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Abstract: This paper deals with the problem of estimating the RCS from near-field data by
image-based approaches. In particular, a rigorous focusing procedure based on a weighted
adjoint scheme, which is also applicable to an arbitrary measurement curve, is developed.
The developed formalism allows us to address the important question concerning the need to
employ a multi-frequency configuration to estimate the RCS. Accordingly, it is shown that if RCS
is required at a given frequency, then the target image obtained solely at such a frequency can be
exploited provided that the spatial truncation arising from the size of the investigated area is properly
taken into account.
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1. Introduction

The Radar Cross Section (RCS) of a target is a crucial quantity that describes how the target
responds to an impinging electromagnetic wave (i.e., how it scatters the incident wave) across
different directions. As is well known, RCS is formally defined as the distance between the probing
antenna and the target approaching infinity [1]. In practical cases, to measure the RCS, the physical
separation between the target and the illuminating/measuring antenna is required to comply with
the far-field conditions. However, as frequency increases, and depending on the size of the target,
the required separation can soon become very large. Therefore, for a long time, there has been a great
interest in developing methods for predicting the RCS for scattered field measurements taken at
a distance not in far-field [2–6]. Indeed, the possibility of acquiring data in near-zone avoids the
above-mentioned drawback and in principle offers several advantages since measurements can be
taken within an anechoic chamber. On the other hand, near-zone measurements cannot be used
straight away for RCS estimation, due to the wavefront curvature and because in near-zone the
target is not uniformly illuminated. Compact range equipment solves these problems, but requires
high-quality reflectors [4,6]. Alternatively, image-based approaches first obtain a reconstruction of
the target reflectivity and then the RCS is estimated by Fourier, transforming the obtained reflectivity.
Accordingly, those approaches can be regarded as particular near-field to far-field transformations [7].
One can consider compact range methods and image-based approaches to move the job to do from
hardware, i.e., the reflector, to software, i.e., the scattered field data processing algorithms.

In this paper, we are concerned with image-based approaches, in particular under a monostatic
measurement setup.

The underlying working assumption is that the target scatters linearly, i.e., multiple scattering,
shadowing, and creeping waves are considered negligible. Accordingly, the scattering phenomenon
can be described by a linear integral scattering operator and the reconstruction of the target reflectivity
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is usually obtained by solving (inverting) that integral equation via some focusing procedure borrowed
from back-propagation/migration algorithms literature [8].

Focusing entails some smearing in the reconstruction (depending on the measurement
configuration parameters such as frequency band, etc.) which can negatively impact the subsequent
RCS estimation. To compensate for such an effect, the obtained RCS can be normalized by the one
corresponding to a point-like target [9] or, alternatively, the standard focusing kernel can be corrected
by a suitable factor [10].

The first procedure implicitly assumes a spatially invariant behavior (within the image region)
of the imaging procedure which indeed does not hold. The second approach has instead been
demonstrated only for a circular measurement curve. The first contribution of this paper is the
derivation of the focusing procedure under a general framework as far as the measurement curve
is concerned, which actually generalizes the procedure reported in [10] to a generally shaped
measurement curve.

To obtain high-resolution target reconstructions, the imaging stage is usually achieved by using
multi-frequency data. However, target reflectivity in general depends on frequency. As outlined
in [7], in that case, the obtained reflectivity can be considered more like an average over the employed
frequency band. Furthermore, the obtained reflectivity reconstruction is generally used for RCS
estimation just at the central frequency. It is then natural to ask if the imaging procedure can work by
directly using single-frequency data.

This is indeed possible [11] even though RCS estimation is more sensitive to the spatial truncation
determined by the size of the image region.

2. Basics on Image-Based RCS

In this section, we introduce the problem, the adopted notation, and briefly recall image-based
methods present in literature.

The scattering experiment related to the RCS estimation considered in this paper is described
in Figure 1. In particular, we refer to a 2D scalar configuration, i.e., the target is invariant along
the z-axis and the probing field is a cylindrical wave linearly polarized again along z. Accordingly,
the scattered field is also linearly polarized and the RCS is a single scalar and not a dyad, as in the
general 3D vector case. The target is assumed to reside within the image domain DI , whereas the
scattered field is collected in near-field over a curve Γ surrounding DI and for the frequency band Ω.
The usual monostatic configuration is considered. Accordingly, during the data-acquisition stage,
the same antenna acts as transmitter and receiver and then moves around the target to synthesize
the measurement curve, or equivalently the target is rotated over a turntable. In the latter case the
synthesized measurement curve is just a circle, which is the one that is usually considered in literature.

