
Journal of

Imaging

Article

A JND-Based Pixel-Domain Algorithm and Hardware
Architecture for Perceptual Image Coding

Zhe Wang *, Trung-Hieu Tran , Ponnanna Kelettira Muthappa and Sven Simon

Institute of Parallel and Distributed Systems, University of Stuttgart, 70569 Stuttgart, Germany;
trung.hieu.tran@ipvs.uni-stuttgart.de (T.-H.T.); st152915@stud.uni-stuttgart.de (P.K.M.);
sven.simon@ipvs.uni-stuttgart.de (S.S.)
* Correspondence: zhe.wang@ipvs.uni-stuttgart.de; Tel.: +49-711-68588403

Received: 29 March 2019; Accepted: 16 April 2019; Published: 26 April 2019
����������
�������

Abstract: This paper presents a hardware efficient pixel-domain just-noticeable difference (JND)
model and its hardware architecture implemented on an FPGA. This JND model architecture is
further proposed to be part of a low complexity pixel-domain perceptual image coding architecture,
which is based on downsampling and predictive coding. The downsampling is performed adaptively
on the input image based on regions-of-interest (ROIs) identified by measuring the downsampling
distortions against the visibility thresholds given by the JND model. The coding error at any pixel
location can be guaranteed to be within the corresponding JND threshold in order to obtain excellent
visual quality. Experimental results show the improved accuracy of the proposed JND model in
estimating visual redundancies compared with classic JND models published earlier. Compression
experiments demonstrate improved rate-distortion performance and visual quality over JPEG-LS as
well as reduced compressed bit rates compared with other standard codecs such as JPEG 2000 at the
same peak signal-to-perceptible-noise ratio (PSPNR). FPGA synthesis results targeting a mid-range
device show very moderate hardware resource requirements and over 100 Megapixel/s throughput
of both the JND model and the perceptual encoder.

Keywords: just-noticeable difference (JND); luminance masking; contrast masking; texture detection;
perceptual coding; JPEG-LS; downsampling; FPGA

1. Introduction

Advances in sensor and display technologies have led to rapid growth in data bandwidth in
high-performance imaging systems. Compression is becoming imperative for such systems to address
the bandwidth issue in a cost-efficient way. Moreover, in many real-time applications, there is a growing
need for a compression algorithm to meet several competing requirements such as decent coding
efficiency, low complexity, low latency and high visual quality [1]. It has been realized that algorithms
specifically designed to meet such requirements could be desirable [2–4]. Compared with off-line
processing systems, the computational power and memory resources in real-time high-bandwidth
systems are much more limited due to the relatively tight constraints on latency, power dissipation
and cost, especially in embedded systems such as display panels for ultra high definition contents and
remote monitoring cameras with high temporal and spatial resolutions.

The use of existing transform-domain codecs such as JPEG 2000 and HEVC has been limited
in real-time high-bandwidth systems, since such codecs typically require storing multiple image
lines or frames. Especially when the spatial resolution of the image is high, the line or frame buffers
result in both expensive on-chip memories and non-negligible latency, which are disadvantages for a
cost-efficient hardware implementation of the codec, e.g., on FPGAs. While JPEG-LS is considered
to have created a reasonable balance between complexity and compression ratio for lossless coding,

J. Imaging 2019, 5, 50; doi:10.3390/jimaging5050050 www.mdpi.com/journal/jimaging

http://www.mdpi.com/journal/jimaging
http://www.mdpi.com
https://orcid.org/0000-0002-0699-4187
http://www.mdpi.com/2313-433X/5/5/50?type=check_update&version=1
http://dx.doi.org/10.3390/jimaging5050050
http://www.mdpi.com/journal/jimaging

J. Imaging 2019, 5, 50 2 of 29

its use in lossy coding is much less widespread due to the inferior coding efficiency compared with
transform-domain codecs and stripe-like artifacts in smooth image regions. It is desirable to investigate
the feasibility of a lightweight and hardware-friendly pixel-domain codec with improved compression
performance as well as significantly improved visual quality over that of the lossy JPEG-LS.

One possibility is to exploit the visual redundancy associated with properties of the human visual
system (HVS) in the pixel domain. Features and effects of the HVS can be modeled either in the pixel
domain or in the transform domain. While effects such as the Contrast Sensitivity Function (CSF) are
best described in the Fourier, DCT or Wavelet domain and hence can be exploited by compression
algorithms operating in these domains [5–7], other effects such as visual masking can be well modeled
in the pixel domain [8,9]. The term visual masking is used to describe the phenomenon that a stimulus
(such as an intensity difference in the pixel domain) is rendered invisible to the HVS by local image
activities nearby, hence allowing a coarser quantization for the input image without impacting the
visual quality. The masking effects of the HVS can be estimated by a visibility threshold measurement
model, which ideally provides a threshold level under which the difference between the original signal
and the target signal is invisible. Such a difference threshold is referred to as just-noticeable difference
(JND) [10]. Compression algorithms like JPEG-LS operating in the pixel domain can be adapted to
exploit the pixel-domain JND models, e.g., by setting the quantization step size adaptively based on
the JND thresholds. One problem with such a straightforward approach, however, is that the JND
thresholds must be made available to the decoder, incurring a relatively large overhead.

A classic pixel-domain JND model was proposed by Chou and Li [9]. This model serves as a basis
for various further JND models proposed in research work on perceptual image/video compression,
such as Yang et al.’s model [11] and Liu et al.’s model [12], which achieve improved accuracy in
estimating visual redundancies at the cost of higher complexity. A good review of JND models as well
as approaches to exploit JND models in perceptual image coding was given by Wu et al. [13].

In this work, a new region-adaptive pixel-domain JND model based on efficient local operations
is proposed for a more accurate detection of visibility thresholds compared with the classic JND
model [9] and for a reduced complexity compared with more recent ones [11,12]. A low complexity
pixel-domain perceptual image coder [14] is then used to exploit the visibility thresholds given by
the proposed JND model. The coding algorithm addresses both coding efficiency and visual quality
issues in conventional pixel-domain coders in a framework of adaptive downsampling guided by
perceptual regions-of-interest (ROIs) based on JND thresholds. In addition, hardware architecture for
both the proposed JND model and the perceptual encoder is presented. Experimental results including
hardware resource utilization of FPGA-based implementations show reasonable performance and
moderate hardware complexity for both the proposed JND model and the perceptual encoder. The
remainder of the paper is organized as follows. Section 2 reviews background and existing work
on pixel-domain JND modeling. The proposed JND model and its FPGA hardware architecture are
presented in Sections 3 and 4, respectively. Section 5 discusses the hardware architecture for the
JND-based perceptual image coding algorithm [14]. Experimental results based on standard test
images as well as FPGA synthesis results are presented in Section 6, which show the effectiveness of
both the proposed JND model and the perceptual encoder. Section 7 summarizes this work.

2. Background in Pixel-Domain JND Modeling

In 1995, Chou and Li proposed a pixel-domain JND model [9] based on experimental results
of psychophysical studies. Figure 1 illustrates Chou and Li’s model. For each pixel location, two
visual masking effects are considered, namely luminance masking and contrast masking, and visibility
thresholds due to such effects are estimated based on functions of local pixel intensity levels. The
two resulting quantities, luminance masking threshold LM and contrast masking threshold CM, are
then combined by an integration function into the final JND threshold. In Chou and Li’s model,
the integration takes the form of the MAX(·) function, i.e., the JND threshold is modeled as the

J. Imaging 2019, 5, 50 3 of 29

dominating effect between luminance masking and contrast masking. Basic algorithmic parts of JND
modeling described in the rest of this section are mainly based on Chou and Li’s model.

Image
LM

CM

JND
threshold

Luminance masking
estimation

Contrast masking
estimation

Integration

function: MAX()

Figure 1. Chou and Li’s pixel-domain just-noticeable difference (JND) model (1995).

2.1. Luminance Masking Estimation

The luminance masking effect is modeled in [9] based on the average grey level within a 5 × 5
window centered at the current pixel location, as depicted in Figure 2a. Let BL(i, j) denote the
background luminance at pixel location (i, j), with 0 ≤ i < H and 0 ≤ j < W for an image of size
W × H. Let B(m, n) be a 5 × 5 matrix of weighing factors (m, n = 0, 1, 2, 3, 4). As shown in Figure 2b,
a relatively larger weight (2) is given to the eight inner pixels surrounding the current pixel, since such
pixels have stronger influences on the average luminance at the current pixel location. The sum of all
weighting factors in matrix B is 32. While other weighting factors can be considered for evaluating the
average background luminance, the matrix B used in Chou and Li’s JND model [9] results in highly
efficient computation and has been used in many subsequent models (see, e.g., [11,12]). Further, let
p(i, j) denote the pixel grey level at (i, j). The average background luminance BL is then given by

BL(i, j) =
1

32

4

∑
m=0

4

∑
n=0

p (i− 2 + m, j− 2 + n) · B(m, n) (1)

Obviously, Equation (1) can be implemented in hardware by additions and shifts only. It can
be readily verified that 23 additions are required. Chou and Li examined the relationship between
the background luminance and distortion visibility due to luminance masking based on results
of subjective experiments [9,15], and concluded that the distortion visibility threshold decreases
in a nonlinear manner as the background luminance changes from completely dark to middle grey
(around 127 on an intensity scale from 0 to 255) and increases approximately linearly as the background
luminance changes from grey to completely bright. Specifically, a square root function is used in [9]
to approximate the visibility thresholds due to luminance masking for low background luminance
(below 127), whereas and a linear function was used for high background luminance (above 127):

LM(i, j) =

T0 ·
(

1−
√

BL(i, j)
127

)
+ 3, if BL(i, j) ≤ 127

γ · (BL(i, j)− 127) + 3, otherwise,
(2)

where T0 denotes the visibility threshold when the background luminance is 0 in the nonlinear region
when BL(i, j) ≤ 127, while γ is the slope of the growth of the visibility threshold in the linear region
when the background luminance is greater than 127. The values of parameters T0 and γ depend on the
specific application scenario, such as viewing conditions and properties of the display. Both T0 and γ

increase as the viewing distance increases, leading to higher visibility thresholds. Default values of
T0 = 17 and γ = 3

128 are used in [9], and these are also used for the JND model in this paper.

J. Imaging 2019, 5, 50 4 of 29

1 1 1 1 1

1 2 2 2 1

1 2 2 2 1

1 1 1 1 1

1 2 0 2 1

B
m

n

i
j

current pixel

p(i, j)

p(i+2, j-2)

p(i-2, j+2)p(i-2, j-2)

p(i+2, j+2)

0 1 4. . .

0
1
.
.
.

4

(a) (b)

Figure 2. Pixel window for JND estimation and weighing factors for the background luminance:
(a) JND estimation window of 5 × 5; and (b) weighing factor matrix B.

