
Journal of

Imaging

Article

High-Level Synthesis of Online K-Means Clustering
Hardware for a Real-Time Image Processing Pipeline

Aiman Badawi and Muhammad Bilal *

Electrical and Computer Engineering Department, King Abdulaziz University, Jeddah 21589, Saudi Arabia;
abadawi0018@stu.kau.edu.sa
* Correspondence: meftekar@kau.edu.sa

Received: 29 November 2018; Accepted: 7 March 2019; Published: 14 March 2019
����������
�������

Abstract: The growing need for smart surveillance solutions requires that modern video capturing
devices to be equipped with advance features, such as object detection, scene characterization,
and event detection, etc. Image segmentation into various connected regions is a vital pre-processing
step in these and other advanced computer vision algorithms. Thus, the inclusion of a hardware
accelerator for this task in the conventional image processing pipeline inevitably reduces the workload
for more advanced operations downstream. Moreover, design entry by using high-level synthesis
tools is gaining popularity for the facilitation of system development under a rapid prototyping
paradigm. To address these design requirements, we have developed a hardware accelerator for
image segmentation, based on an online K-Means algorithm using a Simulink high-level synthesis
tool. The developed hardware uses a standard pixel streaming protocol, and it can be readily inserted
into any image processing pipeline as an Intellectual Property (IP) core on a Field Programmable
Gate Array (FPGA). Furthermore, the proposed design reduces the hardware complexity of the
conventional architectures by employing a weighted instead of a moving average to update the
clusters. Experimental evidence has also been provided to demonstrate that the proposed weighted
average-based approach yields better results than the conventional moving average on test video
sequences. The synthesized hardware has been tested in real-time environment to process Full HD
video at 26.5 fps, while the estimated dynamic power consumption is less than 90 mW on the Xilinx
Zynq-7000 SOC.

Keywords: image segmentation; K-Means; image processing pipeline; FPGA; high-level synthesis

1. Introduction

The inclusion of advanced frame analysis techniques in live video streams has now become
mandatory in modern smart surveillance systems. Thus, the conventional image processing pipeline
of video cameras has transformed in the recent years to include some form of object, scene, and/or
event analysis mechanism as well [1]. Strict real-time and minimal power consumption constraints,
however, limit the number and the complexity of operations that can be included within the camera
modules [2]. Thus, some pre-processing tasks, such as motion estimation, image segmentation,
and trivial object detection tasks have attracted the attention of contemporary researchers [3].
Furthermore, the increasing complexity of computer vision systems has led designers to resort to
higher-level programming and synthesis tools, to shorten the design time. In this regard, Xilinx
High-Level Synthesis (HLS) [4] and Simulink Hardware Description Language (HDL) Coder [5] are
two widely cited tools. The latter is particularly suitable for the design of large computer vision
systems, since it incorporates extensive functional verification and the ability to compare with built-in
standard algorithms. Thus, the HDL coder supports quick synthesis and the functional verification
of a large number of image processing algorithms, such as custom filtering, colorspace conversion

J. Imaging 2019, 5, 38; doi:10.3390/jimaging5030038 www.mdpi.com/journal/jimaging

http://www.mdpi.com/journal/jimaging
http://www.mdpi.com
https://orcid.org/0000-0002-6446-8687
http://www.mdpi.com/2313-433X/5/3/38?type=check_update&version=1
http://dx.doi.org/10.3390/jimaging5030038
http://www.mdpi.com/journal/jimaging

J. Imaging 2019, 5, 38 2 of 17

and image statistics collection, etc. However, the current toolbox version lacks the explicit support
for image segmentation tasks. To this end, we have developed a Simulink model to extend the
capability of this toolbox to support this vital function. Although, various advance algorithms for
scene segmentation have been put forward by researchers in recent years [6,7], we have chosen “Online
K-Means” [8,9] to be incorporated in our proposed hardware, to keep logic resource utilization at
minimum. Furthermore, it has been demonstrated that the use of weighted averaging in the place
of moving averaging leads to a reduction in logic resource requirements, without compromising the
result precision. Thus, the contributions of the conducted work can be summarized as follows:

• Development of a synthesizable Simulink model for the K-Means clustering operation, which is
currently not available as an intrinsic block in the Simulink HDL Coder/Vision HDL Coder
toolbox (Matlab R2018b)

• Logic resource conservation through the use of the weighted average in the place of the moving
average, which requires costly division operation

• Provision of experimental evidence to demonstrate the utility of the weighted average in
preserving the result fidelity of the on-line K-Means algorithm for image segmentation

The proposed design can be downloaded (https://sites.google.com/view/4mbilal/home/rnd/
image-segmentation, see Supplementary Materials) as an open-source HDL IP core for its direct
incorporation into the image processing pipeline hardware on Xilinx FPGAs. The associated Simulink
model and the testing environment are also available for practitioners and researchers, to facilitate
further development.

The rest of the paper is organized as follows. Section 2 contains the necessary background,
and it discusses the relevant works reported in the literature. Section 3 describes the details of the
hardware implementation of the online K-Means algorithm for scene segmentation, using the Simulink
HDL Coder toolbox. Section 4 presents the FPGA synthesis and implementation results, as well as a
comparison with contemporary works. The discussion is concluded with the identification of possible
future directions.

2. Background and Literature Review

Image or scene segmentation refers to the classification/grouping of pixels, such that each
class/group represents a differently perceived object. For this purpose, different features are employed
to discriminate one object from another. Texture, boundary, edges, and color are some of the
most widely employed features to distinguish distinct objects [6,7,10]. The corresponding numeric
representation of these features themselves are obtained through various arithmetic operations,
such as gradient filtering, colorspace conversion, and local histogram population [7,11–13] etc.
The extracted features are then “clustered” to form groups of pixels that are perceived to belong
to the same objects. Various clustering algorithms, such as Gaussian Mixture Modelling (GMM) [12,14],
Expectation-Maximization (EM) [11,13], K-Means [15,16], and their derivative algorithms [17] have
been used by different studies reported in the literature. Some form of post-processing operations,
such as ‘region growing’, are also required to assign unclassified pixels or outliers to form a neat and
closed boundary around the finally perceived objects. Figure 1 depicts an example of color-based
segmentation using a K-Means clustering algorithm without any post-processing.

https://sites.google.com/view/4mbilal/home/rnd/image-segmentation
https://sites.google.com/view/4mbilal/home/rnd/image-segmentation

J. Imaging 2019, 5, 38 3 of 17

J. Imaging 2018, 4, x FOR PEER REVIEW 2 of 18

and image statistics collection, etc. However, the current toolbox version lacks the explicit support
for image segmentation tasks. To this end, we have developed a Simulink model to extend the
capability of this toolbox to support this vital function. Although, various advance algorithms for
scene segmentation have been put forward by researchers in recent years [6,7], we have chosen
“Online K-Means” [8,9] to be incorporated in our proposed hardware, to keep logic resource
utilization at minimum. Furthermore, it has been demonstrated that the use of weighted averaging
in the place of moving averaging leads to a reduction in logic resource requirements, without
compromising the result precision. Thus, the contributions of the conducted work can be
summarized as follows:

• Development of a synthesizable Simulink model for the K-Means clustering operation,
which is currently not available as an intrinsic block in the Simulink HDL Coder/Vision HDL
Coder toolbox (Matlab R2018b)

• Logic resource conservation through the use of the weighted average in the place of the
moving average, which requires costly division operation

• Provision of experimental evidence to demonstrate the utility of the weighted average in
preserving the result fidelity of the on-line K-Means algorithm for image segmentation

The proposed design can be downloaded
(https://sites.google.com/view/4mbilal/home/rnd/image-segmentation) as an open-source HDL IP
core for its direct incorporation into the image processing pipeline hardware on Xilinx FPGAs. The
associated Simulink model and the testing environment are also available for practitioners and
researchers, to facilitate further development.