Figure 1. Geometry of the problem.
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It is worth remarking that we are considering such a 2D configuration for the sake of simplicity,
since this allows easier production of the numerical examples to be shown later on. However, a similar
configuration is commonly addressed also in 3D cases while estimating the so-called water line RCS [7].

The starting point for problem formulation is the assumption that the target consists of
an ensemble of independent and non-directional scattering centers [9]. Since multiple interactions,
creeping waves and shadowing effects are neglected, the target reflectivity γ(r) and the scattered field
are linked by the following linear integral operator

ES(k, ro(s)) =
∫

DI

A(k, ro(s), r)e−jφ[k,ro(s),r]γ(r)d2r (1)

where k is the wavenumber and ro(s) ∈ Γ is the measurement curve parametrized with respect to s.
Moreover, the phase term takes into account the propagation path from the antenna to the target and
back, i.e.,

φ(k, ro, r) = 2k|ro(s)− r|

whereas the amplitude term is given by

A(k, ro(s), r) =
αC(k)P2[θ(ro(s), r)]

|ro(s)− r|
with α being a constant term that varies depending on whether a 3D or 2D geometry is being considered,
P[θ(ro(s), r)] is the antenna directivity pattern assumed to be 1 for θ(ro(s), r) = 0, (with θ(ro(s), r)
being the angle between the ro(s) − r and the antenna broadside direction) and C(k) collects the
antenna frequency behavior and the frequency part of the propagator (Green function) amplitude.
In particular, for the case at hand, the relevant Green function is proportional to a Hankel function of
zero order and second kind. P[θ(ro(s), r)] and C(k) are assumed to be known by a preliminary stage of
measurement and calibration using a reference target of known RCS such as a metallic sphere, a plate
or the like.

At this juncture, some further considerations concerning the model (1) are in order. First, it is
noted that in (1) each single point in the image domain has been considered to be being in the far-field
of the transmitting/receiving antenna. If this is not the case, a linear transformation could be still
established by invoking the plane-wave spectrum representation for both the Green function and the
antenna response. This circumstance is not considered in this manuscript. Second, field data, instead
of voltage, are being considered. Voltage is actually what one can measure. However, assuming
field data does not impair the generality of the theoretical/numerical analysis we intend to pursue.
Finally, the target reflectivity is in general frequency dependent; we denote such a dependence by
γ f (k). However, if the target can be represented by an ensemble of point-like scatterers, the frequency
dependent part of reflectivity is a priori known and hence can be considered embodied within the C(k)
term [10]. However, we will turn back on this assumption in the following sections.

The near-field (1) is in general much different from the corresponding far-field and hence cannot
be used directly for estimating the target RCS. This of course is due to the wavefront curvature of the
impinging electromagnetic wave and to the non-uniform illumination of the target. The aim of the
imaging stage is just to compensate for such wavefront curvature and amplitude behavior. This is
achieved by processing the scattered field data through a focusing operator that actually “translates”
the scattered field data into an image of the target under test. Formally, this is written as

γ̃(r) =
∫

Ω×Γ
fc[k, ro(s), r]ES[k, ro(s)]dkds (2)

where fc[k, ro(s), r] is the focusing kernel which is commonly chosen equal to ejφ[k,ro(s),r]/A[k, ro(s), r].
Clearly, γ̃ is a filtered (blurred) version of the actual reflectivity. That filtering depends on the
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configuration parameters, i.e., Ω × Γ, which reflect the properties of the imaging point-spread
function, i.e.,

ps f (r, r′) =
∫

Ω×Γ

A[k, ro(s), r′]
A[k, ro(s), r]

ej[φ[k,ro(s),r]−φ[k,ro(s),r′ ]]dkds (3)

so that (2) can be equivalently rewritten as

γ̃(r) =
∫

DI

ps f (r, r′)γ(r′)d2r′ (4)

Once the reflectivity has been estimated, the RCS can be computed by using its (2D) definition equation

σ(k, θo) = lim
ro→∞

2πro

∣∣∣∣ES(k, ro)

Einc

∣∣∣∣2 (5)

with ro ≡ (ro, θo) being the observation point. Hence, on exploiting (1) and (2), (5) yields

σ(k, θo) =

∣∣∣∣αγ f (k)
∫

DI

γ̃(r)e2jkr̂o ·rd2r
∣∣∣∣2 (6)

Equation (6) allows recognition that under the assumed linear scattering model, the RCS depends
of the Fourier transform of the reflectivity function projected over the so-called Ewald disc (resp. sphere
for the 3D case) [12]. Of course, because of the blurring introduced by the imaging procedure, some
error will corrupt the estimation (6). In order to mitigate such an error, a common way to proceed is to
normalize (6) by the RCS of the point-spread function [9], which is computed by Fourier transforming
ps f (r, 0). It is clear that behind this procedure there is the implicit assumption of considering (4) as
a convolution which in general does not hold. Differently, in [10], it is shown that by introducing
a suitable correction term, the focusing procedure can be approximated as a Fourier transformation.
Accordingly, γ̃ proves to be a windowed (in spatial spectrum domain) Fourier transform of the γ;
therefore, normalization is no longer required.