2.2. Contrast Masking Estimation

The contrast masking effect is modeled in [9] based on: (1) the background luminance at the
current pixel; and (2) luminance variations across the current pixel in the 5× 5 JND estimation window.
Luminance variations, e.g., due to edges are measured by four spatial operators, G1–G4, as depicted
in Figure 3. The result from an operator Gk is the weighted luminance intensity difference across the
current pixel in the direction corresponding to k, with k = 1, 2, 3, 4 for vertical, diagonal 135°, diagonal
45° and horizontal difference, respectively. The kth weighted luminance intensity difference IDk is
calculated by 2D correlation, and the maximum weighted luminance difference MG is obtained as:

IDk(i, j) =
1

16

4

∑
m=0

4

∑
n=0

p (i− 2 + m, j− 2 + n) · Gk(m, n) (3)

MG(i, j) = MAX
k=1,2,3,4

{|IDk(i, j)|} (4)

In Chou and Li’s model, for a fixed average background luminance, the visibility threshold due
to contrast masking is a linear function of MG (also called luminance edge height in [9]) by

CM(i, j) = α(i, j) ·MG(i, j) + β(i, j) (5)

Both the slope α and intercept β of such a linear function depend on the background luminance
BL. The relationship between α, β and BL was modeled by Chou and Li as

α(i, j) = BL(i, j) · 0.0001 + 0.115 (6)

β(i, j) = λ− BL(i, j) · 0.01 (7)

Parameter λ in Equation (7) depends on the viewing condition. The value of λ increases as the
viewing distance becomes larger, leading to higher visibility thresholds. A default value of λ = 0.5 is
used in [9].

0 0 0 0 0

1 3 8 3 1

-1 -3 -8 -3 -1

0 0 0 0 0

0 0 0 0 0

G1

0 0 1 0 0

0 8 3 0 0

0 0 -3 -8 0

0 0 -1 0 0

1 3 0 -3 -1

00100

08300

00-3-80

00-100

130-3-1

0-1010

0-3030

0-3030

0-1010

0-8080m

n

G2 G3 G4

Figure 3. Directional intensity difference measurement operators G1–G4.

2.3. Formulation of JND Threshold

In Chou and Li’s model, the final JND threshold is considered to be the dominating effect between
luminance masking and contrast masking:

JND(i, j) = MAX {LM(i, j), CM(i, j)} (8)

Since in real-world visual signals there often exist multiple masking effects simultaneously, such
as luminance masking and contrast masking, the integration of multiple masking effects into a final
visibility threshold for the HVS is a fundamental part of a JND model [11]. Contrary to Chou and
Li, who considered only the dominating effect among different masking effects, Yang et al. [11,16]

J. Imaging 2019, 5, 50 5 of 29

proposed that: (1) in terms of the visibility threshold, the combined effect T in the presence of multiple
masking effects T1, T2, ..., TN is greater than that of a single masking source Ti (i = 1, 2, ..., N); and
(2) the combined effect T can be modeled by a certain form of addition of individual masking effects,
whereas T is smaller than a simple linear summation of the individual effects Ti, i = 1, 2, ..., N, i.e.,

MAX{T1, T2, ..., TN} < T <
N

∑
i=1

Ti (9)

Yang et al. [11] further proposed that the right-hand side of the above inequality is due to the
overlapping of individual effects. A pair-wise overlap Oi, j is hence modeled for the combination of two
individual masking factors Ti, T j (i < j) by a nonlinear function γ(Ti, T j), weighted by an empirically
determined gain reduction coefficient Ci, j (0 < C < 1), i.e.,

Oi, j = Ci, j · γ(Ti, T j) (10)

The total overlap is modeled as the sum of overlaps between any pair of masking factors. The
combined visibility threshold is given by the difference between the sum of all thresholds due to
individual masking effects and the total overlap, called the nonlinear-additivity model for masking
(NAMM) [11]:

T =
N

∑
i=1

Ti −
N

∑
i=1

N

∑
j=i+1

Oi, j =
N

∑
i=1

Ti −
N

∑
i=1

N

∑
j=i+1

Ci, j · γ
(

Ti, T j
)

(11)

For simplicity and the compatibility with existing models including Chou and Li’s, in Yang et al.’s
model [11] the nonlinear function γ is approximated as the minimum function MIN(·), and only
luminance masking and contrast masking effects are considered. The result is therefore an
approximation of the general model given by Equation (11). In Yang et al.’s model, the final visibility
threshold at pixel location (i, j) in component θ (θ = Y, Cb, Cr) of the input image is a nonlinear
combination of the luminance masking threshold TL and an edge-weighted contrast masking threshold
TC

θ given by

JNDθ(i, j) = TL(i, j) + TC
θ (i, j)− CL,C

θ · MIN{TL(i, j), TC
θ (i, j)} (12)

Yang et al. selected default values of gain reduction coefficients as CL,C
Y = 0.3, CL,C

Cb = 0.25 and
CL,C

Cr = 0.2 based on subjective tests in [16]. The compatibility with Chou and Li’s model can be seen by
letting θ = Y and CL,C

Y = 1 in Equation (12), i.e., considering the luminance image only and assuming
maximum overlapping between the luminance and contrast masking effects.

3. Proposed JND Model

In the proposed JND model, each input pixel is assumed to belong to one of three basic types
of image regions: edge (e), texture (t) and smoothness (s). The weighting of the contrast masking
effect, as well as the combination of the basic luminance masking threshold (LM) and contrast masking
threshold (CM) into the final JND threshold, is dependent on the region type of the current pixel.
Figure 4 illustrates the proposed JND model, where We, Wt and Ws are factors used for weighting
the contrast masking effect in edge, texture and smooth regions, respectively. As shown in Figure 4,
to combine LM and weighted CM values, the MAX() function is used for edge and NAMM is used for
texture and smooth regions. Depending on the region type of a current pixel, the final output, i.e., JND
threshold for the current pixel, is selected from three candidates JNDe, JNDt and JNDs, corresponding
to the visibility threshold evaluated for the edge, texture and smooth region, respectively.

J. Imaging 2019, 5, 50 6 of 29

Input image

Region type for current pixel

We e

Luminance masking

estimation

Contrast masking

estimation

JNDe
MAX()

NAMM

JNDt /

JNDs

t
s

e

t/s

JND

LM
CMe

CMt / CMs

Region-based weighting

CM

Edge/Texture/Smooth

region detection

Wt

Ws

threshold

Figure 4. Block diagram of the proposed JND model.

The individual treatment of edge regions in a JND model was first proposed by Yang et al. [16].
Clear edges such as object boundaries are familiar to the human brain, since they typically have simple
structures and draw immediate attention from an observer. Hence, even a non-expert observer can be
considered as relatively “experienced” in viewing edge regions of an image. As a result, distortions,
e.g., due to lossy compression, are more easily identified at edges than in other regions with luminance
non-uniformity [11,17,18]. In Yang et al.’s work [11], visibility thresholds due to contrast masking
are reduced for edge regions (detected by the Canny operator) compared with non-edge regions.
Weighting factors of 0.1 and 1.0 are used for edge and non-edge pixels, respectively, such that edges
are preserved in a subsequent compression encoder exploiting the JND thresholds.

Textures, on the other hand, are intensity level variations usually occurring on surfaces, e.g., due
to non-smoothness of objects such as wood and bricks. Since textures have a rich variety and
generally exhibit a mixture of both regularity (e.g., repeated patterns) and randomness (e.g., noise-like
scatterings) [19], the structure of a texture is much more difficult to predict than that of an edge for
the human brain. Eckert and Bradley [18] indicated that about three times the quantization noise can
be hidden in a texture image compared with an image of simple edges with similar spectral contents.
To adequately estimate the contrast masking effects in texture regions, Liu et al. [12] proposed to
decompose the image into a textural component and a structural one. Both components are processed
independently for contrast masking in Liu et al’s model [12], with the masking effects computed for
the textural and structural components weighted by factors of 3 and 1, respectively. The masking
effects of both components are added up to obtain the final contrast making in Liu et al.’s JND model.

The main differences of our JND model to the works by Chou and Li [9], Yang et al. [11] and
Liu et al. [12] are: (1) marking pixels in an input image as edge, texture or smooth regions, instead
of decomposing the image into multiple components processed separately; (2) combination of LM
and CM into the final JND threshold using the maximum operator for edge regions and NAMM [11]
for non-edge regions; (3) alternative weighting of the contrast masking effect compared with [11,12];
and (4) less complex edge and texture detection schemes more suitable for FPGA implementation
compared with [11,12]. The following subsections provide details on our JND model.

3.1. Edge and Texture Detection

Each input pixel is assigned one out of three possible regions in the input image, i.e., edge, texture
and smoothness. Different regions are detected by lightweight local operations such as 2D filtering,
which can be implemented efficiently on FPGAs (see Section 4). Figure 5 illustrates the detection
scheme, where the input is the original image while the outputs are three binary maps corresponding
to edge, texture and smooth regions, respectively. Edges are detected by the Sobel operator [20]
which uses two 3× 3 kernels. It is well known that the Sobel operator requires less computation
and memory compared with the Canny operator [21], which is used in the JND models in [11,12].
To reduce the impact of noise in the input image, Gaussian low-pass filtering is performed prior to
edge detection. A two-dimensional 3× 5 Gaussian kernel with standard deviation σ = 0.83 is used
by default in the proposed JND model. The vertical size of the Gaussian kernel is chosen as 3 for a
low memory requirement as well as a low latency of an FPGA implementation. For computational

J. Imaging 2019, 5, 50 7 of 29

efficiency, an integer approximation of the Gaussian kernel discussed in Section 6.1 is used, which can
be implemented efficiently by shifts and additions. Figure 6 presents edges detected in different JND
models for the BARB test image. Edges obtained by the proposed lightweight scheme (i.e., Gaussian
smoothing followed by Sobel) are depicted in Figure 6b. The four panels in the middle and right
columns of Figure 6 show outputs of the Canny edge detector in Yang et al.’s model [11] with sensitivity
thresholds of 0.5 (default [11], middle panels) and 0.25 (right panels). Morphological operations have
been used in Yang et al.’s software implementation [22] of their JND model to expand the edges given
by the original Canny operator (see Figure 6d,f). Such operations result in bigger regions around the
edges having reduced visibility thresholds to protect edge structures.

Edge

High
contrast

Texture

Input image

Smoothness

activity

Gaussian
smoothing

Sobel edge
detection

Local contrast
estimation

Contrast activity
detection

Figure 5. Edge, texture and smooth region detection scheme.

(a)

(b)

(c)

(d)

(e)

(f)

Figure 6. Edges (black) obtained in the proposed and Yang et al.’s JND model: (a) original BARB
image; (b) edges detected by the proposed scheme with default edge-magnitude threshold 11;
(c) output of original Canny with edge sensitivity threshold 0.5 (default in [11]); (d) actual edge regions
from Yang et al.’s implementation [22] with threshold 0.5; (e) original Canny with edge sensitivity
threshold 0.25; and (f) actual edge regions from Yang et al.’s implementation [22] with edge sensitivity
threshold 0.25.

Many of the well-known texture analysis techniques (e.g., [23]) focus on distinguishing between
different types of textures. While such techniques achieve promising results for image segmentation,
they typically require larger blocks and computationally-intensive statistical analysis such as
multi-dimensional histograms, and their complexity/performance trade-offs are not well-suited for
JND modeling especially in resource-constrained scenarios. As discussed earlier, a desirable property
of a JND model is to distinguish textures as opposed to structural edges and smooth regions, and a
reasonable complexity/quality trade-off is an advantage especially for FPGA applications. Even if
some texture regions were not picked up by a lightweight texture detection scheme compared with a
sophisticated one, the visibility thresholds in such regions computed by the JND model would still be

J. Imaging 2019, 5, 50 8 of 29

valid, e.g., for a visually lossless compression of the input image, since weighting factors for contrast
masking are generally smaller in non-texture regions than in texture ones. For the reasons above, a low
complexity local operator is used for texture detection in our JND model.