The rest of the paper is organized as follows. Section 2 contains the necessary background, and
it discusses the relevant works reported in the literature. Section 3 describes the details of the
hardware implementation of the online K-Means algorithm for scene segmentation, using the
Simulink HDL Coder toolbox. Section 4 presents the FPGA synthesis and implementation results, as
well as a comparison with contemporary works. The discussion is concluded with the identification
of possible future directions.

(a) (b)

Figure 1. Image segmentation examples: (a) Input image [10]; (b) Segmented image with each pixel
classified as one of the four best matching dominant color clusters (prominent objects) in the input
image.

Figure 1. Image segmentation examples: (a) Input image [18]; (b) Segmented image with each
pixel classified as one of the four best matching dominant color clusters (prominent objects) in the
input image.

As mentioned earlier, the inclusion of the image segmentation option as a hardware module inside
the image processing pipeline of a camera is constrained by its low-power and complexity requirements.
Benetti et al. [19] have recently described the design of an ultra-low-power vision chip for video
surveillance, which can detect motion as well as segment the significant portions of the input frames
in real-time. This design is limited to specific scenarios with rigid hardware requirements. Moreover,
the camera sensor is severely limited in spatial resolution, and is hence, unsuitable for general-purpose
applications. Lie et al. [20] have described another neural network-based design for medical imaging
applications. Another hardware architecture proposed by Genovese and Napoli [21] uses GMM-based
segmentation to extract the foreground (moving objects) from the background. Liu et al. [22] have
proposed support vector machine-based image segmentation hardware. These designs target specific
applications (e.g., medical imaging and surveillance, etc.), and they are not tailored for inclusion
in general-purpose cameras. For general-purpose applications, simpler pixel-based operations are
generally preferred over a window-based operation, to reduce the memory and associated power
consumption requirements. Color-based segmentation satisfies this requirement, and thus, it naturally
stands out favorably over other options, which inevitably require line memory buffers for their
operation. Despite being algorithmically simple, color-based segmentation yields promising results,
and it has been the subject of various research efforts reported in the literature. Furthermore, since
pixel data are presented to the processing hardware in the raster scan order (stream), ‘online’ cluster
update algorithms are required. Liang and Klein [23] have demonstrated that ‘online EM’-based
clustering in fact performs better than batch processing. Liberty et al. [24] have demonstrated similar
results for ‘online K-Means’ algorithm. The latter is more suitable for hardware implementation, since
it involves fewer computations, involving fixed-point arithmetic.

Hussain et al. [25] have described an FPGA architecture of a K-Means clustering algorithm for a
bioinformatics application to process large genome datasets. Similarly, Kutty et al. [26] have described
a fully pipelined hardware for the K-Means algorithm that is capable of running at 400 MHz on a Xilinx
target FPGA. These designs, however, lack the ability to classify the incoming data (pixels) online. Thus,
these designs necessarily require full-frame storage in the external memory for classification at a later
stage. Moreover, the latter work fails to describe how the problem of the inherent feedback loop in the
K-Means algorithm has been handled while aggressively pipelining the hardware. Thus, although the

J. Imaging 2019, 5, 38 4 of 17

attainment of higher speed has been mentioned as a result of the simple insertion of pipeline registers
in the distance calculation module, the cluster update feedback loop has been ignored in the overall
speed calculation. Recently, Raghavan and Perera [27] have proposed another FPGA-based design for
big-data applications. This design also involves frequent memory accesses, and is hence, not suitable
for insertion into image processing pipeline. Cahnilho et al. [28] have described a hardware-software
co-design approach to implement the clustering algorithm. The involvement of the processor in
the operation necessarily complicates the data flow while processing the pixel stream, and is hence,
not desirable in real-time systems. Li et al. [29] have used the Xilinx HLS tool to implement AXI4
bus compliant K-Means hardware accelerator. However, this design also uses main memory for the
cluster update feedback loop, and it is not suitable for its incorporation in a camera module as a
low-complexity add-on. Khawaja et al. [30] have described a multiprocessor architecture to accelerate
the K-Means algorithm. This design is meant for parallel processing at several nodes, and it is hence,
not suitable for insertion in a real-time image processing pipeline.

It can be noticed from the description of these hardware designs reported earlier in the literature
that the color-based online K-Means clustering is a popular choice among researchers, due to its
simpler architecture and performance. However, all of these designs allocate a large amount of logic
resources for the centroid update mechanism, due to the presence of a divider inside this module. In
this work, we propose to circumvent this huge cost by employing a weighted average instead of a
moving average for the cluster update. Weighted averaging replaces an explicit division operation
with multiplication by constants, and hence, it reduces circuit complexity. This mechanism relies
on the temporal redundancy in pixel values of adjacent video frames, and has been shown to work
without noticeable loss in accuracy. Moreover, the proposed design is implemented by using high-level
synthesis tools (Simulink) for quick insertion into larger systems, and it has been made publicly
available as a downloadable FPGA IP core.

3. Online K-Means Clustering Hardware Design Using Simulink

The proposed image segmentation hardware accelerator uses an online K-Means clustering
algorithm, and it has been designed with a standard Xilinx AXI4 streaming interface, so that it
can be inserted as an FPGA IP core within any image processing pipeline flexibly. This section
gives a brief overview of the underlying algorithm with some desired modifications, to minimize
the hardware resource requirements. This is followed by a detailed description of the proposed
hardware architecture.

3.1. The Online K-Means Algorithm for Color-Based Image Segmentation

The Online K-Means clustering algorithm is listed as follows.

Algorithm 1: Online K-Means clustering algorithm for color-based image segmentation

1: Initialize the ‘k’ number of centroids, C1, C2, C3 Ck with random values.
2: Initialize the counts n1, n2, n3 nk to zero.
3: while ‘pixel stream continues’ do
4: p← RGB2YCbCr(p)
5: Match the input pixel, ‘p’, to a single centroid Ci by minimizing the distance ‖p− Ci‖2

6: Increment ni
7: Update the matching centroid, Ci, using moving average
8: Ĉi ← Ci + (1/ ni)(p − Ci)
9: Classify the input pixel, ‘p’, as ‘i’.
10: end

In our work, we have fixed the number of clusters, ‘k’, to be eight. The RGB format for pixel
representation is quite commonly used by frame capture and display devices. This representation has

J. Imaging 2019, 5, 38 5 of 17

been, however, found to be less favorable for color matching in various studies [31–33]. The reason for
this is that RGB does not yield a perceptually uniform result when different colors are characterized,
based on a numeric distance. For this purpose, various researchers have suggested that RGB be
converted to LUV or LAB colorspaces [34,35], which yield a much better response (perceptually
uniform) to Euclidean distance when differentiating colors. These colorspaces achieve this by
decoupling the luminance (illumination) from the color (hue) information, using complex floating-point
operations. In our experiments, we have used the YCbCr format, which works similar to LUV and
LAB in decoupling the illumination from color information, but it is not as perceptually uniform. The
advantage of this, however, is that it is commonly employed by many commercial cameras and almost
all compression schemes. Moreover, it can be computed from the intrinsic RGB space by using simpler
arithmetic operations as follows: Y

Cb
Cr

 =

 0.299 0.587 0.114
−0.169 −0.331 0.500
0.500 −0.419 −0.081

 R

G
B

 (1)

Thus, complex colorspace conversion operations can be entirely skipped if the incoming video
stream is already in this format. Figure 2 compares the results of using LAB, YCbCr, and RGB
colorspaces for segmentation with the Matlab intrinsic k-means function (L2-norm) on test images.
Eight clusters are considered in each case, and they have been depicted by using eight corresponding
pseudo-colors. It can be noticed that both LAB and YCbCr colorspaces give visually comparable
results. The difference is perceptively discernable only in ‘Akiyo’ and ‘Container’. In fact, in these
two cases, YCbCr gives better clustering of the blue screen (Akiyo) and the ocean (Container) than
LAB. Prasetyo et al. [36] and Shaik et al. [37] have also noted the utility of the YCbCr colorspace in
segmentation operation. Sajid et al. [38] have similarly employed YCbCr for background–foreground
clustering. Figure 2 shows that the RGB colorspace works well in the case of pixel groups with markedly
different shades of hue and illumination values. However, it fails to account for subtle changes in
the illumination values of the pixels belonging to the same object (i.e., similar hue information) and
clusters these separately. Thus, the thin outline of the screen in the background of ‘Akiyo’ is wrongly
identified as a different object. Similarly, the field is not clustered properly in ‘Soccer’. Both YCbCr
and LAB yield a better clustering solution in these cases.

