dense 2001

Bovis and Singh [32] SGLD ANN DDSM 377 71.40% BIRADS I-IV 2002

Petroudi et al. [42]
Textons based on MR8
filters KNN Oxford 132 75.75% 2 Class-Fatty and Dense 2003

Zwiggelaar et al. [24] Gray level histogram PCA +KNN MIAS 312 71.5% Fatty, Glandular and Dense 2005

Oliver et al. [29]
Morphological
Features

KNN

Decision Tree

MIAS

DDSM

270

300 R-MLO

67.0%
73.0%

47.0%

BIRADS I-IV 2005

Muhimmah and Zwiggelaar [23]
Multiresolution histogram
Features DAG-SVM MIAS 321 77.57% Fatty, Glandular and Dense 2006

Oliver et al. [6] Texture
KNN+SFS (sequential
forward selection (SFS))

MIAS

DDSM

322

831

86.0%

77.0%
BIRADS I-IV 2008

Subashini et al. [43] Statistical features SVM MIAS 43 95.55% Fatty, Glandular and Dense 2010

Oliver et al. [44]
Connected density clusters
taking the spatial information LDA-PCA DDSM 831 79.0% Fatty and dense 2010

Zwiggelaar [45] LGA KNN MIAS 322 64.0% BIRADS I-IV 2010

Liu et al. [46] Statistical SVM
Tianjin Tumor
Hospital 88 86.40% BIRADS I-IV 2011

Tzikopoulos et al. [47] Intensity based SVM MIAS 322 85.70% Fatty, Glandular and Dense 2011

Chen et al. [48]

LBP
LGA
BIF
Textons
Topographic

KNN,
Bayesian MIAS 322

59.0%
72.0%
70.0%
75.0%
76.0%

BIRADS I-IV 2011

Qu et al. [49] Unknown
E-FELM
(Evolutionary Fuzzy
Extreme Learning Machine)

MIAS 322 72.6% BIRADS I-IV 2011

Muštra et al. [30] GLCM KNN+Naïve Bayesian
KBD-FER,
University Hospital Dubrava,
Zagreb

144 79.30% 2 Class-Fatty and Dense 2012

Muštra et al. [30] GLCM KNN+Naive Bayesian MIAS 144 82.0% 2 class-Fatty, Dense 2012

He et al. [28] Texture Binary model based Bayes Classifier MIAS 322 78.0% BIRADS I-IV 2012

Rampun et al. [50] LTP SVM MIAS 322 82.3% BIRADS I-IV 2017

George et al. [51]
M-ELBP
LBP Bayesian MIAS 321

74.0%
66.5% BIRADS I-IV 2018
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From the above, it is clear that texture has played a role in density segmentation/classification.
Ojala et al. [52] introduced a powerful and computationally simple rotation invariant generic
texture classification based on Local Binary Patterns (LBP). LBP and its variants have proven to
be useful [29,53] in various medical image analysis applications for extracting local texture features.
Zwiggelaar et al. [29] combined Local Binary Pattern (LBP) texture features and texture features
extracted from grey level co-occurrence matrices to classify mammograms. Later, Chen et al. [48]
performed a comparative study on the performance of LBP, local grey-level appearance (LGA), textons
and basic image features obtaining accuracies of 59%, 72%, 75% and 70%, respectively using the whole
breast region from the MIAS dataset. We are building on this and we review the use of various LBP
variants for density classification.

We have used Elliptical Local Binary Pattern (ELBP) [53], Uniform ELBP, Mean-Elliptical Local
Binary Patterns (M-ELBP) [51], Local Binary Pattern (LBP) and LDP (Local Directional Patterns) [54] to
capture intrinsic and detailed micro-pattern features from the mammographic images for breast tissue
classification into fatty, glandular and dense breast tissue.

In addition to our initial work in [55], the efficiency of M-ELBP texture descriptor was analyzed
and compared with other similar LBP variants (LBP, ELBP and Uniform-ELBP). The previous study [55]
showed that the texture descriptors like ELBP, U-ELBP and M-ELBP performed better than LBP
showing that anisotropic information extracted from breast tissue was potentially more important than
a roatation invariant texture descriptor like LBP. A further extension is the inclusion of the Directional
texture descriptor LDP [54] is included for analyzing the potentiality of using directionality features of
texture descriptors in estimating mammographic breast density.