The proposed texture detection scheme works as follows. Firstly, a local contrast value is calculated
for every pixel location. Figure 7a shows a 3× 3 neighborhood for evaluating the local contrast, where
p0 is the intensity value at the current pixel location and p1–p8 are intensity values of the eight
immediate neighbors of p0. Let µ be the average of all intensity values in the 3 × 3 neighborhood.
Then, the local contrast C can be measured for the current pixel location in terms of mean absolute
deviation (MAD):

CMAD =
1
9

8

∑
i=0
|pi − µ| , where µ =

1
9

8

∑
j=0

pj (13)

Obviously, CMAD is invariant to image rotation and intensity-level shifts. In an implementation,
e.g., based on FPGA, the divisions in Equation (13) can be avoided since such divisions can be canceled
by multiplications on both sides of the equation. A division-free implementation of the local contrast
calculation equivalent to that in Equation (13) is used in the proposed hardware architecture for the
JND model, as discussed in Section 4.4.2.

Next, the total contrast activity in the neighborhood is estimated based on local contrasts. Figure 7b
presents an example of computed local contrasts, the thresholding of such local contrasts into a contrast
significance map, the computation of a contrast activity value and finally the derivation of a binary
high-contrast-activity decision. Let Ci be the local contrast at pixel location i in the 3× 3 neighborhood
centered about the current pixel. Then, contrast significance si is given by

si =

{
1, if Ci ≥ TC

0, otherwise,
(14)

where TC is a threshold for local contrast. A higher value of TC corresponds to a smaller number of
local contrasts detected as significant. In this paper, TC = 8 is used. Contrast activity CA at the current
pixel location is estimated as the total number of significant local contrasts in the 3× 3 neighborhood:

CA =
8

∑
i=0

si (15)

The presence of a texture is typically characterized by a high contrast activity (HA):

HA =

{
1, if CA ≥ TA

0, otherwise,
(16)

where TA is a threshold for contrast activity. A lower value of TA corresponds to a higher sensitivity to
local contrast activities. In this paper, TA = 5 is used. Figure 8a plots the contrast activities computed
for the BARB image (cf. Figure 6a). The HA map after thresholding is shown in Figure 8b.

p1 p2 p3

p6 p7 p8

p4 p0 p5

local contrasts

TC = 8

contrast significance contrast activity

CA = 6
TA = 5

HA = 1

high contrast activity

(a) (b)

s1 s2 s3

s6 s7 s8

s4 s0 s5

0 0 1

1 1 0

1 1 1
sΣ

current pixel

3 4 15

12 8 7

8 9 10
C1 C2 C3

C6 C7 C8

C4 C0 C5

Figure 7. Illustration of contrast activity detection: (a) neighborhood for local contrast estimation; and
(b) example of local contrasts, contrast significance and derivation of the high-contrast-activity decision.

Finally, denoting the binary output of the edge detector by E, a pixel is considered to be in a
texture region (T) if it has a high contrast activity and is not an edge, as indicated in Figure 5:

J. Imaging 2019, 5, 50 9 of 29

T = HA ∧ E (17)

and a pixel is considered to be in a smooth region (S) if it is neither an edge nor a texture:

S = E ∧ T (18)

The final edge, texture and smooth regions obtained for the BARB image are depicted in
Figure 8c. While it is possible to achieve a better separation of the image into different regions using
more sophisticated texture analysis and segmentation algorithms such as in Liu et al.’s model [12],
the proposed lightweight edge and texture detection scheme has achieved quite reasonable results,
as shown in Figure 8c, which provides a firm basis for a region-based weighting of contrast masking
discussed in the next subsection. Comparisons of different JND models are given in Sections 6.2 and 6.3.

(a) (b) (c)

Edge

Texture

Smooth

Figure 8. Texture information of the BARB image in the proposed scheme; (a) visualization of contrast
activity (treated as grey values and multiplied by 20 for visibility); (b) high contrast activity (black)
regions after thresholding with TA = 5; and (c) final edge, texture and smooth regions.

3.2. Region-Based Weighting of Visibility Thresholds due to Contrast Masking

In the proposed JND model, each basic contrast masking threshold estimated using Equation (5)
is multiplied by a weighting factor based on the region in which the current pixel is located. Let We,
Wt and Ws be the weighting factors for edge (e), texture (t) and smooth (s) regions, respectively. Then,
the adaptively weighted contrast masking effect CMκ is given by

CMκ(i, j) = Wκ · CM(i, j), κ = {e, t, s} (19)

where κ denotes the region type of the current pixel. In Yang et al.’s JND model [11], a weighting
factor equivalent to We = 0.1 is used to preserve visual quality in edge regions, while in Liu et al.’s
JND model [12] a weighting factor equivalent to Wt = 3 is used to avoid underestimating visibility
thresholds in texture regions. From Equation (19), it is obvious that larger values of We, Wt and Ws

correspond to larger results for the contrast masking effects (and hence the final JND thresholds) in
edge, texture and smooth regions, respectively. Values for weighting factors We, Wt and Ws may vary,
for example depending on different viewing conditions and applications. Based on our experiments as
well as for reasons discussed in the following subsection, values for the weighting factors are selected
as We = 1, Wt = 1.75 and Ws = 1 in this work as default for the proposed JND model for normal
viewing conditions and general purpose test images. More details about the test images and viewing
conditions in our experiments are provided in Section 6.2.

3.3. Final JND Threshold

In the proposed JND model, the luminance masking and weighted contrast masking effects are
combined using the NAMM model in texture (t) and smooth (s) regions, whereas, in edge (e) regions,
the masking effects are combined using the maximum operator MAX(·), as shown in Equation (20).

JND(i, j) =

{
LM(i, j) + CMκ(i, j)− CL,C

Y · MIN{LM(i, j), CMκ(i, j)}, if κ = {t, s}
MAX{LM(i, j), CMe(i, j)}, otherwise.

(20)

J. Imaging 2019, 5, 50 10 of 29

The individual treatment of edge regions is based on the similarity between simple edge regions
and scenarios in classical psychophysical experiments to determine distortion visibility thresholds
in the presence of luminance edges, where simple edges are studied under different background
luminance conditions [8]. Hence, for well-defined edges, the visibility thresholds modeled by Chou
and Li based on such experiments should be considered as suitable. For the same reason, we selected
We = 1.

4. Hardware Architecture for the Proposed JND Model

4.1. Overview of Proposed JND Hardware Architecture

Figure 9 depicts the overall hardware architecture of proposed JND estimation core implemented
on FPGA. The core includes four main parts (names of functional modules of the architecture are
indicated in italics): Luminance Masking Function, Contrast Masking Function, Edge-texture-smooth
Function, and JND Calculation Function. The streaming input pixel (p(i, j)) is first buffered in row
buffers which are needed for the filtering operations applied in our JND model. From the row
buffers, pixels are grouped as a column of 3 pixels ({p(i, j)}1) or a column of 5 pixels ({p(i, j)}2).
The 3-pixel column is sent to the Edge-texture-smooth Function, while the 5-pixel column is sent to
both Luminance Masking Function and Contrast Masking Function. From these three functions, region
mask Mec(i, j), luminance masking threshold LM(i, j) and contrast masking threshold CM(i, j) are
calculated, respectively. The JND Calculation Function combines these masks together and generates
the final JND value (JND(i, j)) for each pixel in the input image.

Contrast
Significance

High Contrast
Activity

Sobel Edge
Detection

Low-Pass
Filter

Max
Gradient

Contrast
Mask

Background
Luminance

Luminance
Mask

Luminance Masking Function

RW

row buffer

(output jnd)

(input image)

NAMM

MAX
row buffer

row buffer

row buffer

row buffer

row buffer

row buffer

row buffer

Contrast Masking Function

Edge-texture-smooth Function

JND Calculation Function

Figure 9. Overall architecture of the proposed JND model.

4.1.1. Row Buffer

The proposed JND architecture employs a common row buffer design [24], which includes
registers for the current row pixel and several FIFOs for previous row pixels. Suppose r is the vertical
window radius of a filter kernel, the number of required FIFOs for this design is 2 · r− 1. The row
buffers are needed before every filtering operation. In our implementation, there are three places
where row buffers are deployed: after the input, before the calculation of high contrast activity and
after low-pass filtering. The latter two row buffers are for r = 1 and the first row buffer is for r = 1 and
r = 2.

As shown in Figure 9, the rightmost row buffers contain four FIFOs to support a filter kernel
with a maximum size of 5 (r = 2). The output of the row buffer forms a pixel-array denoted as
{p(i, j)}2 (see Equation (21)) which is fed to Background Luminance module and Max Gradient module
where 5 × 5 filter kernels are applied. A subset of this row buffer output, {p(i, j)}1, is sent to
Low-Pass Filter module and Contrast Significance module which consist of 3× 5 and 3× 3 kernel filtering
operations, respectively.

{p(i, j)}r = {p(i− r, j), p(i− r + 1, j), ..., p(i + r− 1, j), p(i + r, j)} (21)

J. Imaging 2019, 5, 50 11 of 29

4.1.2. Pipelined Weighted-Sum Module

For filtering operations, which are employed in several parts of proposed JND model, a common
design to perform weighted-sum is introduced, as illustrated in Figure 10. The block representation of
a Pipelined Weighted-Sum (PWS) module is depicted in Figure 10a. The input to this module is an array
of column pixel denoted as {p(i, j)}rm

, and the output is a weighted-sum value calculated as

p̂(i, j) = ws ·
(

2·rm−1

∑
m=0

2·rn−1

∑
n=0

(
wmn · p(i + m− rm, j + n− rn)

))
. (22)

(a)

+

++

+

(b)

Figure 10. Pipelined Weighted-Sum (PWS) module. (a) Block representation. (b) PWS for 3 × 3 kernel.
Dotted lines indicate possible pipeline cuts. The ??? operator indicates customized shift-based multiplier.

The PWS module is parameterized as a function F(K, ws, rm, rn), where K is a 2D array of
coefficients, ws is an output scaling factor, and rm, rn are vertical and horizontal kernel window
radius, respectively. Figure 10b presents a zoom-in sample design for F(K, ws, 1, 1) with K defined as

K =

w00 w01 w02

w10 w11 w12

w20 w21 w22

 (23)

The operator denoted as ??? is a Customized Shift-based Multiplier (CSM), which generally consists
of sum and shift operators. The actual content of this operator will be defined according to the
value of a given coefficient. For example, considering the coefficient −3 in kernel G1 (see Figure 3),
the multiplication of this coefficient with a pixel value p can be rewritten as: −3 · p = −(p << 1 + p),
which now consists of one left shift operator, one adder and one sign-change operator. Since all the
coefficients are known, this customized multiplier strategy allows us to optimize for both timing and
hardware resource.