After colorspace conversion, the luminance (intensity) is depicted by the “Y” channel, while
chrominance (color information) is described by the other two components, i.e., “Cb” and “Cr”. All
three channels can be used to compute the vector distance of the current pixels from the centroids of the
respective clusters. However, omitting the luminance channel (Y/L) while computing the distance has
favorable results in some cases, as shown in Figure 3. It can be observed that including the luminance
information leads to an incorrect segmentation of the sky into two segments, due to the brightness
variation (Y/L channel). Removing this channel from the distance calculation rectifies the situation
for both the YCbCr and LAB colorspaces. Moreover, using L1-norm in place of L2-norm for distance
calculation gives almost identical results. This finding is in line with the extensive experimental
results reported by Estlick et al. [39]. They found L1-norm to not only reduce the computational
complexity, but also to improve the segmentation results in some cases. In our hardware, the use of L1
or L2-norm and the inclusion/exclusion of the “Y” channel can be selected via independent switches
under software control, to facilitate catering to different environments.

J. Imaging 2019, 5, 38 6 of 17

J. Imaging 2018, 4, x FOR PEER REVIEW 6 of 18

 (a) (b) (c) (d)

Figure 2. Color-based segmentation using the Matlab intrinsic k-means function: (a) Input image; (b)
Output using the “LAB” colorspace; (c) Output using the “YCbCr” colorspace; (d) Output using the
“RGB” colorspace.

After colorspace conversion, the luminance (intensity) is depicted by the “Y” channel, while
chrominance (color information) is described by the other two components, i.e., “Cb” and “Cr”. All
three channels can be used to compute the vector distance of the current pixels from the centroids of
the respective clusters. However, omitting the luminance channel (Y/L) while computing the distance
has favorable results in some cases, as shown in Figure 3. It can be observed that including the
luminance information leads to an incorrect segmentation of the sky into two segments, due to the
brightness variation (Y/L channel). Removing this channel from the distance calculation rectifies the
situation for both the YCbCr and LAB colorspaces. Moreover, using L1-norm in place of L2-norm for
distance calculation gives almost identical results. This finding is in line with the extensive
experimental results reported by Estlick et al. [39]. They found L1-norm to not only reduce the
computational complexity, but also to improve the segmentation results in some cases. In our
hardware, the use of L1 or L2-norm and the inclusion/exclusion of the “Y” channel can be selected
via independent switches under software control, to facilitate catering to different environments.

Figure 2. Color-based segmentation using the Matlab intrinsic k-means function: (a) Input image;
(b) Output using the “LAB” colorspace; (c) Output using the “YCbCr” colorspace; (d) Output using the
“RGB” colorspace.J. Imaging 2018, 4, x FOR PEER REVIEW 7 of 18

 (a) (b) (c) (d)

Figure 3. The Effect of using the luminance channel and the distance measure on clustering
performance: (a) Original image; (b) Including the Y/L channel with L2 norm; (c) Excluding the Y/L
channel with L2 norm; (d) Excluding the Y/L channel with L1 norm.

In offline applications, the centroids are determined after processing all of the pixels in the given
image/frame. The output classification is calculated during the second pass, once all of the centroids
are available. In real-time applications, on the other hand, the centroids of the matched cluster
(minimum distance) are updated by using the moving average formula. This involves a division
operation, and it is the source of major complexity in hardware implementations, as discussed in the
previous section. The pixel classification, the matching cluster’s index, ‘I’, is simultaneously output.

In order to remove the division operation from the algorithm, we have incorporated the
“weighted average” instead of the moving average in step 8 of Algorithm 1. This can be rewritten as: 𝐶 = 𝐶 𝑛 − 1𝑛 𝑝 1𝑛 (2)

The weighted average formula, on the other hand, yields the following formulation: 𝐶 = 𝐶 ∝ 𝑝 1−∝ (3)

where ‘∝’ is a predetermined constant that is close to 1, e.g., 0.999. It can be noticed that although
the weighted averaging does not involve division, it approximates the moving average in the limit: lim→ 𝑛 − 1𝑛 1 (4)

Practically, this limit is reached before processing even 10 lines of pixels in a moderate-resolution
video frame, such as VGA (640 × 480). Thus, the revised formulation of the averaging operation in
Equation (3) removes the need for expensive division operation. This alteration, however, does not
affect the clustering performance of the overall algorithm noticeably, since the cluster centroids
invariably depict similar variations during the processing of the whole frame, for both the moving
and weighted average operations in the online clustering methodology. This behavior has been
depicted for a representative centroid during the first 15 frames of the test video sequence “Hall” in
Figure 4. It can be observed that both the moving and the weighted averages fluctuate during the
processing of the frame, as new pixels are processed in the raster scan order. For reference, centroid
values from an offline implementation of K-Means (Matlab intrinsic function) have also been plotted
alongside. These have been labelled “True Average”, since offline methods access whole frames at a
time to determine the centroid values. These a-priori values remain constant during the second pass
of the offline algorithm when pixels are classified. We have plotted these values as references to judge
the performance of the moving and weighted average-based on-line methods, respectively. Both the
moving and weighted average-based methods initialize the cluster centroids with identical values
(seeds) at the start of the first frame. It was noticed that for ∝ = 0.999, the moving average tracks the
static true value very well. However, at the start, it takes roughly six frames for all three values
(YCbCr) to settle. This “settling” time will be needed whenever rapid scene changes occur in the

Figure 3. The Effect of using the luminance channel and the distance measure on clustering
performance: (a) Original image; (b) Including the Y/L channel with L2 norm; (c) Excluding the
Y/L channel with L2 norm; (d) Excluding the Y/L channel with L1 norm.

J. Imaging 2019, 5, 38 7 of 17

In offline applications, the centroids are determined after processing all of the pixels in the
given image/frame. The output classification is calculated during the second pass, once all of the
centroids are available. In real-time applications, on the other hand, the centroids of the matched
cluster (minimum distance) are updated by using the moving average formula. This involves a division
operation, and it is the source of major complexity in hardware implementations, as discussed in the
previous section. The pixel classification, the matching cluster’s index, ‘I’, is simultaneously output.

In order to remove the division operation from the algorithm, we have incorporated the “weighted
average” instead of the moving average in step 8 of Algorithm 1. This can be rewritten as:

Ĉi = Ci

(
ni − 1

ni

)
+ p

(
1
ni

)
(2)

The weighted average formula, on the other hand, yields the following formulation:

Ĉi = Ci(∝) + p(1− ∝) (3)

where ‘∝’ is a predetermined constant that is close to 1, e.g., ≈ 0.999. It can be noticed that although
the weighted averaging does not involve division, it approximates the moving average in the limit:

lim
n→∞

(
ni − 1

ni

)
≈ 1 (4)

Practically, this limit is reached before processing even 10 lines of pixels in a moderate-resolution
video frame, such as VGA (640 × 480). Thus, the revised formulation of the averaging operation
in Equation (3) removes the need for expensive division operation. This alteration, however, does
not affect the clustering performance of the overall algorithm noticeably, since the cluster centroids
invariably depict similar variations during the processing of the whole frame, for both the moving and
weighted average operations in the online clustering methodology. This behavior has been depicted
for a representative centroid during the first 15 frames of the test video sequence “Hall” in Figure 4.
It can be observed that both the moving and the weighted averages fluctuate during the processing of
the frame, as new pixels are processed in the raster scan order. For reference, centroid values from
an offline implementation of K-Means (Matlab intrinsic function) have also been plotted alongside.
These have been labelled “True Average”, since offline methods access whole frames at a time to
determine the centroid values. These a-priori values remain constant during the second pass of the
offline algorithm when pixels are classified. We have plotted these values as references to judge the
performance of the moving and weighted average-based on-line methods, respectively. Both the
moving and weighted average-based methods initialize the cluster centroids with identical values
(seeds) at the start of the first frame. It was noticed that for ∝ = 0.999, the moving average tracks
the static true value very well. However, at the start, it takes roughly six frames for all three values
(YCbCr) to settle. This “settling” time will be needed whenever rapid scene changes occur in the video
frames, and the centroids shift positions. At 15 frames per seconds (fps), this translates to less than
half a second. A higher value will further increase this delay. Decreasing ∝ to 0.99, decreases the
settling time to just one frame but also leads to more fluctuation. It is worth noting that even at this
rate, it causes lower fluctuations than the moving average. Thus, the weighted average is a better
choice in either case.