A further extension to the previous work (where only the ROIs from the fibroglandular region
with size equal to 256× 256 were considered for classification), this study covered the variation in
density classification accuracy while selecting ROIs from different regions of the fibroglandular disk
region and is compared to the whole breast.

In addition, the suitable size of ROIs for classification is evaluated by comparing ROIs of
different sizes from the fibroglandular disk region. So in summary, the proposed study focused
on the difference in the classification accuracy for LBP variants variation in size and location of ROI,
selecting whole breast and ROI, the role of machine learning algorithms, the effect of descriptor size,
and the role of directional filters in extracting more multidimensional complex texture features for
density classification.

(a) (b) (c)

Figure 1. Example mammographic tissue types: (a) fatty, (b) glandular, and (c) dense tissue.

2. Methodology

Breast ROIs have been used for texture analysis in detecting and classifying different breast
abnormalities [56,57]. The analysis and classification of breast density depends upon the breast size
and location of the ROI [58,59]. To analyse the effect of ROI location, Li et al. [58] performed a risk
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estimation on breast parenchymal patterns on breast ROIs at different locations behind the central
nipple area using texture features. The study showed a significant decrease in performance when
the ROI location moved backwards from the central region. Similarly, Sharma et al. [59] completed
a study to analyze the effect of the size of the ROIs for classification and concluded that larger ROIs
(above 200× 200 pixels) did decrease the classification accuracy due to inclusion of more tissue and
smaller ROIs were affected by lose of important tissue pattern features.

2.1. Pre-Processing

The mammographic images are pre-processed to remove the pectoral muscle and other artifacts
(e.g., labels; see Figure 1) to extract the main breast region for processing [60]. The method,
developed by the Chen and Zwiggelaar [60] separated the background region containing the
annotations, labels and frames from the whole breast as the initial step. Subsequently, the method
used histogram thresholding, contour growing and polynomial fitting method to remove the pectoral
muscle from the breast tissue region. As most of the dense tissue and parenchymal patterns are situated
within the breast fibroglandular disk area (the central region behind the nipple), we extracted ROIs
from that region. The ROI was extracted ([51] for details) from each image in the MIAS database [61]
with size equal to 256× 256 pixels as shown in Figure 2. The longest vertical and horizontal distance
within the breast was estimated and the intersection point of the both lines was considered as the
central point of the fibroglandular region for extracting the ROIs (see Figure 2). With this intersection
point as the center, the ROIs of size 256× 256 were extracted. Noise reduction was performed on the
extracted ROI using a median filter of 3× 3 size.

Figure 2. ROI extraction from the fibro-glandular disk region.

2.2. Feature Extraction and Feature Selection

Ojala et al. [52] proposed a local texture descriptor, Local Binary Pattern (LBP) for texture
feature extraction. Besides the simplicity and robustness to variation in image intensity levels,
its computational efficiency offers a wide range of application in texture feature extraction. In the
classical LBP developed by Ojala et al., for each central pixel (xc, yc) in the input image with a grey
level value gc, its LBP value is estimated by comparing the gc value with the grey level values of pixels
at R distance within its surrounding P neighbourhood pixels following the pixels along a circular path
either clockwise or counter-clockwise (see in Figure 3a). If the central pixel value (xc, yc) has a higher
grey level value than the neighbouring pixel Pi, the neighbour pixel is assigned a value 0 else 1 giving a
P-bit binary number. Using ROI level histogram information provides robustness, although it removes
localisation, which prevents detailed segmentation information. Although this can be addressed by
using small local ROIs/windows, but this is seen as future work (the histogram of LBP values for
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the whole ROI was calculated). For a neighbourhood of eight, LBP can generate 256 different binary
patterns. The LBPP,R is calculated as follows:

LBPP,R(xc, yc) =
P

∑
i=1

s(gP,R
i − gc)2i−1 (1)

where s(x) is defined as

s(x) =

{
1, if x >= 0

0, if x < 0
(2)

(a) (b) (c)

Figure 3. LBP pattern for (a) LBPP,R=2(xc, yc), (b) ELBPP,R1=3,R2=2(xc, yc), (c) M-ELBPP,
R1 = 3, R2 = 2 (xc, yc) where P = 8.