4.2. Luminance Masking Function

As discussed in Section 2.1, the calculation of the luminance masking threshold (LM) includes two
steps. The first step is finding the background luminance (BL), which can be realized by a PWS module
F(B, 1

32 , 2, 2). The second step is calculating LM based on the value of BL. Since the value of BL
belongs to the same range as of input pixel value, which is an 8-bit integer in our implementation, the
latter step can be simply realized as a look-up operation (see Figure 11). The LM ROM is implemented
by Block RAM and has 256 entries, each with 5 + σ bits where 5 and σ are implicitly the number of
bits for integer part and fractional part of LM, respectively. The output of this function is indeed 2σ

larger than the actual value of LM (L̂M(i, j) = 2σ · LM(i, j)). The scaling factor 2σ is discussed further
in Section 4.3.

J. Imaging 2019, 5, 50 12 of 29

LM
ROM

Background Luminance

Luminance Mask

Figure 11. Luminance masking function.

4.3. Contrast Masking Function

Contrast masking function consists of two modules: the first module (Max Gradient) calculates
MG based on input pixels from the row buffer. The second module (Contrast Mask) computes CM
from MG and BL, which is the output of Background Luminance module (see Figure 12). For each of the
directional gradient operations (Gi, i = 1, 2, 3, 4), PWS module is deployed with output scaling factor
ws =

1
16 and the two radii are set to 2. Absolute values of these modules’ outputs are then calculated,

by Abs functions, and compared to each other to find the maximum value (MG). The absolute function
can be simply realized by a multiplexer with select signal being the most significant bit of the input.

Abs

MAX
Abs

Abs

Abs
Max Gradient Contrast Mask

x
+

+
+

Figure 12. Contrast masking function.

The contrast masking threshold (CM) is calculated for each pixel location based on the value
of MG and BL. This calculation requires multiplications by several real numbers which cannot
be accurately converted to shift-based operators. To keep the implementation resource-efficient,
without using floating point operations, a fixed-point based approximation strategy is proposed as in
Equation (24). A scaling factor 2σ is applied to the overall approximation of the given real numbers for
providing more accuracy adjustment.

ω0 = 2σ ·
(
2−14 + 2−15 + 2−17) ≈ 2σ · 0.0001

ω1 = 2σ ·
(
2−3 − 2−7 − 2−9) ≈ 2σ · 0.115

ω2 = 2σ ·
(
2−7 + 2−9) ≈ 2σ · 0.01

λ̂ = 2σ · 2−1 (24)

With the above approximations, Equations (5)–(7) are then rewritten as Equation (25) and
implemented as Contrast Mask module shown in Figure 12. In this implementation, σ is empirically set
to 5, since it provides a reasonable trade-off between accuracy and resource consumption.

ĈM(i, j) = BL(i, j) ·MG(i, j) ·ω0 + MG(i, j) ·ω1 + λ̂− BL(i, j) ·ω2 (25)

4.4. Edge-Texture-Smooth Function

This function consists of two separate modules: Edge Detection and High Contrast Activity which,
respectively, mark pixel location belonging to edge region and high contrast activity region. These
modules receive the same 3-pixel column as an input and output a binary value for each pixel
location. The output of Edge Detection module (Me(i, j)) and High Contrast Activity module (Mc(i, j))
are combined into a two-bit signal (Mec(i, j)), which has Me(i, j) as the most significant bit (MSb) and
Mc(i, j) as the least significant bit (LSb). Mec(i, j) is then used as the select signal for multiplexers in
JND Calculation Function. The following subsections discuss each of these modules in detail.

J. Imaging 2019, 5, 50 13 of 29

4.4.1. Edge Detection

The edge detection algorithm applied in the proposed JND model requires three filtering
operations: one for Gaussian filtering and the other two for finding the Sobel gradients in horizontal
and vertical directions. These filters are realized by PWS modules, as depicted in Figure 13a,b.
The coefficient array G can be found in Section 6.1, and the kernels Sx, Sy are as follows:

Sx =

−1 0 1
−2 0 2
−1 0 1

 Sy =

−1 −2 −1
0 0 0
1 2 1

 (26)

Low-pass filter

(a)

Abs
+

Sobel Edge Thresholding

Abs

(b)

Figure 13. Edge detection module: (a) low-pass filter; and (b) Sobel edge thresholding module.

4.4.2. High Contrast Activity

To detect high contrast activity regions, the contrast significance CS needs to be calculated for
each pixel location. The proposed architecture for this task is illustrated in Figure 14. Considering
Equation (13), two divisions by 9 are required for finding CMAD. This can actually introduce some
errors to the implementation using fixed-point dividers. Therefore, the following modification is done
to find CS:

ĈMAD =
8

∑
j=0

∣∣9 · pj + µ̂
∣∣ , where µ̂ = −

8

∑
j=0

pj (27)

It is obvious that the value of ĈMAD is 81 times as large as CMAD. Therefore, instead of comparing
CMAD to the threshold TC as in Equation (14), the modified ĈMAD is now compared to the new threshold
Thc = 81 · TC. This strategy indeed requires extra hardware resources if TC is not implemented as a
constant but can guarantee the accuracy of CS without using floating-point operation.

+ Abs

f

High Contrast Activity

+

+
+

+

+
+

f f
f

f f
f

+

+f f
f

Contrast Significance

Figure 14. High-contrast activity module: (Left) contrast significance estimation module; (Top-right)
function f ; and (Bottom-right) high contrast activity thresholding module.

Considering the implementation of Contrast Significance module depicted in Figure 14, the input
3-pixel column is registered four times: the first three register columns are for calculating µ̂ and the
last three register columns are for calculating ĈMAD. There is one clock cycle delay between these two
calculations, which is resolved by inserting a register, as shown in the bottom-left side of the module.

J. Imaging 2019, 5, 50 14 of 29

4.5. JND Calculation Function

Figure 15 presents the implementation of Equations (19) and (20), which calculate the final value
of JND based on the contrast masking threshold (ĈM), the luminance masking threshold (L̂M) and
the region mask (Mec). The Region-based Weighting module (RW) applies a weighting factor to the
incoming contrast mask. The weighting factors, which depend on the region type for the current pixel,
are We = 1, Wt = 1.75 and Ws = 1 for edge, texture and smooth regions, respectively. The texture
weight can be rewritten as Wt = 21 − 2−2, which results in two shift operations and one adder in our
customized shift-based multiplier. The other two weights can be simply realized as wires connecting
the input and the output. The region mask is used as the select signal of a multiplexer in order to
choose correct weighted value for the next calculation phase.

11

10

01

00

MAX

MIN

+
+

11

10

01

00

NAMM

RW

Figure 15. JND calculation function.

In the next calculation phase, the weighted contrast masking threshold (ĈMκ) is fed to the
MAX module and NAMM module, which compute the JND value for the edge region and non-edge
regions, respectively. For the CSM module in NAMM, an approximation is done for CL,C

Y , as shown in
Equation (28). The final value of JND is then computed by removing the scaling factor 2σ applied to
the input contrast masking and luminance masking thresholds.

ĈL,C
Y = 2−2 + 2−5 + 2−6 + 2−8 ≈ 0.3 (28)

5. JND-Based Pixel-Domain Perceptual Image Coding Hardware Architecture

A low complexity pixel-domain perceptual image coding algorithm based on JND modeling
has been proposed in our earlier work [14]. Its principle is briefly described in what follows,
before addressing architectural aspects. The perceptual coding algorithm is based on predictive
coding of either the downsampled pixel value or the original pixels according to the encoder’s decision
about whether the downsampled pixel is sufficient to represent the corresponding original pixels at
visually lossless (or at least visually optimized in the case of suprathreshold coding) quality. Figure 16
illustrates the algorithm of the perceptual encoder. The Visual ROI determination block compares
local distortions due to downsampling against the distortion visibility thresholds at corresponding
pixel locations given by the pixel-domain JND model. If any downsampling distortion crosses the
JND threshold, the current downsampling proximity (a 2 × 2 block in [14]) is considered to be a
region-of-interest, and all pixels therein are encoded. In non-ROI blocks, only the downsampled mean
value is encoded. In both cases, the encoder ensures that the difference from a decoded pixel to the
original pixel does not exceed the corresponding JND threshold, fulfilling a necessary condition on
visually lossless coding from the perspective of the JND model. The predictive coder exploits existing
low complexity algorithmic tools from JPEG-LS [25] such as pixel prediction, context modeling and
limited-length Golomb coding but uses a novel scan order so that coherent context modeling for
ROI and non-ROI pixels is possible. The ROI information and the predictive coder’s outputs are
combined to form the output bitstream. More detailed information on the coding algorithm can be
found in [14]. The remainder of this section provides information on the hardware architecture for
such a perceptual encoder.

J. Imaging 2019, 5, 50 15 of 29

PERCEPTUAL

IMAGE ENCODER

JND model
Visual ROI

determination

Visibility
thresholds isROI ?

Difference

measurement

Predictive
coding

Output

bitstream

1
0Downsampling

Mean pixel value Pm

. . .

..

. .

...

P1 , P2 , P3 , P4
Pm

2×2 block

isROI ?
MUX

P1 , P2 , P3 , P4

JND1 , JND2 ,
JND3 , JND4

D1 , D2 ,

D3 , D4

Input
image

P1

P3

P2

P4

Figure 16. JND-based pixel-domain perceptual image coding algorithm proposed in [14].

5.1. Top-Level Architecture of the JND-Based Pixel-Domain Perceptual Encoder

The overall proposed architecture for the perceptual encoder is depicted in Figure 17. On the top
level, apart from the JND module discussed in Section 4, the proposed encoder architecture can be
divided into two main parts: an Encoder front end module and a Predictive coding module. As shown in
Figure 17, pixels encoded by the predictive coding path are provided by the Encoder front end, which
performs the following tasks:

• Generate the skewed pixel processing order described in [14].
• Downsample the current 2× 2 input block.
• Determine whether the current input 2× 2 block is an ROI based on the JND thresholds.
• Select the pixel to be encoded by the predictive coding path based on the ROI status.

For clarity, the JND module, as well as the delay element for synchronizing the JND module
outputs with the input pixel stream for the encoder, is omitted from the discussions on the encoder
architecture in the rest of the paper. In addition, since existing works (e.g., [26]) have well covered
architectural aspects of fundamental pixel-domain predictive coding algorithms such as JPEG-LS,
the following discussion focuses mainly on the aspects of the proposed encoder architecture that
enable the skewed pixel processing, the JND-based adaptive downsampling and the ROI-based pixel
selection [14].

ROI decision

Pixel processing

order conversion

Input
pixel

JND threshold

estimation

Downsampling

Symbol mapping
Prediction &

context modeling

JND MODELING

Coding parameter

estimation

ROI-based pixel

selection

Golomb-Rice

coding

ROI

Codeword
stream

MUX

Output
bitstream

pixel-to-encode

ENCODER FRONT END

PREDICTIVE CODING

Figure 17. Overview of the proposed JND-based perceptual encoder architecture.