J. Imaging 2019, 5, 38 8 of 17

J. Imaging 2018, 4, x FOR PEER REVIEW 8 of 18

video frames, and the centroids shift positions. At 15 frames per seconds (fps), this translates to less
than half a second. A higher value will further increase this delay. Decreasing ∝ to 0.99, decreases
the settling time to just one frame but also leads to more fluctuation. It is worth noting that even at
this rate, it causes lower fluctuations than the moving average. Thus, the weighted average is a better
choice in either case.

Figure 4. Effect of choice of ‘α’ on a representative centroid’s values for the first 15 frames of ‘Hall’
test video sequence.

To further investigate the performance of weightage average-based on-line algorithm, the
combined error in the calculation of all of the centroid centers with reference to standard offline
implementation has been gathered on test video sequences. The root means squared error (RMSE)
has been used as the metric to evaluate different settings, and it has been reported on per-frame basis.
Eight clusters have been considered in all of the experiments. “Y” information is included and L2-
norm is used for distance calculation. The centroids are randomly initialized around the middle
value, 127, of the dynamic range [0 255] of the pixels. Figure 5 plots the RMSE per frame for three
video sequences, with high motion content. These plots further confirm the observations made in
Figure 4. Weighted average with ∝ = 0.999, yields the lowest RMSE for most of the frames. At the
start and during rapid scene changes, however, it rises to higher values, as discussed previously. The
moving average performs poorly in all if the cases considered, except during a few frames in
‘Foreman’ and ‘Ice’ sequences. Thus, even for high-motion video sequences, the error in the centroid’s
values, calculated through the weighted average (∝ = 0.999) is upper-bounded by the error for the
moving average, with reference to the corresponding offline implementation.

α=0.999 α=0.99

Figure 4. Effect of choice of ‘α’ on a representative centroid’s values for the first 15 frames of ‘Hall’ test
video sequence.

To further investigate the performance of weightage average-based on-line algorithm, the
combined error in the calculation of all of the centroid centers with reference to standard offline
implementation has been gathered on test video sequences. The root means squared error (RMSE)
has been used as the metric to evaluate different settings, and it has been reported on per-frame
basis. Eight clusters have been considered in all of the experiments. “Y” information is included and
L2-norm is used for distance calculation. The centroids are randomly initialized around the middle
value, 127, of the dynamic range [0 255] of the pixels. Figure 5 plots the RMSE per frame for three video
sequences, with high motion content. These plots further confirm the observations made in Figure 4.
Weighted average with ∝ = 0.999, yields the lowest RMSE for most of the frames. At the start and
during rapid scene changes, however, it rises to higher values, as discussed previously. The moving
average performs poorly in all if the cases considered, except during a few frames in ‘Foreman’ and ‘Ice’
sequences. Thus, even for high-motion video sequences, the error in the centroid’s values, calculated
through the weighted average (∝ = 0.999) is upper-bounded by the error for the moving average, with
reference to the corresponding offline implementation.

J. Imaging 2019, 5, 38 9 of 17
J. Imaging 2018, 4, x FOR PEER REVIEW 9 of 18

Figure 5. Error deviation in the centroid of the online K-Means algorithms with respect to reference
offline algorithm on test video sequences with high motion content.

RMSE values for the full test video sequences have been reproduced in Table 1. It can be
observed from these values that the weighted average performs better than moving average on all
the sequences on average. The former only occasionally performs poorly in sudden scene changes,
and at the very start of the algorithm as observed in Figure 4 and Figure 5.

In conclusion, weighted average is a better choice than the moving average, not only due to its
lower computational complexity, but also its better performance. Experimental evidence dictates that ∝ = 0.999 yields better results than the other choices. Decreasing this value leads to poorer overall
performance. On the other hand, further increasing this value leads to poorer response on startup
and high-motion-content frames. Moreover, increasing this value requires further precision in its
representation which leads to subsequently more complex hardware.

Figure 5. Error deviation in the centroid of the online K-Means algorithms with respect to reference
offline algorithm on test video sequences with high motion content.

RMSE values for the full test video sequences have been reproduced in Table 1. It can be observed
from these values that the weighted average performs better than moving average on all the sequences
on average. The former only occasionally performs poorly in sudden scene changes, and at the very
start of the algorithm as observed in Figures 4 and 5.

J. Imaging 2019, 5, 38 10 of 17

Table 1. A comparison of online K-Means algorithms in terms of the average error in centroid values
from the offline approach.

Video Sequence Resolution Number of Frames

RMSE

Moving Average Weighted Average
∝ = 0.999

Akiyo 352 × 288 300 11.82 7.14
Container 352 × 288 300 7.51 7.13
Foreman 352 × 288 300 9.04 6.44
Carphone 352 × 288 382 6.62 5.77

Claire 176 × 144 494 9.56 6.75
Hall 352 × 288 300 5.96 4.21

Highway 352 × 288 2000 7.26 4.61
Soccer 352 × 288 150 8.06 4.71

Ice 352 × 288 240 3.75 3.01
Tennis 352 × 288 150 8.63 6.83

In conclusion, weighted average is a better choice than the moving average, not only due to its
lower computational complexity, but also its better performance. Experimental evidence dictates that
∝ = 0.999 yields better results than the other choices. Decreasing this value leads to poorer overall
performance. On the other hand, further increasing this value leads to poorer response on startup
and high-motion-content frames. Moreover, increasing this value requires further precision in its
representation which leads to subsequently more complex hardware.

3.2. Simulink Design Entry and High-Level Synthesis

The online K-Means algorithm has been implemented as a Simulink model to generate the
corresponding Xilinx AXI4 streaming protocol-compatible IP core. The top-level module has been
depicted in Figure 6.

J. Imaging 2018, 4, x FOR PEER REVIEW 10 of 18

Table 1. A comparison of online K-Means algorithms in terms of the average error in centroid values
from the offline approach.

Video Sequence Resolution Number of Frames
RMSE

Moving Average
Weighted Average ∝ = 0.999

Akiyo 352 × 288 300 11.82 7.14
Container 352 × 288 300 7.51 7.13
Foreman 352 × 288 300 9.04 6.44
Carphone 352 × 288 382 6.62 5.77

Claire 176 × 144 494 9.56 6.75
Hall 352 × 288 300 5.96 4.21

Highway 352 × 288 2000 7.26 4.61
Soccer 352 × 288 150 8.06 4.71

Ice 352 × 288 240 3.75 3.01
Tennis 352 × 288 150 8.63 6.83

3.2. Simulink Design Entry and High-Level Synthesis

The online K-Means algorithm has been implemented as a Simulink model to generate the
corresponding Xilinx AXI4 streaming protocol-compatible IP core. The top-level module has been
depicted in Figure 6.

Figure 6. The Simulink model developed for the online K-Means clustering algorithm with Xilinx
AXI-4 compliant standard pixel streaming interfaces.

As discussed earlier, the first operation performed on the pixel stream is the conversion from
RGB to the YCbCr colorspace, in order to use only color components for segmentation. On the output
side, the reverse transformation is necessary if the pixel values are replaced with their associated
cluster values. The other option is to simply output the fixed colors that correspond to each identified
cluster (pseudo-coloring), as shown in Figure 7. The former option gives a more pleasing output, but
the latter may be more suitable for certain downstream tasks. For demonstration purposes, our
hardware uses the former option, and this leads to slightly more resources being utilized by the
YCbCr2RGB conversion. Both of these conversion modules are available in the Simulink Vision HDL
toolbox.