A circular neighbourhood is an advantage for a texture descriptor but there are applications
were the anisotropic texture information have more potential in distinguishing objects. A circular-like
topologies like an ellipse helps in attaining features from different directions [62]. For Elliptical Local
Binary Patterns (ELBP), for each central pixel (xc, yc), we consider the neighbouring pixels P which lie
on an ellipse (with radius R1 and R2) which was calculated as:

ELBPP,R1,R2(xc, yc) =
P

∑
i=1

s(gP,R1,R2
i − gc)2i−1 (3)

where the ith neighbouring pixel coordinate of (xc, yc), is computed as:

anglestep = 2 ∗ π

P
(4)

xi = xc + R1 ∗ cos((i− 1) ∗ angle step) (5)

yi = yc − R2 ∗ sin((i− 1) ∗ angle step) (6)

Compared to the LBP patterns, the ELBP descriptors help in extracting more specific spatial
features from the mammographic images as it could extract additional directional features at different
orientations covering additional micro patterns. For the computation of the Mean-Elliptical Local
Binary Patterns (M-ELBP), we consider the mean intensity values (ḡi) around each neighbouring pixel
Pi which lie on an ellipse (with radius R1 and R2) as

M-ELBPP,R1,R2(xc, yc) =
P

∑
i=1

s(ḡi
P,R1,R2 − gc)2i−1 (7)

The mean intensity value around each neighborhood pixels (a local window of size 3× 3 was
used here) is compared with the central pixel to create a binary pattern as in LBP or ELBP.
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We used the ELBP/M-ELBP descriptors at eight different orientations generating an eight-bit
pattern for each central pixel. The experimental results by [63], indicated that extracting tissue features
from multiple orientations performed better in determining the mammographic tissue class due to
the complex and multidimensional appearance of tissue patterns in the breast. When (R1 = R2),
the ELBP/M-ELBP reduces to the LBP descriptor. To extract additional features, we modified the
ELBP operator to the mean-ELBP (M-ELBP) where the intensity features at different orientations were
attained along with the texture features [51]. A detailed overview of the various method is described in
Figure 3. Compared to the LBP descriptor, the elliptical descriptors could extract more features when
applied to ROIs at different orientations θ = {0◦, 45◦, 90◦, 135◦, 180◦, 225◦, 270◦ and 315◦}. Figure 4
shows the effect of horizontal and vertical M-ELBP on the extracted image ROI for P=8 at an orientation
θ = 0◦ and θ = 90◦. The procedure is repeated for all orientations to extract M-ELBP pattern features.
Figure 5 summarizes the classification of breast tissue using the ELBP/M-ELBP descriptor variants at
eight different orientations with an elliptical radius of (R1 = 4, R2 = 7) for a neighbourhood size of
eight pixel. Subsequently, the histogram labels for the ELBP/M-ELBP descriptors at all orientations
are concatenated to generate the texture feature vector for the ROIs.

A useful modification to the LBP operator was the introduction of the uniform patterns [64]
concept to the LBP which can reduce the length of the feature vector from 256 to 59 for an 8- bit binary
pattern. The uniform pattern concept was developed from the fact that certain binary patterns occur
commonly in texture images. If a binary pattern contains at most two transitions of 0->1 or 1->0, the
pattern is called uniform. So, while constructing histogram, the uniform patterns have separate bins
with a single bin assigned to all other non-uniform patterns.

Figure 4. Effect of horizontal and vertical M-ELBP on mammographic RoI (a) Original Image
(b) M-ELBP pattern for M-ELBP8,7,4 at θ = 0◦ (c) M-ELBP pattern for M-ELBP8,4,7 θ = 90◦.

Due to the feature extraction at multiple orientations, the feature vector length when concatenated
will be large (each orientation for the ELBP descriptor generated 256 size histogram) and the probability
of correlation between features increases. To retain only prominent features and to reduce the
computational cost due to high dimensionality, feature selection was performed on the extracted feature
vector. A correlation based feature subset (CFS) selection method [65] with a best first search method
was used. Highly correlated feature subsets that are highly correlated with the group class while having
lower inter correlation among feature subsets are preferred for attribute selection. This calculated
the individual predictive ability of each attribute/feature in the dataset along with the redundancy
between each feature. The most prominent selected features were then fed into various classifiers for
classification of mammographic breast tissue.
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Histogram

Histogram

Histogram Feature Extraction
and Feature Concatenation

Feature Vector

ELBP/M_ELBP Descriptors
at Different Orientations

ROI Extraction and
DenoisingMammographic

Image

Feature Extraction

Breast Tissue Classi ication 
using Bayesian Network

Figure 5. Summary of ROI selection, feature extraction and classification using ELBP variants.