5.2. Input Scan Order vs. Pixel Processing Order

The raster scan order represents a common sequence in which pixels in an image are produced
or visited, for example at the output interface of a sensor or at the input interface of an encoder.
The encoder architecture in this paper assumes that pixels of an input image are streamed sequentially
into the encoder in a raster scan order, with the source of the input image being arbitrary, such as a

J. Imaging 2019, 5, 50 16 of 29

camera sensor, e.g., when the encoder is directly connected to the sensor to compress raw pixels, or an
external memory, e.g., when the whole image needs to be temporarily buffered for denoising before
compression. Inside the encoder, pixels do not have to be processed in the same order as they have
been received. Figure 18 shows an example in which the input pixels are received in a raster scan order
whereas the actual encoding of the pixels follows a skewed scan order [14]. Obviously, internal pixel
buffers such as block RAMs on FPGAs are required, if an encoder’s internal pixel processing order
differs from its input pixel scan order. An architecture for implementing the skewed pixel processing
order is presented in Section 5.4.

Encoder

interface

Past input

Encoded

Unencoded, buffered

Future input

Input Internal processing

Figure 18. Input pixel scan order (raster scan) vs. internal pixel processing order (skewed scan [14]).

5.3. Encoder Front End

A high-level architecture for the Encoder front end is presented in Figure 19. Input pixel buffering
and skewed pixel output are performed in the Pixel processing order conversion module, which is
composed mainly of shift registers and FIFOs as row buffers. When enough pixels are buffered so that
the skewed processing can be started, pixels from the same columns in a pair of rows (called an upper
row and a lower row in this paper) are outputted by the row buffers. After a full 2× 2 pixel block is
stored in the Downsampling window, the mean value of the block is computed by the Downsampling
module. A Lower row delay block is used to delay the output of pixels on the lower row, as required
by the skewed scan order. Figure 19 shows that all four original pixels in the Downsampling window
and the output of the Downsampling module are sent to the ROI decision module, as well as the JND
thresholds. Depending on whether the current 2× 2 block is an ROI, either an original pixel or the
downsampled mean value is adaptively selected by the ROI-based pixel selection module and forwarded
to the predictive coding path. Different components of the encoder front end are connected by pipeline
registers and their operation is controlled by a state machine. More details and architectural aspects of
this module are examined in the following subsections.

Row

buffers

Downsampling
window

Lower row

delay

Downsampling

ROI

decision

State machine

ROI

ROI-based

pixel

selection
pixel-to-
encode

Input
pixel

JND
thresholds

PIXEL PROCESSING ORDER CONVERSION

Figure 19. Encoder front end module.

5.4. Pixel Processing Order Conversion

The architecture of the Pixel processing order conversion module is shown in Figure 20. At the
input side, pixels of the input image arrive sequentially (i.e., streaming scenario), as indicated in the
waveform in the top-left side of Figure 20. According to the skewed scan order (cf. Figure 18), pixels
in a pair of rows shall be interleaved with a delay in the lower row. As depicted in Figure 20, two

J. Imaging 2019, 5, 50 17 of 29

different row buffers (dual-port RAMs) are used to store input pixels depending on the current row
index. The modulo-2 operation on the row_index signal is implemented by taking the least significant
bit (LSb) of row_index. The conversion process is as follows. Firstly, all pixels in an upper row (e.g.,
first row of the input image) are stored in the Upper row buffer. Next, pixels in a lower row (e.g., second
row of the image) begin to be received and stored in the Lower row buffer. As long as neither row buffer
is empty, both buffers are read simultaneously every two clock cycles, as illustrated in the waveform in
the top-right side of Figure 20. Outputs of both row buffers are then fed into the Downsampling window
consisting of two two-stage shift registers. Downsampling as well as ROI detection is performed once
all 4 pixels of a 2× 2 block are in the Downsampling window. Finally, by inserting an offset into the data
path for the lower row pixels using the Lower row delay block, the skewed scan order [14] is obtained at
the output of the Pixel processing order conversion module. The two output pixel values from the upper
and lower rows are denoted as pU and pL, respectively. Both pU and pL are candidates for the final
pixel to be encoded, which is determined later by the ROI-based pixel selection module.

row_index

input pixel

LSb

0

1

clk

Lower row buffer

Upper row buffer
CE

CE

DO

DO

DI

DI pL

pU

PIXEL PROCESSING ORDER CONVERSION

clk

input pixel/DI

CE

DO (upper row)

clk

DO (lower row)

Downsampling
window Lower row delay

Figure 20. Pixel processing order conversion module.

5.5. Downsampling and ROI Decision

The architecture of the Downsampling and ROI decision modules is presented in Figure 21.
Let p1, p2, p3, p4 be the four pixels of a 2 × 2 block in the downsampling window and pm be the
downsampled mean value. The Downsampling module implements the following operation:

pm = ROUND

(
p1 + p2 + p3 + p4

4

)
(29)

As shown in Figure 21, downsampling is performed by first adding up all 4 pixel values in an
adder tree and then shifting right by 2 bits. The extra addition by 2 before the right shift is used to
implement the rounding function in Equation (29). Such a downsampling scheme is straightforward
and computationally efficient. When higher compression ratio is desired, the downsampling module
and the corresponding register window and can be extended to deal with larger block sizes, and a
low-pass filtering can be optionally employed before the downsampling to reduce aliasing.

J. Imaging 2019, 5, 50 18 of 29

roi

JND
thresholds

pm

>> 2

0

1

MSb

∙ -1

Downsampling
window

2
DOWNSAMPLING

ROI DECISION

Figure 21. Downsampling and ROI decision modules.

The exploitation of the JND thresholds in the ROI decision module is illustrated in the upper part
of Figure 21. The downsampled value pm is first subtracted from each of the original pixels p1–p4.
The magnitude of a resulting difference value |pi − pm|, i = {1, 2, 3, 4} is the downsampling error at
the ith pixel location in the current 2× 2 block. Such a downsampling error is then compared with the
corresponding difference visibility threshold JNDi. The current block is considered as an ROI (roi = 1)
if any downsampling error is greater than the corresponding JND threshold. Conversely, a non-ROI
block (roi = 0) is identified if all four downsampling errors are within the corresponding four JND
thresholds. Downsampling can be applied to all non-ROI blocks without causing visual artifacts, since
all pixels in a non-ROI block have visually “no difference” to the downsampled value of that block
from a JND perspective.

5.6. ROI-Based Pixel Selection

The final pixels to be encoded are chosen by the ROI-based pixel selection module. Architecture of
this module is depicted in Figure 22. The new_block signal is a binary control flag which is asserted
when the upper row pixel register pU contains the first pixel of a new 2× 2 block (see p1 in Figure 16).
Figures 19–21 indicate that pm, pU and roi signals are based on the same 2 × 2 block, i.e., these
signals are synchronized with each other, whereas pL is delayed by one column compared with pU.
The ROI delay block generates an ROI status signal synchronized with pL. The selection criteria are
as follows.

(1) If the current 2× 2 block is a non-ROI block (roi=0) and pU contains the first pixel of the block
(new_block=1), then the downsampled pixel value pm is selected to replace pU.

(2) If the current block is a non-ROI block (roi= 0) and pU contains the second pixel of the block
(see p2 in Figure 16, new_block=0), then pU is skipped (i.e., pixel-to-encode is marked as invalid).

(3) A lower row pixel contained in pL is skipped if it is in a non-ROI block as indicated by the
corresponding delayed ROI status signal.

(4) For any pixel, if the 2× 2 block containing that pixel is an ROI block, then that pixel is selected
for encoding, as shown in Figure 22.

Finally, the selected pixels, as well as the corresponding ROI flags, are transferred to the
subsequent Predictive coding module, as indicated in Figure 17.

J. Imaging 2019, 5, 50 19 of 29

ROI-BASED

PIXEL SELECTION

pL

pU

roi

pm

new_block

GND

GND

0

1

0

1
0

1
U

L

ROI

pixel-to-
encode

U

L

ROI delay

Figure 22. ROI-based pixel selection module.

5.7. Predictive Coding and Output Bitstream

Pixels from the Encoder front end are compressed along the predictive coding path which comprises
four main modules: Prediction and context modeling, Symbol mapping, Coding parameter estimation and
Golomb-Rice coding, as depicted in the lower part of Figure 17. These blocks are implemented in a high
throughput and resource efficient architecture for the classic context-based pixel-domain predictive
coding, which is fully pipelined without stall. The throughput is 1 pixel/clock cycle. Architectural
details here are similar to those in existing publications, e.g., on the hardware architecture for the
regular mode of JPEG-LS [26]. The variable-length codeword streams from the predictive coding path
are combined with the ROI (in raw binary representation) at the output multiplexing (MUX) module,
where a barrel shifter is used to formulate fixed-length final output bitstreams. Detailed architecture
for the predictive coding path and bitstream multiplexing is omitted due to space limitations.

6. Experimental Results

6.1. Analysis of Integer Approximation of the Gaussian Kernel

As discussed in Section 3.1, a 3 × 5 Gaussian kernel with standard deviation σ = 0.83 is
employed in the proposed JND model. Figure 23a shows the original kernel coefficients with a
precision of four digits after the decimal point, whereas an integer approximation of the same kernel is
presented in Figure 23b. In total, 15 multiplications and 14 additions are required in a straightforward
implementation of the filtering with the original kernel, whereas the integer kernel can be implemented
with 25 integer additions plus several shift operations (for instance, multiplying x by 15 can be
implemented by a shift-add operation as (x << 4)− x, where << is the left shift operator). The impact
of using the integer kernel on the accuracy of results is analyzed in Table 1. The results using the integer
kernel after both Gaussian smoothing and Sobel edge detection (cf. Figure 5) have been compared
with those using the original kernel for various test images (see Section 6.2). Table 1 indicates that on
average 97% of the results based on the integer version of the kernel matches those of the floating-point
version after the smoothing step, whereas over 99% of the results based on the integer version of the
kernel are the same as those based on the floating-point version after the edge detection step. Since the
performance of the integer Gaussian kernel is closely comparable to that of the floating-point one, it is
reasonable to use the integer kernel for the improved resource efficiency.

2 15 30 15 2

2 15 30 15 2

3 30 62 30 3

256

1

×

0.0066 0.0576 0.1183 0.0576 0.0066

0.0066 0.0576 0.1183 0.0576 0.0066

0.0136 0.1183 0.2429 0.1183 0.0136

(a) (b)

Figure 23. Coefficients of 3× 5 Gaussian kernel in Section 3.1: (a) original; and (b) integer approximation.

J. Imaging 2019, 5, 50 20 of 29

Table 1. Influence of the integer Gaussian kernel on the accuracy of smoothing and edge detection
results in comparison with the original kernel in floating-point double precision.

Average Ratio of Pixel Locations with Same Results Using the Integer Kernel and the Original One

After Gaussian Smoothing After Sobel Edge Detection

97.00% 99.89%

6.2. Performance of the Proposed JND Model

The proposed JND model was implemented in software and experimented with widely used
standard test images. The performance of the proposed JND model was tested in terms of both
the distortion visibility of JND-contaminated images and the amount of imperceptible noise that
can be shaped into the images, i.e., visual redundancies in the images. To reveal or compare visual
redundancies given by the JND models, the well-known PSNR metric is often used with a particular
interpretation in the literature on JND models. For example, it is pointed out in [9] that, if the JND
profile is accurate, the perceptual quality of the corresponding JND-contaminated image should be “as
good as the original” while the PSNR of the JND-contaminated image should be “as low as possible”.
Chou and Li believed that PSNR can be used to quantify the amount of imperceptible distortion
allowed for transparent coding of images [9]. With this interpretation, a lower PSNR value corresponds
to a larger potential coding gain. Other examples of work in which the PSNR metric is used in a similar
way to analyze the performance of JND models include [11,12,27,28].