Figure 6. The Simulink model developed for the online K-Means clustering algorithm with Xilinx
AXI-4 compliant standard pixel streaming interfaces.

As discussed earlier, the first operation performed on the pixel stream is the conversion from RGB
to the YCbCr colorspace, in order to use only color components for segmentation. On the output side,
the reverse transformation is necessary if the pixel values are replaced with their associated cluster
values. The other option is to simply output the fixed colors that correspond to each identified cluster
(pseudo-coloring), as shown in Figure 7. The former option gives a more pleasing output, but the
latter may be more suitable for certain downstream tasks. For demonstration purposes, our hardware

J. Imaging 2019, 5, 38 11 of 17

uses the former option, and this leads to slightly more resources being utilized by the YCbCr2RGB
conversion. Both of these conversion modules are available in the Simulink Vision HDL toolbox.J. Imaging 2018, 4, x FOR PEER REVIEW 11 of 18

(a) (b) (c)

Figure 7. Image segmentation output options: (a) Input image [10]; (b) Output image with each pixel
replaced by its corresponding cluster’s centroid value; (c) Output image with pseudo-colors to denote
clustering.

After the colorspace conversion, the color components, i.e., the Cb and Cr values of each pixel,
are compared against the current centroids of each cluster (eight in our model) in the ‘Comparisons’
module. These centroids are initialized at random to ensure the proper operation of the K-Means
clustering, as discussed in the literature. The “Comparisons” module outputs the classification value
of the current pixel (Figure 8), as well as the address of the matched cluster for updating its centroid
in the “Clusters Update” module. The updated module uses Equation (3) to output the new centroids
for the next cycle. These two modules are elaborated below.

3.2.1. Comparisons Module

The comparisons module takes in pixel data in the YCbCr format, and compares it with the
corresponding centroids of eight clusters in the first stage. For this purpose, eight “Distance
Calculation Modules” (DCM) are employed. These DCMs have the option to use either the L1 or L2-
norm as the heuristic for a match, using “SAD_SSE_SW” switch. They can also include or exclude the
‘Y’ (luminance) component, while finding the best match between current pixel and the
corresponding centroid through “Y_Disable” switch. The second stage is a binary tree of the
comparators and multiplexers which successively propagates the centroid with minimum distance
forward. Finally, the centroid of the best matching cluster and its 3-bit encoded address is output
based on the logical outcome of each comparator.

Figure 7. Image segmentation output options: (a) Input image [18]; (b) Output image with each
pixel replaced by its corresponding cluster’s centroid value; (c) Output image with pseudo-colors to
denote clustering.

After the colorspace conversion, the color components, i.e., the Cb and Cr values of each pixel,
are compared against the current centroids of each cluster (eight in our model) in the ‘Comparisons’
module. These centroids are initialized at random to ensure the proper operation of the K-Means
clustering, as discussed in the literature. The “Comparisons” module outputs the classification value
of the current pixel (Figure 8), as well as the address of the matched cluster for updating its centroid in
the “Clusters Update” module. The updated module uses Equation (3) to output the new centroids for
the next cycle. These two modules are elaborated below.

Version March 14, 2019 submitted to Journal Not Specified 2 of 5

This section may be divided by subheadings. It should provide a concise and precise31

description of the experimental results, their interpretation as well as the experimental32

conclusions that can be drawn.33

2.1. Subsection34

2.1.1. Subsubsection35

Bulleted lists look like this:36

• First bullet37

• Second bullet38

• Third bullet39

Numbered lists can be added as follows:40

1. First item41

2. Second item42

3. Third item43

The text continues here.44

2.2. Figures, Tables and Schemes45

All figures and tables should be cited in the main text as Figure 1, Table 1, etc.46

Figure 1. This is a figure, Schemes follow the same formatting. If there are multiple panels, they should
be listed as: (a) Description of what is contained in the first panel. (b) Description of what is contained
in the second panel. Figures should be placed in the main text near to the first time they are cited. A
caption on a single line should be centered.

Text47

Text48

Figure 8. Comparison module to find the matching cluster’s centroid.

3.2.1. Comparisons Module

The comparisons module takes in pixel data in the YCbCr format, and compares it with the
corresponding centroids of eight clusters in the first stage. For this purpose, eight “Distance Calculation
Modules” (DCM) are employed. These DCMs have the option to use either the L1 or L2-norm as
the heuristic for a match, using “SAD_SSE_SW” switch. They can also include or exclude the ‘Y’
(luminance) component, while finding the best match between current pixel and the corresponding

J. Imaging 2019, 5, 38 12 of 17

centroid through “Y_Disable” switch. The second stage is a binary tree of the comparators and
multiplexers which successively propagates the centroid with minimum distance forward. Finally,
the centroid of the best matching cluster and its 3-bit encoded address is output based on the logical
outcome of each comparator.

3.2.2. Clusters Update Module

The centroids of eight clusters are updated using the output from ‘Comparisons Module’ and the
current pixel. The centroid values are stored in registers as fixed-point values using a word size of 18
bits with eight fractional bits. The precision for fractional bits has been decided, based on the accuracy
loss behavior that is depicted in Figure 9. RMSE for test video sequences were gathered for different
bit precisions. It was observed that the RMSE error metric shows a sharp rise when the fractional bits
are reduced below 6. On the other hand, the allocation of up to 14 bits yields a performance that is
at par with the double-precision floating point software implementation. Thus, eight fractional bits
seems to be a reasonable choice. Ten further bits were allocated for the sign and magnitude, with a
1-bit margin for overflows. The centroids are initialized to random values around 127 at the start, as
used in the experimental setup described in Section 3.1.

J. Imaging 2018, 4, x FOR PEER REVIEW 12 of 18

1
YCbCr_pixel

In1
In2
Y_disable
SAD_SSE

Out1

SSE1

In1
In2
Y_disable
SAD_SSE

Out1

SSE2
In1
In2
Y_disable
SAD_SSE

Out1

SSE3

In1
In2
Y_disable
SAD_SSE

Out1

SSE4

In1
In2
Y_disable
SAD_SSE

Out1

SSE5

In1
In2
Y_disable
SAD_SSE

Out1

SSE6

2
Ks

1
Y_Disable

0
SAD_SSE_SW

Distance
Calculation

Comparisons Binary
Tree

Address Encoding &
Centeroid Output

DCM1

DCM2

DCM3

DCM4

DCM5

DCM6

DCM7

DCM8

Figure 8. Comparison module to find the matching cluster’s centroid.

3.2.2. Clusters Update Module

The centroids of eight clusters are updated using the output from ‘Comparisons Module’ and
the current pixel. The centroid values are stored in registers as fixed-point values using a word size
of 18 bits with eight fractional bits. The precision for fractional bits has been decided, based on the
accuracy loss behavior that is depicted in Figure 9. RMSE for test video sequences were gathered for
different bit precisions. It was observed that the RMSE error metric shows a sharp rise when the
fractional bits are reduced below 6. On the other hand, the allocation of up to 14 bits yields a
performance that is at par with the double-precision floating point software implementation. Thus,
eight fractional bits seems to be a reasonable choice. Ten further bits were allocated for the sign and
magnitude, with a 1-bit margin for overflows. The centroids are initialized to random values around
127 at the start, as used in the experimental setup described in Section 3.1.

Figure 9. Effect of the fixed-point arithmetic on result accuracy.

0

5

10

15

fx 8.2 fx 8.4 fx 8.6 fx 8.8 fx 8.10 fx 8.12 fx 8.14 Double

RM
SE

Centroid Precision

Figure 9. Effect of the fixed-point arithmetic on result accuracy.

The update method (Equation (3)) has been implemented as a user-defined function module
with the option to initialize the centroids at startup, using the ‘vStart’ signal that is available from
AXI4 streaming bus. All other components have been implemented by using Simulink intrinsic
modules that support direct synthesis. Hence, the entire design framework is highly flexible, with
support for functionality testing by using Simulink media interfaces. Moreover, fixed-point hardware
implementation can be compared against the corresponding full-precision software model.