Additionally, to compare the directional feature extraction capability of the M-ELBP descriptor and
the importance of directional texture feature descriptors for extracting mammographic parenchymal
features, we compute the classification accuracy of the Local Directional Pattern (LDP) [66]. The LDP
produces an eight-bit binary pattern similar to LBP for a neighbourhood of eight. Unlike LBP, the LDP
patterns are computed by comparing the relative edge response values of each pixel at different
orientations. In order to get the edge responses, the eight directional edge response values of a
particular pixel were calculated using Kirsch masks ((M0 −M7, also known as the Kirsch compass
kernel which is a non-linear edge detector to find the maximum edge strength in eight predetermined
compass directions with 45 degree increments). The edge responses are not equally important in all
directions (m0, m1, ..., m7) as the corners and edges show high responses for particular directions. So
the top k values from |mj| were selected and defined as ’1’ while the other (8− k) bits were set to ’0’.

2.3. Extraction of ROIs

Subsequently, to study the effect of classification using the whole breast and different sized
ROIs, varying sizes of ROIs were extracted ranging from 256 × 256 pixels, 200 × 200 pixels and
100× 100 pixels. All the ROIs were selected randomly from the 256× 256 pixels ROI region (used for
descriptor comparison) selected from the fibroglandular disk region.

Similarly, to study the effect of the descriptor size on tissue classification, we performed the
experiment as described in Figure 5 with varying size of R1 and R2 (R1 = {2, 4, 6, 12} and R2 =

{5, 7, 9, 15}). For each elliptical size (varying sizes of R1, R2) with a neighborhood of eight, the feature
extraction is done for eight different orientations. The extracted features at different orientations are
concatenated and feature selection (extracting the most prominent features) is done as in Figure 5.
Tahmassebi et al. [67] showed the importance of ranking and selecting the best extracted parameters
while considering medical image data.
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3. Experimental Results

The evaluation presented in this paper was performed on the Mammographic Image Analysis
Society (MIAS) dataset [61]. The database contains 322 mammographic images of 161 patients with
mediolateral-oblique views. Each mammogram is classified into three distinct groups as either Fatty (F),
Fatty-Glandular(G) or Dense-Glandular (D) based on the tissue pattern. We perform classification on
321 images (one image was not available for historical reasons) with 106 fatty cases, 104 fatty-glandular
and 111 dense-glandular cases.

3.1. Comparison between LBP Variants

For the comparison of classification by different Local Binary Pattern variants, we performed
LBP, ELBP, uniform-ELBP and M-ELBP and LDP on ROIs of size 256× 256 from the fibroglandular
region with neighbourhood size equal to eight. While LBP extracted features only from a circular
neighbourhood, the ELBP was able to extract more structural and spatial features at different
orientations extracting multidimensional micro-pattern features of the breast tissue. In-order to
incorporate the intensity features along with the textural features into the histogram, we used M-ELBP.
Similarly, the effect of Uniform patterns in tissue classification was estimated using Uniform ELBP [68].
To keep the consistency of classification accuracy due to the classifier effect, we used the Bayesian
Network for every descriptor with 10-fold cross validation.

Table 2 shows the classification results on the ROIs from the MIAS database using LBP.
The approach gave a classification accuracy equal to 70.0%. Since the LBP operator considered a
circular pattern of the neighbourhood, it could not capture the directional features of the breast tissue
due to its rotation invariant feature.

Table 3 shows that the classification accuracy for the ELBP descriptor has improved to 75.0%
compared to LBP showing that ELBP can perform better by extracting additional multidimensional
features from different directions. In-order to study the effect of uniform patterns in the classification
of density, we performed Uniform-ELBP and found results similar to ELBP giving an accuracy of 74.0%
as shown in Table 4.

To understand the effect of intensity features in mammographic breast tissue classification, our
proposed variant of ELBP [51], M-ELBP was used which classified the mammographic images from
the MIAS dataset into BIRADS classes obtaining a classification accuracy of 74%. Table 5 shows that
the classification accuracy for this ELBP variant (M-ELBP) improved to 79.8% while including intensity
features to texture pattern in breast tissue classification.

Similarly, to analyze the role of directional texture descriptor for mammographic density
estimation, we used the LDP [54] operator on the same set of ROIs with the Bayesian Network.
The classification results in Table 6 show an accuracy of 75.4%, which was lower than the M-ELBP
descriptor for the Bayesian Network classifier but shows the strength of pixel directional response in
feature extraction.