Multiple greyscale 8 bit/pixel test images [29,30] of different sizes and contents were used
in our experiments. For each test image, four sets of JND profiles were computed using Chou
and Li’s original model [9], Yang et al.’s model [11,22], Liu et al.’s model [12,31] and the proposed
one. A JND-contaminated image was then obtained by injecting the JND profile as a noise signal
to the original image. As described in [9], noise injection works by adding each original pixel
with the corresponding visibility threshold multiplied by a random sign {−1, 1}. The resulting
JND-contaminated image can be used in both objective tests such as PSNR measurement to reveal
the JND model’s capability for estimating the visual redundancy and subjective tests to validate the
model by comparing the original image with the JND-contaminated one. Since each sign is generated
independently, the above random-sign noise injection scheme may occasionally cause most injected
noise samples in a small neighborhood to have the same sign, which often shows a correlation to
distortion visibility even when the noise injection is guided by a high quality JND profile (see [13] for
an example). An alternative is to ensure additionally a zero-mean of the randomly-generated signs of
noise samples in every M× N block, which is referred to as zero-mean random-sign noise injection
in this work. A neighborhood size of 2× 2 in the zero-mean random-sign scheme was used in our
experiments. The distortion visibility experiment on the proposed JND model was conducted on
a 31.1′ ′ EIZO CG318-4K monitor with 100 cd/m2 luminance and with viewing conditions specified
in [32]. The original test image is temporal-interleaved with the JND-contaminated image at a frequency
of 5 Hz, and a noise signal is invisible if no flickering can be seen. In our experiments, hardly any
flickering could be noticed at a normal viewing distance corresponding to 60 pixels/degree. Figure 24
presents a test image and various noise-contaminated images. An original section of the BALLOON
image is in Figure 24a, and a white-Gaussian-noise-contaminated image (PSNR = 31.98) is shown
in Figure 24b. A JND-contaminated image (PSNR = 31.97) based on Chou and Li’s JND model is in
Figure 24c, whereas the JND-contaminated image based on the proposed model is in Figure 24d. While
the noise in Figure 24b is quite obvious, the same amount of noise injected based on Chou and Li’s
JND model is much less visible (see Figure 24c), and an even higher amount (0.23 dB more) of noise
based on the proposed model and the zero-mean random-sign injection scheme is almost completely
invisible, as shown in Figure 24d.

J. Imaging 2019, 5, 50 21 of 29

(a) (b) (c) (d)

Figure 24. Visualization of JND-contaminated images: (a) original section of the BALLOON image;
(b) contaminated with white noise, PSNR = 31.98; (c) contaminated with JND profile given by Chou
and Li’s model [9] with random-sign injection, PSNR = 31.97; and (d) contaminated with JND profile
given by the proposed JND model with zero-mean random-sign injection, PSNR = 31.74.

Table 2 shows a comparison of PSNR values of JND-contaminated images based on different
JND models. As discussed above, the PSNR metric was used as an indication of visual redundancy
measured by a JND model, which can be removed without impairing the visual quality. A lower PSNR
value is preferable since it corresponds to a more accurate estimation of the visual redundancy, which
can be used to guide a visually lossless image coding or watermarking. Table 2 indicates that the
proposed JND model on average improved the accuracy of visual redundancy estimation by 0.69 dB
and 0.47 dB compared to Chou and Li’s model and Yang et al.’s model, respectively. Compared with
Liu et al.’s model, which applies on top of Yang et al.’s model an additional total-variation-based
textural image decomposition [12], the average accuracy of the proposed model was lower by 0.6 dB.
Such a gap could be justified by the relatively low computational complexity of the proposed model,
especially for resource-constrained embedded systems.

Table 2. Performance comparison of different JND models for measuring the visual redundancy in test
images based on PSNR values of JND-contaminated images.

Image PSNR [dB]

Chou & Li [9] Yang et al. [11] Proposed Liu et al. [12]

AERIAL2 33.11 32.23 32.01 31.52
BALLOON 31.97 31.89 31.74 31.57
CHART 30.91 31.92 30.65 30.35
FINGER 32.69 33.49 31.50 29.24
GOLD 30.93 30.32 30.18 29.81
HOTEL 29.92 29.96 29.44 28.85
MAT 32.22 32.40 31.87 31.46
SEISMIC 37.84 36.35 36.83 36.46
TXTUR2 32.06 31.05 30.60 30.04
WATER 34.18 34.44 34.06 34.01
WOMAN 30.94 30.22 30.22 29.25

Average 32.43 32.21 31.74 31.14

Improvement vs. Chou & Li – 0.22 0.69 1.29

J. Imaging 2019, 5, 50 22 of 29

6.3. Complexity Comparison of Proposed JND Model and Existing JND Models

Table 3 lists the number of operations required by Chou and Li’s JND model, which is the basis
for the other pixel-domain JND models discussed in this paper. The complexity of two JND models
extending Chou and Li’s model, including Yang et al.’s model and the proposed one, are compared in
Table 4 in terms of the number additional operations required in the main algorithmic parts of these
JND models. Compared with Chou and Li’s JND model, Yang et al.’s model additionally performs
edge-based weighting of the contrast masking effect using a Canny edge detector followed by a 7× 7
Gaussian filter [9]. From the upper part of Table 4, it can be seen that Yang et al.’s model required
approximately 162 additions, one multiplications, one division and a look-up table (LUT) in addition
to the basic operations required in Chou and Li’s model (Table 3). It can be seen from the lower part of
Table 4 that compared to Yang et al.’s model, the proposed model required about half the number of
extra additions and required neither additional LUTs nor division operations.

Table 3. Basic operations required for computing a visibility threshold by Chou and Li’s JND model.

Algorithmic Step Addition Multiplication LUT Remark

BL 24 – – Equation (1)
ID 44 – – Equation (3)
MG 3 – – Equation (4)
α 1 1 – Equation (6)
β 1 1 – Equation (7)
final CM 1 1 – Equation (5)
LM (BL ≤ 127) – – 1 Equation (2)
LM (BL > 127) 3 – – Equation (2)
Final JND 1 – – Equation (8)

Total 78 3 1

Table 4. Approximate number of additional operations per pixel required for computing a visibility
threshold by Yang et al.’s JND model and the proposed model.

Model Algorithmic Step Addition Multiply LUT Division Remark

Yang’s

C: smoothing 37 – – 1 σ=1.4 [33]
C: gradients 10 – – – Sobel
C: gradient-magnitude 1 – – – [24]
C: gradient-direction 3 – 1 – [24]

C: Canny

C: non-max suppression 2 – – – [24]
C: gradient-histogram 2 – – – [34]
C: 2-thresholding & hysteresis 2 – – – [35]

7× 7 Gaussian 102 – – – σ=0.8 [11]

Edge-weighting – 1 – – [11]

NAMM 3 1 – – Equation (12)

Total 162 2 1 1

Proposed

E: 3× 5 smoothing 25 – – – Figure 23b
E: Sobel gradients 10 – – – Equation (26)
E: magnitude 1 – – – Figure 13b
E: thresholding 1 – – – Figure 13b

E: edge

T: local contrast 26 – – – Equation (27)
T: contrast significance 1 – – – Equation (14)

T: texture

T: contrast activity 8 – – – Equation (15)
T: high activity 1 – – – Equation (16)
CMt weighting 1 – – – Wt =1.75
Final JND 6 2 – – Equation (20)

Total 80 2 – –

J. Imaging 2019, 5, 50 23 of 29

A comparison of software complexity in terms of CPU time was made for different JND models.
The comparison was based on the original authors’ implementation of Yang et al.’s model [22] and
Liu et al.’s model [31], as well as our own implementation of Chou and Li’s model and the proposed
one. All models were implemented in MATLAB. The software models were run on a desktop computer
with Intel Core i7-4820K (3.70 GHz) CPU and 32 GB of RAM. The operating system was Windows 7
64-bit. The test image used was BARB with a resolution of 720 × 576. The time need by each model
to evaluate the JND profile was obtained as the least CPU time measured from running each JND
model 30 times on the test image. The results are presented in Table 5. It can be seen that the CPU
time required by the proposed model to evaluate the JND profile was 68 ms, which was less than twice
of that (37 ms) required by Chou and Li’s model. By contrast, the CPU time required by Yang et al.’s
model was 88 ms, which was more than twice of that required by Chou and Li’s model. In the case of
Liu et al.’s model, the CPU time was 474 ms, which was over an order of magnitude more than that of
Chou and Li’s model.

Table 5. CPU time used by MATLAB implementations of different JND models for evaluating the JND
profile of the BARB test image.

Chou & Li Yang et al. Liu et al. Proposed

CPU time (ms): 37 88 474 68
Increase vs. Chou & Li: – 138% 1181% 84%

To compare the JND models in terms of hardware resource requirement and speed, we
implemented hardware models of three JND models in VHDL, including Chou and Li’s original model,
Yang et al.’s model and the proposed one. The hardware models were simulated and synthesized
using Xilinx Vivado Design Suite 2018.2. The target device was selected as Xilinx Kintex-7 XC7K160T
with a speed grade of −2. For the FPGA implementation of the proposed JND model, the input
image was assumed to be greyscale with 8 bits/pixel and with a horizontal size of up to 1024 pixels.
Table 6 presents the FPGA resource utilization of the synthesized models and their maximum clock
frequency. The pixel throughput was one pixel per clock cycle. Table 6 shows that, compared with
Chou and Li’s JND model, the amount of required FPGA hardware resource was increased by over
200% for Yang et al.’s JND model, while for the proposed model the resource increase was less than
100%. In terms of the maximum clock frequency, the proposed model achieved the same performance
as Chou and Li’s model, i.e., 190 MHz, which was about 35% faster than the 140 MHz achieved by
Yang et al.’s model.

Table 6. FPGA resource utilization and clock frequency comparison of three JND models: Chou and
Li’s model, Yang et al.’s model and the proposed one.

Resource Type Available Chou & Li Yang et al. Proposed

Slice LUTs 101,400 1414 (1.39%) 4128 (4.07%) 2621 (2.58%)
Slice Registers 202,800 839 (0.41%) 2482 (1.22%) 1543 (0.76%)
Block RAM 36Kbits 325 2.5 (0.77%) 10.5 (3.23%) 4.5 (1.38%)

Clock frequency (MHz) 190 140 190

6.4. Compression Performance of the Perceptual Codec Based on the Proposed JND Model

The proposed JND model was implemented in combination with the perceptual encoder described
in Section 5. Parameter values for the JND model are as discussed in Section 3. Compressed image
quality of the perceptual codec was compared with that of JPEG-LS for a range of rates corresponding
to approximately 2:1 to 6:1 compression. Objective metrics used to evaluate the compressed image
quality included PSNR, MS-SSIM [36,37] and HDR-VDP score [38,39]. Compressed data rates of
the perceptual codec based on the proposed JND model were additionally compared with those of

J. Imaging 2019, 5, 50 24 of 29

JPEG, JPEG 2000 and JPEG XR at the same perceptual quality given by PSPNR [9]. The compression
experiments were based on widely used standard test images, as described in Section 6.2.