Finally, the Simulink HDL Coder is invoked to convert the hardware model into AXI4 streaming
bus compliant IP core in the form of HDL sources. To test the functionality of this IP core in a practical
environment, a Hardware–Software co-design (HW-SW) has been setup on a Xilinx Zedboard, which
houses Xilinx Zynq-7000 AP SoC XC7Z020-CLG484 FPGA running at 100 MHz. The hardware portion
has been implemented in the Xilinx Vivado tool, with all the peripherals, as well as the segmentation
IP core connected across a single bus, as shown in Figure 10. The software environment is based
on Xillinux, an operating system based on Ubuntu for ARM. The application to test the IP core
functionality makes use of OpenCV computer vision library as well. This setup ensures that three
different sources of video streams can be used to feed the developed IP core, i.e., the High Definition
Multimedia Interface (HDMI) on the Zedboard, USB webcam or the stored files on the flash memory
card decoded through software library. For the former two sources, the AXI Video DMA core accesses
a dedicated section of Random Access Memory (RAM) to read/write input/output frames.

J. Imaging 2019, 5, 38 13 of 17

J. Imaging 2018, 4, x FOR PEER REVIEW 13 of 18

The update method (Equation (3)) has been implemented as a user-defined function module
with the option to initialize the centroids at startup, using the ‘vStart’ signal that is available from
AXI4 streaming bus. All other components have been implemented by using Simulink intrinsic
modules that support direct synthesis. Hence, the entire design framework is highly flexible, with
support for functionality testing by using Simulink media interfaces. Moreover, fixed-point hardware
implementation can be compared against the corresponding full-precision software model.

Finally, the Simulink HDL Coder is invoked to convert the hardware model into AXI4 streaming
bus compliant IP core in the form of HDL sources. To test the functionality of this IP core in a practical
environment, a Hardware–Software co-design (HW-SW) has been setup on a Xilinx Zedboard, which
houses Xilinx Zynq-7000 AP SoC XC7Z020-CLG484 FPGA running at 100 MHz. The hardware
portion has been implemented in the Xilinx Vivado tool, with all the peripherals, as well as the
segmentation IP core connected across a single bus, as shown in Figure 10. The software environment
is based on Xillinux, an operating system based on Ubuntu for ARM. The application to test the IP
core functionality makes use of OpenCV computer vision library as well. This setup ensures that
three different sources of video streams can be used to feed the developed IP core, i.e., the High
Definition Multimedia Interface (HDMI) on the Zedboard, USB webcam or the stored files on the
flash memory card decoded through software library. For the former two sources, the AXI Video
DMA core accesses a dedicated section of Random Access Memory (RAM) to read/write input/output
frames.

Figure 10. Hardware-software co-design architecture.

Ethernet

Amba Bus

DRAM
512 MBARM CPUUSB OTG

FMC/HDMIAXI Interconnect

VGA SD Card
32 GB

I2C Audio
Codec

AXI VDMA Segmentation
IP Core

AXI
Stream

AXI Stream

WebCam/
Keyboard/Mouse

Figure 10. Hardware-software co-design architecture.

Figure 11 shows an operating scenario where an image that is stored on the flash memory card
is written to RAM in software. The segmentation IP core reads (via DMA) this image, processes it
and then writes the output image (via DMA) to a different RAM segment. The software subsequently
displays the output via OpenCV library functions. The continuous video stream from a USB webcam
can be used as input in the similar fashion. For HDMI/FMC input/output, however, video capture
and display devices need to be connected to the respective peripheral channel. For experimentation,
the input/output frame size has been fixed at VGA resolution (640 × 480). The entire framework,
including the Simulink models, the Vivado project files for the HW-SW co-design, and software
routines are available for download as open-source code, to facilitate researchers and practitioners.J. Imaging 2018, 4, x FOR PEER REVIEW 14 of 18

Figure 11. Hardware–software co-design implemented on the Zedboard FPGA platform.

Figure 11 shows an operating scenario where an image that is stored on the flash memory card
is written to RAM in software. The segmentation IP core reads (via DMA) this image, processes it
and then writes the output image (via DMA) to a different RAM segment. The software subsequently
displays the output via OpenCV library functions. The continuous video stream from a USB webcam
can be used as input in the similar fashion. For HDMI/FMC input/output, however, video capture
and display devices need to be connected to the respective peripheral channel. For experimentation,
the input/output frame size has been fixed at VGA resolution (640 × 480). The entire framework,
including the Simulink models, the Vivado project files for the HW-SW co-design, and software
routines are available for download as open-source code, to facilitate researchers and practitioners.

4. Results

The proposed IP core for image segmentation, using the online K-Means algorithm, has been
synthesized, along with the entire HW-SW co-design, using Vivado 2016. The synthesis results have
been reproduced in Table 2, and compared with those for similar structures reported in the literature.

Hussain’s hardware [25] for bioinformatics applications also uses fixed eight clusters, but it does
not include the logic resources that are utilized by the interfaces in their final report. This design also
does not include the colorspace conversion modules. Thus, in comparison, our design delivers more
functionality for similar Look Up Table (LUT) resource consumption without utilizing any Block
Random Access Memory (BRAM) parts. Their design is heavily parallelized, and it runs at 126 MHz.
As a result, many more slice registers are consumed by the circuit. Furthermore, it requires on-chip
BRAM, as well as the external main memory, for complete operation. Similarly, Kutty’s architecture
[26] consumes a comparable number of logic resources, but even more registers and BRAM resources.
This design also achieves a high operating frequency of 400 MHz by heavily pipelining the circuit.
However, both of these designs require the external RAM for the cluster update feedback loop, as
discussed in Section 2. Thus, achieving higher clock rates for the hardware through pipelining
without the loop is meaningless, since the overall operation is much slower, due to the required
accesses to the main memory. This fact has been recognized by Raghavan et al. [27] as well, who have
described another hardware architecture for big-data applications. Cahnilho et al. [28] have only
reported the hardware resource utilization for the comparisons module, and not for the full
operation. Moreover, their design requires software intervention which prohibits its inclusion in an

Figure 11. Hardware–software co-design implemented on the Zedboard FPGA platform.

J. Imaging 2019, 5, 38 14 of 17

4. Results

The proposed IP core for image segmentation, using the online K-Means algorithm, has been
synthesized, along with the entire HW-SW co-design, using Vivado 2016. The synthesis results have
been reproduced in Table 2, and compared with those for similar structures reported in the literature.

Table 2. FPGA synthesis results.

Design FPGA Slice LUT Slice
Registers BRAM DSP Dynamic

Power

Hussain [25] Xilinx Virtex-IV 2208 3022 90 Kb - -
Kutty [26] Xilinx Virtex-VI 2110 8011 288 Kb 112 -
Raghavan [27] Xilinx Virtex-6 6916 14,132 - 88 -
Cahnilho [28] Xilinx Zynq-7000 1583 1016 36 Kb 7 -
Li [29] Xilinx Zynq-7000 178,185 208,152 5742 Kb 412 -

Proposed

Full IP Xilinx Zynq-7000 3402 2443 0 62 86 mW
AXI 458 538 0 0 4 mW
CSC 719 1014 0 14 7 mW

Clusters
Update 1643 876 0 48 72 mW

Comparisons 582 15 0 0 3 mW

Hussain’s hardware [25] for bioinformatics applications also uses fixed eight clusters, but it does
not include the logic resources that are utilized by the interfaces in their final report. This design
also does not include the colorspace conversion modules. Thus, in comparison, our design delivers
more functionality for similar Look Up Table (LUT) resource consumption without utilizing any
Block Random Access Memory (BRAM) parts. Their design is heavily parallelized, and it runs at 126
MHz. As a result, many more slice registers are consumed by the circuit. Furthermore, it requires
on-chip BRAM, as well as the external main memory, for complete operation. Similarly, Kutty’s
architecture [26] consumes a comparable number of logic resources, but even more registers and
BRAM resources. This design also achieves a high operating frequency of 400 MHz by heavily
pipelining the circuit. However, both of these designs require the external RAM for the cluster update
feedback loop, as discussed in Section 2. Thus, achieving higher clock rates for the hardware through
pipelining without the loop is meaningless, since the overall operation is much slower, due to the
required accesses to the main memory. This fact has been recognized by Raghavan et al. [27] as well,
who have described another hardware architecture for big-data applications. Cahnilho et al. [28] have
only reported the hardware resource utilization for the comparisons module, and not for the full
operation. Moreover, their design requires software intervention which prohibits its inclusion in an
image processing pipeline. Li’s design [29] is based on a map-reduce technique, which may be suitable
for big-data applications, but not for real-time image segmentation, since it requires an exorbitant
amount of logic and Digital Signal Processing (DSP) resources for its implementation.