Table 2. Confusion matrix for automatic tissue classification using Local Binary Pattern (LBP) descriptor
for ROI size 256× 256.

Automatic Classification

Truth Data Fatty Glandular Dense
Fatty 86 19 1
Glandular 16 73 15
Dense 7 38 66
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Table 3. Confusion matrix for automatic tissue classification using the Elliptical Local Binary Pattern
(ELBP) descriptor for ROI size 256× 256 and R = {4, 7} and P = 8.

Automatic Classification

Truth Data Fatty Glandular Dense
Fatty 86 20 0
Glandular 11 68 25
Dense 3 22 86

Table 4. Confusion matrix for automatic tissue classification using the Uniform-Elliptical Local Binary
Pattern (uniform-ELBP) descriptor for ROI size 256× 256 and R = {4, 7} and P = 8.

Automatic Classification

Truth Data Fatty Glandular Dense
Fatty 86 19 1
Glandular 11 69 24
Dense 2 27 82

Table 5. Confusion matrix for automatic tissue classification using the Mean Elliptical Local Binary
Pattern (M-ELBP) descriptor for ROI size 256× 256 and R = {4, 7} and P = 8.

Automatic Classification

Truth Data Fatty Glandular Dense
Fatty 92 14 0
Glandular 13 76 15
Dense 0 23 88

Table 6. Confusion matrix for automatic tissue classification using the Local Directional Pattern (LDP)
descriptor for ROI size 256× 256.

Automatic Classification

Truth Data Fatty Glandular Dense
Fatty 92 13 1
Glandular 10 74 20
Dense 3 32 76

When considering Tables 2–6, it seems there is a trend for over-estimation, which could be due to
the wide variation in glandular tissue appearance within the dataset and the ROI selection process.
For the classification results for M-ELBP (see Table 5) it should be noted that this is the only approach
which does not have any cases which are mis-classified by more than one class (so no Fatty cases were
classified as Dense and visa versa), which could be caused by the incorporation of texture features
along with the mean intensity values of the neighbourhood making it more robust to the tissue pattern
and intensity variations. In addition, it should be noted that the LBP based approach performs worse
for the Dense class (which is probably caused by the rotational invariant aspects), whilst both ELBP
and uniform-ELBP perform less on Glandular cases (which could again be caused by the wide range
of variation in the Glandular class and the effects of noise). We see a more detailed analysis of these
aspects as future work, which could be based on an in-dept analysis of the feature space.

In order to analyze the significance of the test for different texture descriptors [69], we perform
a ten-run ten-fold cross validation for all the texture descriptors. Table 7 shows that the Bayesian
Network yielded an accuracy of 69.44± 0.92, 75.41± 1.05, 72.86± 1.06, 77.38± 1.06 and 74.92± 0.67 for
LBP, ELBP, U-ELBP, M-ELBP and LDP, respectively. Table 7 also indicates if differences were significant
(at the 0.05 level).



J. Imaging 2019, 5, 24 11 of 19

Table 7. Classification accuracy results by various classifiers for LBP variants for ROI size
256× 256 pixels for 10-run 10-fold cross validation. (* indicates that the CA% are not significantly
different from the best result using an unpaired t test (p = 0.05) level).

Classifier LBP ELBP Uniform ELBP M-ELBP LDP

Bayesian Network 69.44± 0.92 75.41± 1.05 72.86± 1.06 77.38± 1.06 74.92± 0.67
KNN 69.34± 1.09 70.43± 1.03 71.46± 1.41 75.46± 0.78 * 75.95± 0.96
SVM 67.07± 0.75 73.11± 0.76 73.29± 0.64 74.42± 0.92 74.17± 0.52 *

Random Forest 69.19± 1.31 73.26± 1.08 73.04± 0.97 73.20± 1.36 75.91± 1.01

3.2. Study on Classifier Effect on Classifications

Machine learning approaches have a great impact on medical image classification and can provide
valuable predictive information to guide treatment decisions [70]. In order to understand the classifier
effect on mammographic density estimation accuracy, we computed the classification using different
classifiers for the same feature set. The classification accuracy illustrated by Table 7 shows the variation
in classification accuracy for a 10 run 10 fold cross validation for different classifiers showing the
importance of feature selection and classifier effect on density classification. The classifiers chosen for
our experimental study are Bayesian Network, K-Nearest neighbor classifier, Support Vector Machine,
and Random Forest [71,72]. Additionally, to test the statistical significance of classification accuracy,
we have performed a unpaired t-test for a significance level of p = 0.05 between descriptors and
classifiers (see in Table 7) taking best classification result by the respective classifier for each descriptor
as base line.