Figure 25 presents comparisons of rate-distortion performance between the perceptual codec
based on the proposed JND model and JPEG-LS for test image GOLD, TXTUR2 and WOMAN. It can
be seen from the MS-SSIM and HDR-VDP curves that the perceptual codec exhibited a clear gain
in perceptual quality over JPEG-LS in a rate range between 1 and 3.5 bits-per-pixel (bpp). In terms
of PSNR, which is not a perceptual quality metric, the perceptual codec delivered an improved
coding performance of about 10–15% over JPEG-LS at rates below approximately 1.5–2 bpp. Figure 26
provides visual comparisons of images compressed to approximately the same rate by JPEG-LS and
the perceptual codec combined with the proposed JND model. Selected parts of two different types of
images are shown. From this figure, it is evident that the proposed scheme achieved improved visual
quality by avoiding the stripe-like artifacts of JPEG-LS.

Towards the goal of visually transparent coding, a codec’s performance can be related to its ability
to keep coding distortions within the visibility thresholds provided by the JND model. As discussed
in [9], the peak signal-to-perceptible-noise ratio (PSPNR) is a metric taking visual redundancy into
account based on the JND model.

1 1.5 2 2.5 3 3.5 4
Bit rate [bpp]

0.97

0.975

0.98

0.985

0.99

0.995

1

JPEG-LS
Proposed

1 1.5 2 2.5 3 3.5 4
Bit rate [bpp]

32
34
36
38
40
42
44
46
48
50

JPEG-LS
Proposed

1 1.5 2 2.5 3 3.5 4
Bit rate [bpp]

65

70

75

80

85

90

JPEG-LS
Proposed

1 1.5 2 2.5 3 3.5 4
Bit rate [bpp]

0.97

0.975

0.98

0.985

0.99

0.995

1

JPEG-LS
Proposed

1 1.5 2 2.5 3 3.5 4
Bit rate [bpp]

32
34
36
38
40
42
44
46
48
50

JPEG-LS
Proposed

1 1.5 2 2.5 3 3.5 4
Bit rate [bpp]

65

70

75

80

85

90

JPEG-LS
Proposed

1 1.5 2 2.5 3 3.5 4
Bit rate [bpp]

0.97

0.975

0.98

0.985

0.99

0.995

1

JPEG-LS
Proposed

1 1.5 2 2.5 3 3.5 4
Bit rate [bpp]

32
34
36
38
40
42
44
46
48
50

JPEG-LS
Proposed

1 1.5 2 2.5 3 3.5 4
Bit rate [bpp]

65

70

75

80

85

90

JPEG-LS
Proposed

M
S

-S
S

IM
P

S
N

R
 [

d
B

]
H

D
R

-V
D

P

GOLD TXTUR2 WOMAN

Figure 25. Objective rate-distortion plots of the proposed codec and JPEG-LS: top to bottom, MS-SSIM,
PSNR and HDR-VDP values; and left to right, results for test images GOLD, TXTUR2 and WOMAN.

J. Imaging 2019, 5, 50 25 of 29

JPEG-LS@1.07bpp Proposed@1.06bpp
Original@8bpp

Original@8bpp JPEG-LS@1.07bpp Proposed@1.04bpp

Figure 26. Visual quality of images compressed by JPEG-LS and the proposed JND-based perceptual
codec at closely comparable bit rates: top and bottom, WOMAN and GOLD image; and left to
right, original image, selected section compressed by JPEG-LS, and same section compressed by the
perceptual codec.

While transform-domain codecs such as JPEG, JPEG 2000 and JPEG XR have higher complexity
and latency than a pixel-domain codec such as the proposed JND-based one or JPEG-LS, it is possible
to find out experimentally the bit rates at which any coding distortion in the compressed image is
kept below the corresponding visibility threshold given by the proposed JND model. Table 7 shows
the minimum compressed bit rates for JPEG, JPEG 2000, JPEG XR and the proposed JND-based
perceptual codec at which the PSPNR reaches the upper bound, i.e., none of the coding errors exceed
the JND thresholds, which can be considered as a necessary condition given by the JND model on
perceptually lossless coding. For this experiment, the proposed JND model, the baseline JPEG, Kakadu
implementation [40] of JPEG 2000 (with visual weights) and the ITU-T reference implementation [41] of
JPEG XR were used. Table 7 indicates that, at the same visual quality given by PSPNR, the perceptual
codec required on average about 58%, 48% and 41% fewer bits compared with JPEG, JPEG 2000 and
JPEG XR, respectively.

J. Imaging 2019, 5, 50 26 of 29

Table 7. Compressed data rates of JPEG, JPEG 2000, JPEG XR and the proposed JND-based perceptual
encoder at the same quality in terms of peak signal-to-perceptible-noise ratio (PSPNR).

Image Bit Rate (bpp)

JPEG JPEG 2000 JPEG XR Proposed

AERIAL2 6.04 5.10 4.44 2.68
BABOON 7.03 5.50 4.91 3.37
BALLOON 2.60 2.19 1.58 0.97
BARB 4.37 3.89 3.31 2.14
BOATS 4.11 3.70 3.19 1.75
CAFE 6.29 4.81 4.51 2.54
CATS 2.88 2.20 2.06 1.45
CHART 3.58 2.80 2.53 1.37
EDUC 4.50 3.96 3.53 2.21
FINGER 5.91 4.70 4.40 3.01
GOLD 5.00 4.00 3.42 1.93
HOTEL 4.98 3.90 3.46 1.74
LENNAGREY 4.64 3.70 3.34 1.69
MAT 3.61 2.50 2.44 1.23
PEPPERS 4.93 4.10 3.54 1.85
SEISMIC 2.11 1.88 1.46 1.30
TOOLS 6.26 5.09 4.58 2.68
TXTUR2 6.31 5.20 4.47 2.68
WATER 3.55 2.89 2.55 1.03
WOMAN 5.01 4.19 3.56 1.96

Average 4.69 3.82 3.36 1.98

Saving by perceptual encoder 57.8% 48.1% 41.2% –

6.5. FPGA Resource Utilization and Throughput of the Proposed Perceptual Encoder Architecture

The architecture for the proposed JND model and perceptual encoder was implemented in
hardware using VHDL hardware description language. The hardware model for the perceptual
encoder was simulated and synthesized using Xilinx Vivado Design Suite 2016.4. The target device
was selected as Xilinx Kintex-7 XC7K160T, a popular mid-range FPGA, with a speed grade of −2.
Since the proposed perceptual encoder is compatible with different JND models (and vice-versa for
the proposed JND model), the proposed JND model and perceptual encoder were implemented as
separate modules, and their synthesis results are reported separately for clarity. An integration of
these two modules is straightforward, as is obvious from Section 5. Synthesis results for the proposed
JND model as well as two other JND models are presented in Section 6.3.

Table 8 shows the FPGA resource utilization of the proposed perceptual encoder architecture for
8–16 bits/pixel input greyscale images with a horizontal size of up to 2048 pixels. It can be seen that the
proposed encoder architecture required 5.85% of logic resource and 2% of the BRAM resource on the
target FPGA, and a pixel throughput of about 140 Megapixel/s (1 pixel/clock cycle) was achieved. For
both the proposed JND model and the perceptual encoder architecture, the logic and BRAM resources
used were well below 10% of all the available resources of each type on the target FPGA, which, on the
one hand, provides abundant hardware resources for the other image processing tasks running on
the FPGA such as noise cancellation, and, on the other hand, leaves ample room for using multiple
parallel encoding instances on a single FPGA when higher pixel throughput is demanded.

J. Imaging 2019, 5, 50 27 of 29

Table 8. FPGA resource utilization of the proposed perceptual encoder architecture.

Resource Type Used Available Percentage

Slice LUTs 5934 101,400 5.85%
Slice Registers 2300 202,800 1.13%
Block RAM 36Kbits 6.5 325 2%

Clock frequency (MHz) 140

7. Conclusions

A new pixel-domain JND model and a perceptual image coding architecture exploiting the JND
model are presented. In the proposed JND model, lightweight and hardware-efficient operators are
used to identify edge, texture and smooth regions in the input image. Different weighting factors
for the contrast masking effects are applied to pixels in different regions. The contrast masking and
luminance masking effects are combined into the final JND value in the new approach, i.e., using
the nonlinear additivity model for masking (NAMM) operator for texture/smooth regions and the
maximum operator for edge regions. The proposed JND model and architecture are suitable for
implementation on FPGAs for real-time and low complexity embedded systems. In the proposed
architecture for a low complexity pixel-domain perceptual codec, the input image is adaptively
downsampled based on the visual ROI map identified by measuring the downsampling distortion
against the JND thresholds. The proposed JND model provides a more accurate estimation of visual
redundancies compared with Chou and Li’s model and Yang et al.’s model. Since the computational
complexity of the proposed model is significantly less than that of Liu et al.’s model based on image
decomposition with total variation, the proposed JND mode achieves a new balance between the
accuracy of JND profile and the computational complexity. Experimental results further show that the
proposed JND-based pixel-domain perceptual coder achieved improved rate-distortion performance
as well as visual quality compared with JPEG-LS. At the same perceptual quality in terms of PSPNR,
the proposed coder generated fewer bits compared with JPEG, JPEG 2000 and JPEG XR. Finally, FPGA
synthesis results indicate that both the proposed JND model and the perceptual coder required a
very moderate amount of hardware resources to implement in terms of both logic and block memory
resources. On a mid-range FPGA, the hardware architecture of the proposed JND model required about
2.6% of logic and 1.4% of block memory resources and achieved a throughput of 190 Megapixel/s,
while the hardware architecture of the perceptual encoder required about 6% of logic and 2% of block
memory resources and achieved a throughput of 140 Megapixel/s.

Author Contributions: Conceptualization, Z.W. and S.S.; Methodology, Z.W.; Software, Z.W., T.-H.T. and P.K.M.;
Validation, Z.W., T.-H.T. and P.K.M.; Investigation, Z.W., T.-H.T. and P.K.M.; Writing–original draft preparation,
Z.W.; Writing–review and editing, Z.W., T.-H.T., P.K.M. and S.S.; Visualization, Z.W. and T.-H.T.; Supervision, S.S.;
Project administration, S.S.

Funding: This research received no external funding.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Stolitzka, D. Developing Requirements for a Visually Lossless Display Stream Coding System Open
Standard. In Proceedings of the Annual Technical Conference Exhibition, SMPTE 2013, Hollywood, CA, USA,
22–24 October 2013; pp. 1–12.

2. The Video Electronics Standards Association. Display Stream Compression Standard v1.1. Available online:
http://www.vesa.org/vesa-standards/ (accessed on 30 November 2018).

3. VESA Display Stream Compression Task Group. Call for Technology: Advanced Display Stream Compression;
Video Electronics Standards Association: San Jose, CA, USA, 2015.

4. Joint Photographic Experts Group committee (ISO/IEC JTC1/SC29/WG1). Call for Proposals for a low-
latency lightweight image coding system. News & Press, 11 March 2016.

http://www.vesa.org/vesa-standards/

J. Imaging 2019, 5, 50 28 of 29

5. Watson, A. DCTune: A technique for visual optimization of DCT quantization matrices for individual
images. Soc. Inf. Displ. Dig. Tech. Pap. 1993, XXIV, 946–949.