Table 2 also gives the breakup of the logic resource utilization and the estimated dynamic power
consumption for the different constituent components in the proposed design. These values have been
noted from the Vivado power estimation tool after a place-and-route task for the FPGA bit-stream
generation. As expected, the clusters update module consumes the most resources, due to the presence
of the fixed-point arithmetic implementation using Equation (3), and the associated registers. It also
consumes the most dynamic power, i.e., 72 mW, due to these clocked registers. It should be noted,
however, that these estimated power numbers have limited accuracy, and their absolute values are
likely to be very different in practical scenarios. It should be noted that the colorspace conversion
modules take up to 21% of the share of the slice LUTs, and almost 40% of the registers. These modules
are synthesized via the built-in Simulink Vision HDL toolbox blocks.

In conclusion, the proposed hardware design is very well suited for real-time image segmentation,
since it requires minimal logic resources, and it does not depend on the external memory for complete
operation. As described earlier, and as is evident from Figure 10, the proposed design can be readily

J. Imaging 2019, 5, 38 15 of 17

inserted into any generic image processing pipeline as a stand-alone IP core. Despite using high-level
synthesis tool for its development, the developed core is efficient both in terms of resource utilization,
speed and power consumption. The final synthesized core is able to run at 55 MHz, which translates
to 59.7 fps and 26.5 fps for HD (1280 × 720) and Full HD (1920 × 1080) video resolutions respectively
while consuming only little power (≈86 mW). To accommodate this lower clock, the AXI interface
runs off a slower clock instead of the default 100 MHz system-wide clock. It may be reiterated that the
designs reported earlier in the literature do not use the immediate feedback loop in their calculation,
and hence, their mentioned speeds are not representative of the full-operation conditions. The low
values of estimated power consumption further affirm the suitability of the developed IP core for
low-power image processing pipelines.

In this paper, a fixed number of clusters, i.e., eight, was used to illustrate the design principle
with weighted average in place of moving average. The extension to a larger number of clusters
in powers of two is straightforward, given the modular nature of the design shown in Figure 8
(the comparisons module). The developed Simulink framework for the online K-Means clustering
algorithm can be extended to include the EM and GMM algorithms, with minimal effort in the future.
For this purpose, the online calculation of variance needs to be added, along with modifications to the
distance calculation modules.

Supplementary Materials: The described hardware accelerator IP core and the relevant Simulink models, as
well as the Vivado project for HW-SW co-design, are available for download at (https://sites.google.com/view/
4mbilal/home/rnd/image-segmentation).

Author Contributions: Conceptualization, M.B.; Methodology, M.B.; Software/Hardware, A.B.; Validation,
A.B. and M.B.; Formal Analysis, A.B.; Investigation, A.B. and M.B.; Resources, M.B.; Writing—Original Draft
Preparation, A.B.; Writing—Review & Editing, A.B. and M.B.; Supervision, M.B.; Project Administration, M.B.

Funding: This research received no external funding.

Acknowledgments: The authors would like to acknowledge the logistical support provided by Ubaid Muhsen
Al-Saggaf, the director of Center of Excellence in Intelligent Engineering System at King Abdulaziz University,
Jeddah, KSA.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. New Eyes for the IoT—[Opinion]. IEEE Spectr. 2018, 55, 24. [CrossRef]
2. Lubana, E.S.; Dick, R.P. Digital Foveation: An Energy-Aware Machine Vision Framework. IEEE Trans.

Comput. Aided Des. Integr. Circuits Syst. 2018, 37, 2371–2380. [CrossRef]
3. Seib, V.; Christ-Friedmann, S.; Thierfelder, S.; Paulus, D. Object class and instance recognition on RGB-D

data. In Proceedings of the Sixth International Conference on Machine Vision (ICMV 13), London, UK,
16–17 November 2013; p. 7.

4. Muslim, F.B.; Ma, L.; Roozmeh, M.; Lavagno, L. Efficient FPGA Implementation of OpenCL
High-Performance Computing Applications via High-Level Synthesis. IEEE Access 2017, 5, 2747–2762.
[CrossRef]

5. Hai, J.C.T.; Pun, O.C.; Haw, T.W. Accelerating video and image processing design for FPGA using HDL coder
and simulink. In Proceedings of the 2015 IEEE Conference on Sustainable Utilization and Development in
Engineering and Technology (CSUDET), Selangor, Malaysia, 15–17 October 2015; pp. 1–5.

6. Yuheng, S.; Hao, Y. Image Segmentation Algorithms Overview. arXiv, 2017; arXiv:1707.02051.
7. Cardoso, J.S.; Corte-Real, L. Toward a generic evaluation of image segmentation. IEEE Trans. Image Process.

2005, 14, 1773–1782. [CrossRef]
8. Pereyra, M.; McLaughlin, S. Fast Unsupervised Bayesian Image Segmentation with Adaptive Spatial

Regularisation. IEEE Trans. Image Process. 2017, 26, 2577–2587. [CrossRef]
9. Isa, N.A.M.; Salamah, S.A.; Ngah, U.K. Adaptive fuzzy moving K-means clustering algorithm for image

segmentation. IEEE Trans. Consum. Electron. 2009, 55, 2145–2153. [CrossRef]

https://sites.google.com/view/4mbilal/home/rnd/image-segmentation
https://sites.google.com/view/4mbilal/home/rnd/image-segmentation
http://dx.doi.org/10.1109/MSPEC.2018.8513777
http://dx.doi.org/10.1109/TCAD.2018.2858340
http://dx.doi.org/10.1109/ACCESS.2017.2671881
http://dx.doi.org/10.1109/TIP.2005.854491
http://dx.doi.org/10.1109/TIP.2017.2675165
http://dx.doi.org/10.1109/TCE.2009.5373781

J. Imaging 2019, 5, 38 16 of 17

10. Ghosh, N.; Agrawal, S.; Motwani, M. A Survey of Feature Extraction for Content-Based Image Retrieval
System. In Proceedings of the International Conference on Recent Advancement on Computer and
Communication, Bhopal, India, 26–27 May 2017; pp. 305–313.

11. Belongie, S.; Carson, C.; Greenspan, H.; Malik, J. Color- and texture-based image segmentation using EM
and its application to content-based image retrieval. In Proceedings of the Sixth International Conference on
Computer Vision (IEEE Cat. No. 98CH36271), Bombay, India, 7 January 1998; pp. 675–682.