Similarly, the area under the ROC curve (Az) [73] was calculated to compare the efficiency of
classifiers for density estimation. It represents how good a classifier can distinguish between different
groups. Table 8 shows results using stratified 10 run 10 fold cross validation for Az. On comparing the
classification accuracy and Az results from Tables 7 and 8, LDP and M-ELBP show a balanced result for
classification accuracy by same classifiers showing the potential of directional filters for mammogram
density classification. Similarly, Figure 6 represents the ROC curve for M-ELBP descriptor using the
Bayesian classifier.

Table 8. Area under ROC (Az) classification results for LBP variants using ROI size 256× 256 pixels for
a 10 run 10 fold cross validation. * indicates that the CA% are not significantly different from the best
result using an unpaired t test (p = 0.05) level).

Classifier LBP ELBP Uniform ELBP M-ELBP LDP

Bayesian Network 0.89± 0.006 0.90± 0.001 0.89± 0.003 0.92± 0.000 0.89± 0.004
KNN 0.86± 0.005 0.85± 0.003 0.87± 0.005 0.89± 0.005 * 0.89± 0.002
SVM 0.78± 0.004 0.83± 0.005 0.84± 0.003 0.85± 0.005 0.84± 0.002 *

Random Forest 0.86± 0.004 0.89± 0.004 0.89± 0.004 0.89± 0.004 * 0.90± 0.003

Figure 6. ROC curve for M-ELBP for a Bayesian Classifier.
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From the experimental studies, the M-ELBP and LDP performed better in classifying the
mammographic breast tissue showing the importance of directional filters in feature extraction.
In-order to avoid the classifier effect on classification accuracy, we use the Bayesian network for
further experiments in the paper.

3.3. Study on Descriptor Size

To compare the effect of descriptor size on classification, the M-ELBP operator with varying size
of R1 = {2, 4, 6, 12} and R2 = {5, 7, 9, 15} were applied for the ROI size equal to 256× 256 pixels.
In order to compute the stability of the approach we used a 10 run 10 fold cross validation scheme
using a Bayesian network. The results showed that the descriptor classification remained stable with
the change in size. Figure 7 shows the classification accuracy (CA%) to be 77.82± 0.68, 77.66± 1.01,
78.01± 0.57 and 76.85± 0.73. The figure represents the classification accuracy obtained by the Bayesian
Network classifier for each run (N = number of runs) for a 10-fold cross validation scheme. Similarly,
from Figure 8, the area under the ROC curve(Az) shows similar results as 0.9204± 0.0010, 0.9181± 0.0011,
0.9205± 0.0015 and 0.9121± 0.0022 for the M-ELBP descriptor of size R1 = {2, 4, 7, 12}, R2 = {5, 7, 9, 15}
with a neighbourhood of eight pixels, respectively.

Figure 7. Classification accuracy as a function of descriptor size (N indicates a distinct run).
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Figure 8. Area under ROC curve Az as a function of descriptor size (N indicates a distinct run).

3.4. Effect of ROI Size and Location in Classification

Further experiments were done to estimate the effect of the ROI size and location in determining
the classification accuracy. We estimate the classification accuracy while using the whole breast, or
ROI sizes varying from 100× 100, 200× 200 to 256× 256 pixels were selected from the fibroglandular
disk region. The classification results for the M-ELBP descriptor with size R = {4, 7} and P = 8
using the Bayesian Network classifier for 10 run 10- fold cross validation. Figures 9 and 10 shows
the variation in classification accuracy (N indicate a distinct run) while the whole breast region
(CA% = 65.79± 0.70, Az = 0.83± 0.003) or an ROI of size 100× 100 pixels (CA% = 70.28± 1.16,
Az = 0.86± 0.003) are selected. The most appropriate ROI size for this study was found to be between
200× 200 pixels (CA% = 77.41± 0.72, Az = 0.91± 0.002) to 256× 256 pixels (CA% = 77.39± 1.04,
Az = 0.92± 0.001) from the fibroglandular region due to the presence of the appropriate parenchymal
patterns. This showed that if the ROI size is small, classification can be affected due to minimum
dominant features. Similarly, if the ROI size is too large or include irrelevant regions like tissue near
the pectoral muscle or the breast boundary regions can result in extracting less discriminant features.
In case of choosing the whole breast, the classification can be affected by irrelevant data resulting in
a poor classification accuracy as it extracted multi-class texture information making it difficult for
discriminating the prominent features for each density class. So the study showed that choosing the
correct ROI size and location can lead to improved density classification inline with similar studies in
the field [58,59].
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Figure 9. Classification accuracy as a function of ROI size (N indicates a distinct run).