6. Ramos, M.; Hemami, S. Suprathreshold wavelet coefficient quantization in complex stimuli: Psychophysical
evaluation and analysis. J. Opt. Soc. Am. 2001, 18, 2385–2397. [CrossRef]

7. Liu, Z.; Karam, L.; Watson, A. JPEG2000 encoding with perceptual distortion control. Image Process.
IEEE Trans. 2006, 15, 1763–1778.

8. Netravali, A.; Haskell, B. Digital Pictures: Representation, Compression, and Standards, 2nd ed.; Springer
Science+Business Media: New York, NY, USA, 1995.

9. Chou, C.H.; Li, Y.C. A perceptually tuned subband image coder based on the measure of just-noticeable-
distortion profile. IEEE Trans. Circuits Syst. Video Technol. 1995, 5, 467–476. [CrossRef]

10. Jayant, N.; Johnston, J.; Safranek, R. Signal compression based on models of human perception. Proc. IEEE
1993, 81, 1385–1422. [CrossRef]

11. Yang, X.; Ling, W.; Lu, Z.; Ong, E.; Yao, S. Just noticeable distortion model and its applications in video
coding. Signal Process. Image Commun. 2005, 20, 662–680. [CrossRef]

12. Liu, A.; Lin, W.; Paul, M.; Deng, C.; Zhang, F. Just Noticeable Difference for Images With Decomposition
Model for Separating Edge and Textured Regions. IEEE Trans. Circuits Syst. Video Technol. 2010, 20, 1648–1652.
[CrossRef]

13. Wu, H.R.; Reibman, A.R.; Lin, W.; Pereira, F.; Hemami, S.S. Perceptual Visual Signal Compression and
Transmission. Proc. IEEE 2013, 101, 2025–2043. [CrossRef]

14. Wang, Z.; Baroud, Y.; Najmabadi, S.M.; Simon, S. Low complexity perceptual image coding by just-noticeable
difference model based adaptive downsampling. In Proceedings of the 2016 Picture Coding Symposium
(PCS 2016), Nuremberg, Germany, 4–7 December 2016; pp. 1–5.

15. Safranek, R.J.; Johnston, J.D. A perceptually tuned sub-band image coder with image dependent quantization
and post-quantization data compression. In Proceedings of the 1989 International Conference on Acoustics,
Speech, and Signal Processing (ICASSP ’89), Glasgow, UK, 23-26 May 1989; Volume 3, pp. 1945–1948.

16. Yang, X.K.; Lin, W.S.; Lu, Z.; Ong, E.P.; Yao, S. Just-noticeable-distortion profile with nonlinear additivity
model for perceptual masking in color images. In Proceedings of the 2003 IEEE International Conference
on Acoustics, Speech, and Signal Processing (ICASSP ’03), Hong Kong, China, 6–10 April 2003; Volume 3,
pp. 609–612.

17. Girod, B. What’s Wrong with Mean-squared Error? In Digital Images and Human Vision; Watson, A.B., Ed.;
MIT Press: Cambridge, MA, USA, 1993; pp. 207–220.

18. Eckert, M.P.; Bradley, A.P. Perceptual quality metrics applied to still image compression. Signal Process. 1998,
70, 177–200. [CrossRef]

19. Mirmehdi, M.; Xie, X.; Suri, J. Handbook of Texture Analysis; Imperial College Press: London, UK, 2009.
20. Danielsson, P.E.; Seger, O. Generalized and Separable Sobel Operators. In Machine Vision for Three-Dimensional

Scenes; Freeman, H., Ed.; Academic Press: San Diego, CA, USA, 1990; pp. 347–379.
21. Canny, J. A Computational Approach to Edge Detection. IEEE Trans. Pattern Anal. Mach. Intell. 1986, PAMI-8,

679–698. [CrossRef]
22. Yang, X. Matlab Codes for Pixel-Based JND (Just-Noticeable Difference) Model. Available online: http:

//www.ntu.edu.sg/home/wslin/JND_img.rar (accessed on 30 November 2018).
23. Ojala, T.; Pietikainen, M.; Maenpaa, T. Multiresolution gray-scale and rotation invariant texture classification

with local binary patterns. IEEE Trans. Pattern Anal. Mach. Intell. 2002, 24, 971–987. [CrossRef]
24. Bailey, D.G. Design for Embedded Image Processing on FPGAs; John Wiley & Sons (Asia) Pte Ltd.:

Singapore, 2011.
25. Weinberger, M.J.; Seroussi, G.; Sapiro, G. The LOCO-I lossless image compression algorithm: Principles and

standardization into JPEG-LS. IEEE Trans. Image Process. 2000, 9, 1309–1324. [CrossRef] [PubMed]
26. Merlino, P.; Abramo, A. A Fully Pipelined Architecture for the LOCO-I Compression Algorithm. IEEE Trans.

Very Large Scale Integr. Syst. 2009, 17, 967–971. [CrossRef]
27. Jia, Y.; Lin, W.; Kassim, A.A. Estimating Just-Noticeable Distortion for Video. IEEE Trans. Circuits Syst.

Video Technol. 2006, 16, 820–829. [CrossRef]
28. Wei, Z.; Ngan, K.N. Spatio-Temporal Just Noticeable Distortion Profile for Grey Scale Image/Video in DCT

Domain. IEEE Trans. Circuits Syst. Video Technol. 2009, 19, 337–346.

http://dx.doi.org/10.1364/JOSAA.18.002385
http://dx.doi.org/10.1109/76.475889
http://dx.doi.org/10.1109/5.241504
http://dx.doi.org/10.1016/j.image.2005.04.001
http://dx.doi.org/10.1109/TCSVT.2010.2087432
http://dx.doi.org/10.1109/JPROC.2013.2262911
http://dx.doi.org/10.1016/S0165-1684(98)00124-8
http://dx.doi.org/10.1109/TPAMI.1986.4767851
http://www.ntu.edu.sg/home/wslin/JND_img.rar
http://www.ntu.edu.sg/home/wslin/JND_img.rar
http://dx.doi.org/10.1109/TPAMI.2002.1017623
http://dx.doi.org/10.1109/83.855427
http://www.ncbi.nlm.nih.gov/pubmed/18262969
http://dx.doi.org/10.1109/TVLSI.2008.2009188
http://dx.doi.org/10.1109/TCSVT.2006.877397

J. Imaging 2019, 5, 50 29 of 29

29. The USC-SIPI Image Database. Available online: http://sipi.usc.edu/database/database.php (accessed on
30 November 2018).

30. ITU-T T.24. Standardized Digitized Image Set; ITU: Geneva, Switzerland, 1998.
31. Liu, A. Matlab Codes for Image Pixel Domain JND (Just-Noticeable Difference) Model with Edge and

Texture Separation. Available online: http://www.ntu.edu.sg/home/wslin/JND_codes.rar (accessed on
30 November 2018).

32. ISO/IEC 29170-2 Draft Amendment 2. Information Technology—Advanced Image Coding and Evaluation—Part 2:
Evaluation Procedure for Visually Lossless Coding; ISO/IEC JTC1/SC29/WG1 output Document N72029;
International Organization for Standardization: Geneva, Switzerland, 2015.

33. Malepati, H. Digital Media Processing: DSP Algorithms Using C; Newnes: Oxford, UK, 2010; Chapter 11.
34. Varadarajan, S.; Chakrabarti, C.; Karam, L.J.; Bauza, J.M. A distributed psycho-visually motivated Canny

edge detector. In Proceedings of the 2010 IEEE International Conference on Acoustics, Speech and Signal
Processing (ICASSP ’10), Dallas, TX, USA, 14–19 March 2010; pp. 822–825.

35. Xu, Q.; Varadarajan, S.; Chakrabarti, C.; Karam, L.J. A Distributed Canny Edge Detector: Algorithm and
FPGA Implementation. IEEE Trans. Image Process. 2014, 23, 2944–2960. [CrossRef] [PubMed]

36. Wang, Z.; Simoncelli, E.P.; Bovik, A.C. Multiscale structural similarity for image quality assessment.
In Proceedings of the Thirty-Seventh Asilomar Conference on Signals, Systems Computers, Pacific Grove,
CA, USA, 9–12 November 2003; Volume 2, pp. 1398–1402.

37. Wang, Z. Multi-Scale Structural Similarity (Matlab Code). Available online: https://ece.uwaterloo.ca/
~z70wang/research/iwssim/msssim.zip (accessed on 30 November 2018).

38. Mantiuk, R.; Kim, K.J.; Rempel, A.G.; Heidrich, W. HDR-VDP-2: A Calibrated Visual Metric for Visibility
and Quality Predictions in All Luminance Conditions. ACM Trans. Graph. 2011, 30, 40:1–40:14. [CrossRef]

39. Mantiuk, R.; Kim, K.J.; Rempel, A.G.; Heidrich, W. HDR-VDP-2 (Ver. 2.2.1). Available online: http:
//hdrvdp.sourceforge.net/ (accessed on 30 November 2018).

40. Taubman, D. Kakadu Software (Ver. 7). Available online: http://kakadusoftware.com/software/ (accessed
on 30 November 2018).

41. ISO/IEC 29199-5 | ITU-T T.835. Information Technology—JPEG XR Image Coding System—Reference Software;
ITU: Geneva, Switzerland, 2012.

© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://sipi.usc.edu/database/database.php
http://www.ntu.edu.sg/home/wslin/JND_codes.rar
http://dx.doi.org/10.1109/TIP.2014.2311656
http://www.ncbi.nlm.nih.gov/pubmed/24983098
https://ece.uwaterloo.ca/~z70wang/research/iwssim/msssim.zip
https://ece.uwaterloo.ca/~z70wang/research/iwssim/msssim.zip
http://dx.doi.org/10.1145/2010324.1964935
http://hdrvdp.sourceforge.net/
http://hdrvdp.sourceforge.net/
http://kakadusoftware.com/software/
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	Background in Pixel-Domain JND Modeling
	Luminance Masking Estimation
	Contrast Masking Estimation
	Formulation of JND Threshold

	Proposed JND Model
	Edge and Texture Detection
	Region-Based Weighting of Visibility Thresholds due to Contrast Masking
	Final JND Threshold

	Hardware Architecture for the Proposed JND Model
	Overview of Proposed JND Hardware Architecture
	Row Buffer
	Pipelined Weighted-Sum Module

	Luminance Masking Function
	Contrast Masking Function
	Edge-Texture-Smooth Function
	Edge Detection
	High Contrast Activity

	JND Calculation Function

	JND-Based Pixel-Domain Perceptual Image Coding Hardware Architecture
	Top-Level Architecture of the JND-Based Pixel-Domain Perceptual Encoder
	Input Scan Order vs. Pixel Processing Order
	Encoder Front End
	Pixel Processing Order Conversion
	Downsampling and ROI Decision
	ROI-Based Pixel Selection
	Predictive Coding and Output Bitstream

	Experimental Results
	Analysis of Integer Approximation of the Gaussian Kernel
	Performance of the Proposed JND Model
	Complexity Comparison of Proposed JND Model and Existing JND Models
	Compression Performance of the Perceptual Codec Based on the Proposed JND Model
	FPGA Resource Utilization and Throughput of the Proposed Perceptual Encoder Architecture

	Conclusions
	References