12. Farid, M.S.; Lucenteforte, M.; Grangetto, M. DOST: A distributed object segmentation tool. Multimed. Tools
Appl. 2018, 77, 20839–20862. [CrossRef]

13. Carson, C.; Belongie, S.; Greenspan, H.; Malik, J. Blobworld: Image segmentation using
expectation-maximization and its application to image querying. IEEE Trans. Pattern Anal. Mach. Intell. 2002,
24, 1026–1038. [CrossRef]

14. Liang, J.; Guo, J.; Liu, X.; Lao, S. Fine-Grained Image Classification with Gaussian Mixture Layer. IEEE Access
2018, 6, 53356–53367. [CrossRef]

15. Dhanachandra, N.; Manglem, K.; Chanu, Y.J. Image Segmentation Using K-means Clustering Algorithm and
Subtractive Clustering Algorithm. Procedia Comput. Sci. 2015, 54, 764–771. [CrossRef]

16. Qureshi, M.N.; Ahamad, M.V. An Improved Method for Image Segmentation Using K-Means Clustering
with Neutrosophic Logic. Procedia Comput. Sci. 2018, 132, 534–540. [CrossRef]

17. Bahadure, N.B.; Ray, A.K.; Thethi, H.P. Performance analysis of image segmentation using watershed
algorithm, fuzzy C-means of clustering algorithm and Simulink design. In Proceedings of the 2016 3rd
International Conference on Computing for Sustainable Global Development (INDIACom), New Delhi,
India, 16–18 March 2016; pp. 1160–1164.

18. Martin, D.; Fowlkes, C.; Tal, D.; Malik, J. A database of human segmented natural images and its application
to evaluating segmentation algorithms and measuring ecological statistics. In Proceedings of the Eighth
IEEE International Conference on Computer Vision (ICCV 2001), Vancouver, BC, Canada, 7–14 July 2001;
Volume 412, pp. 416–423.

19. Benetti, M.; Gottardi, M.; Mayr, T.; Passerone, R. A Low-Power Vision System With Adaptive Background
Subtraction and Image Segmentation for Unusual Event Detection. IEEE Trans. Circuits Syst. I Regul. Pap.
2018, 65, 3842–3853. [CrossRef]

20. Liu, Z.; Zhuo, C.; Xu, X. Efficient segmentation method using quantised and non-linear CeNN for breast
tumour classification. Electron. Lett. 2018, 54, 737–738. [CrossRef]

21. Genovese, M.; Napoli, E. ASIC and FPGA Implementation of the Gaussian Mixture Model Algorithm for
Real-Time Segmentation of High Definition Video. IEEE Trans. Very Large Scale Integr. (VLSI) Syst. 2014, 22,
537–547. [CrossRef]

22. Liu, H.; Zhao, Y.; Xie, G. Image segmentation implementation based on FPGA and SVM. In Proceedings
of the 2017 3rd International Conference on Control, Automation and Robotics (ICCAR), Nagoya, Japan,
24–26 April 2017; pp. 405–409.

23. Liang, P.; Klein, D. Online EM for unsupervised models. In Proceedings of the Human Language
Technologies: The 2009 Annual Conference of the North American Chapter of the Association for
Computational Linguistics, Boulder, CO, USA, 1–3 June 2009; pp. 611–619.

24. Liberty, E.; Sriharsha, R.; Sviridenko, M. An Algorithm for Online K-Means Clustering. arXiv, 2014;
arXiv:1412.5721.

25. Hussain, H.M.; Benkrid, K.; Seker, H.; Erdogan, A.T. FPGA implementation of K-means algorithm for
bioinformatics application: An accelerated approach to clustering Microarray data. In Proceedings of the
2011 NASA/ESA Conference on Adaptive Hardware and Systems (AHS), San Diego, CA, USA, 6–9 June
2011; pp. 248–255.

26. Kutty, J.S.S.; Boussaid, F.; Amira, A. A high speed configurable FPGA architecture for K-mean clustering.
In Proceedings of the 2013 IEEE International Symposium on Circuits and Systems (ISCAS2013), Beijing,
China, 19–23 May 2013; pp. 1801–1804.

27. Raghavan, R.; Perera, D.G. A fast and scalable FPGA-based parallel processing architecture for K-means
clustering for big data analysis. In Proceedings of the 2017 IEEE Pacific Rim Conference on Communications,
Computers and Signal Processing (PACRIM), Victoria, BC, Canada, 21–23 August 2017; pp. 1–8.

http://dx.doi.org/10.1007/s11042-017-5546-4
http://dx.doi.org/10.1109/TPAMI.2002.1023800
http://dx.doi.org/10.1109/ACCESS.2018.2871621
http://dx.doi.org/10.1016/j.procs.2015.06.090
http://dx.doi.org/10.1016/j.procs.2018.05.006
http://dx.doi.org/10.1109/TCSI.2018.2857562
http://dx.doi.org/10.1049/el.2018.1213
http://dx.doi.org/10.1109/TVLSI.2013.2249295

J. Imaging 2019, 5, 38 17 of 17

28. Canilho, J.; Véstias, M.; Neto, H. Multi-core for K-means clustering on FPGA. In Proceedings of the 2016
26th International Conference on Field Programmable Logic and Applications (FPL), Lausanne, Switzerland,
29 August–2 September 2016; pp. 1–4.

29. Li, Z.; Jin, J.; Wang, L. High-performance K-means Implementation based on a Coarse-grained Map-Reduce
Architecture. CoRR 2016.

30. Khawaja, S.G.; Akram, M.U.; Khan, S.A.; Ajmal, A. A novel multiprocessor architecture for K-means
clustering algorithm based on network-on-chip. In Proceedings of the 2016 19th International Multi-Topic
Conference (INMIC), Islamabad, Pakistan, 5–6 December 2016; pp. 1–5.

31. Kumar, P.; Miklavcic, J.S. Analytical Study of Colour Spaces for Plant Pixel Detection. J. Imaging 2018, 4, 42.
[CrossRef]

32. Guo, D.; Ming, X. Color clustering and learning for image segmentation based on neural networks.
IEEE Trans. Neural Netw. 2005, 16, 925–936. [CrossRef]

33. Sawicki, D.J.; Miziolek, W. Human colour skin detection in CMYK colour space. IET Image Process. 2015, 9,
751–757. [CrossRef]

34. Wang, X.; Tang, Y.; Masnou, S.; Chen, L. A Global/Local Affinity Graph for Image Segmentation. IEEE Trans.
Image Process. 2015, 24, 1399–1411. [CrossRef]

35. Scharr, H.; Minervini, M.; French, A.P.; Klukas, C.; Kramer, D.M.; Liu, X.; Luengo, I.; Pape, J.-M.; Polder, G.;
Vukadinovic, D.; et al. Leaf segmentation in plant phenotyping: A collation study. Mach. Vis. Appl. 2016, 27,
585–606. [CrossRef]

36. Prasetyo, E.; Adityo, R.D.; Suciati, N.; Fatichah, C. Mango leaf image segmentation on HSV and YCbCr color
spaces using Otsu thresholding. In Proceedings of the 2017 3rd International Conference on Science and
Technology—Computer (ICST), Yogyakarta, Indonesia, 11–12 July 2017; pp. 99–103.

37. Shaik, K.B.; Ganesan, P.; Kalist, V.; Sathish, B.S.; Jenitha, J.M.M. Comparative Study of Skin Color Detection
and Segmentation in HSV and YCbCr Color Space. Procedia Comput. Sci. 2015, 57, 41–48. [CrossRef]

38. Sajid, H.; Cheung, S.S. Universal Multimode Background Subtraction. IEEE Trans. Image Process. 2017, 26,
3249–3260. [CrossRef]

39. Estlick, M.; Leeser, M.; Theiler, J.; Szymanski, J.J. Algorithmic transformations in the implementation of K-
means clustering on reconfigurable hardware. In Proceedings of the 2001 ACM/SIGDA Ninth International
Symposium on Field Programmable Gate Arrays, Monterey, CA, USA, 11–13 February 2001; pp. 103–110.

© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.3390/jimaging4020042
http://dx.doi.org/10.1109/TNN.2005.849822
http://dx.doi.org/10.1049/iet-ipr.2014.0859
http://dx.doi.org/10.1109/TIP.2015.2397313
http://dx.doi.org/10.1007/s00138-015-0737-3
http://dx.doi.org/10.1016/j.procs.2015.07.362
http://dx.doi.org/10.1109/TIP.2017.2695882
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	Background and Literature Review
	Online K-Means Clustering Hardware Design Using Simulink
	The Online K-Means Algorithm for Color-Based Image Segmentation
	Simulink Design Entry and High-Level Synthesis
	Comparisons Module
	Clusters Update Module

	Results
	References