Figure 10. Area under ROC curve (Az) as a function of ROI size (N indicates a distinct run).
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4. Discussions and Conclusions

Due to variations in datasets, classifiers, number of images used by researchers, difference in
density classes a direct comparison of our results with existing methods is difficult. So the state
of art with the same dataset and density classes are considered for comparison with our studies.
Muhimmah et al. [23] classified breast density into 3 classes using multi resolution histogram
information using an SVM classifier obtaining an accuracy of 77.57%. Similarly, Subashini et al. [43]
used 43 images from the MIAS dataset using a segmented breast tissue approach and attained an
accuracy of 95.55% with a SVM classifier using statistical features. But the good classification results
could be due to the limited number of images selected and so the classification results would probably
decrease with whole database. Blot et al. [41] used background texture information for 265 images
and obtained a CA of 65.0% using a KNN classifier. Zwiggelaar et al. [24] used gray level histogram
features for three class density classification on MIAS dataset with a subset of 312 images and attained
an accuracy of 71.5%. Compared to the methods used for breast density classification, the Local
Binary Pattern variants such as traditional LBP, ELBP, U-ELBP, M-ELBP, LDP obtained CA value of
69.44± 0.92, 75.41± 1.05, 73.29± 0.64, 77.38± 1.06, 75.95± 0.96 respectively (see Table 7). Comparison
with the results in Table 1 shows that the Local Binary Pattern variants are competitive in extracting
relevant features for breast density classification. Thus our results are comparable with the state of art
while considering the number of images (321) and the density class used for classification.

It is evident from the Tables 7 and 8 that though circular neighborhood provide rotation invariance
as in the traditional LBP, elliptical topologies could extract more anisotropic features from an image
especially for images which do not have a specific pattern like mammogram tissue which are complex
in nature. So here, the elliptical texture descriptors performed better compared to traditional LBP
information. Additionally, elliptical descriptors performed better compared to traditional LBP variants
as it extract more complex texture patterns due to its directionality nature along with the possibility
of multi-scale texture analysis. Similarly, the results showed that incorporating image intensity
features like the mean with texture features (as in M-ELBP) improved the feature vector strength
in distinguishing different patterns for a complex image. Similarly, results from the LDP descriptor
showed the potentiality of directional filters and importance of analyzing the strength of edge and
corner features of pixels in an image in classifying patterns. Unlike traditional LBP, both M-ELBP and
LDP is better dealing with noise in the image as it is not directly comparing the gray values (contrast)
between pixels. Therefore it helped in extracting the important parameters for classification.

Additionally, this study concentrated on analysing the effect of selecting the region of interest
(ROI) from mammographic images for breast tissue classification. The study showed that selecting
the size of the ROIs at 200× 200 pixels and 256× 256 pixels taken from fibroglandular disk region
were most appropriate. This showed similar result to the study performed by Li et al. [58] where
ROIs were selected at different distances from the breast nipple. A similar study was performed by
Rampun et al. [63] showing the importance of choosing the ROIs from the fibroglandular region for
density classification.

Further results on the selection of the ROI size showed that smaller ROIs can lead to decreased
classification due to lack of texture patterns extracted and very large ROIs can include irrelevant
features, again resulting in decreased classification. The ROI size indicated is comparable with the
results shown by Sharma et al. [59].

For future work, we will focus on developing a method which extracts additional multidimensional
directional pattern features by focusing on the edge responses of each pixel and gradient changes.
Additionally, the classification accuracy of boosting algorithms like XGBoost based on gradient
boosting will be analyzed [74]. Similarly, combining handcrafted features focusing on pattern responses
with deep learning approaches for feature extraction and classification can be an advancement in the
field of breast density classification. Although several studies [36–39] have focused on deep learning
features for mammographic density classification, a comparison of handcrafted features (focusing on
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intensity and local patterns) to deep learning feature extraction and classification is a potential area
of investigation.
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