We will come back to these important points in the next section where we introduce an imaging
procedure for a more general (with respect to the usual circle) measurement curve.

3. Adjoint Inversion for Generic Measurement Curve

According to the previous section, the first step in any image-based RCS estimation method is to
solve the integral Equation (1) for the reflectivity γ. Formally, this entails finding the inverse of the
linearized scattering operator

AS : γ→ ES (7)

AS being just the integral operator in (1). A very common way to invert (7) is to adopt the adjoint
operator A†

S instead of the inverse of AS. A number of popular methods such as time-reversal,
reverse-migration, back-propagation, etc. are adjoint-based imaging schemes [8]. Inversion through the
adjoint allows us to deal with the ill-posedness of the problem in that it retunes a stable reconstruction
procedure. However, it is not a Tichonov regularization scheme as the corresponding reconstruction
fails to converge to the generalized solution even in absence of noise [8]. Their great diffusion is due to
their simple physical understanding and the possibility to be often implemented via FFT. In particular,
adjoint inversion succeeds in compensating the phase in correspondence to the actual scatterers’s
position but the amplitude is not addressed properly. For this reason, adjoint inversion is often paired
with a pre-weighting (filtering) stage, so that the image/reconstruction is obtained as [13]

A†
S : WES → γ̃ (8)
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where W(k, ro, r) is just the weighting function. In particular, on exploiting (1), the reconstruction
operator (8) can be explicitly written as

γ̃(r) =
∫

Ω×Γ
W[k, ro(s), r]ejφ[k,ro(s),r]ES[k, ro(s)]dkds (9)

which yields the point-spread function

ps f (r, r′) =
∫

Ω×Γ
W[k, ro(s), r]A[k, ro(s), r′]ej{φ[k,ro(s),r]−φ[k,ro(s),r′ ]}dkds (10)

Please note that the usual choice for the weighting function, as done in the previous section, is to
W[k, ro(s), r] = 1/A[k, ro(s), r]. On the other hand, it is desirable that the point-spread function be as
close as possible to a delta function. If this is achieved, the adjoint inversion actually approximates
a regularized reconstruction [14]. To cope with this question, the weighting function must be properly
chosen as detailed below.

We start by introducing the variable

w[k, ro(s), r, r′] = −
∫ 1

0
∇xφ[k, ro(s), x]|x=r′+λ(r−r′)dλ (11)

which allows rewriting of the phase term in (10) as

φ[k, ro(s), r]− φ[k, ro(s), r′] = −w[k, ro(s), r, r′] · (r− r′) (12)

and the point-spread function (10) as

ps f (r, r′) =
∫

Ωw
W(w, r)A(w, r′)e−jw·(r−r′) |J| d2w (13)

with J being the Jacobian of the transformation that maps w in (k, s). Equation (13) shows the
point-spread function as pseudodifferential operators which enjoy the so-called pseudolocal
property [15]. This is the very mathematical rationale that justifies performing the adjoint inversion to
retrieve object singularities, even though in order to correctly retrieve the singularity amplitudes the
weighting function must be properly chosen. Also, (13) makes it immediately clear that the leading
order contribution occurs for r− r′ = 0. Accordingly, the approximation

w[k, ro(s), r, r′] = w[k, ro(s), r, r] = −∇xφ[k, ro(s), x]|x=r (14)

is made in (13). This leads to the following point-spread function approximation

ps f (r, r′) '
∫

Ωw
e−jw·(r−r′)d2w (15)

once the weighting function is chosen as

W(w, r) = 1/ [A(w, r) |J|] (16)

It is seen that (15) is a filtered version of a Dirac delta. Moreover, Equation (15) makes it clear the
spectral content of the target that can be retrieved. Indeed, when the observation curve Γ goes around
the target it results that

Ωw = {w : 2kmin ≤ w ≤ 2kmax} (17)

where kmin and kmax are the wavenumbers corresponding to the lowest and highest adopted
frequencies. This result could have been expected since it exactly coincides to what can be retrieved
by a far-field configuration. However, it must be kept in mind that (17), and of course (15), holds
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only approximately true because of the approximation (14). However, (14) is expected to work well in
reproducing the main beam of the point-spread function, which in turn plays the major role in the
filtering introduced by the imaging procedure.

It is interesting to highlight that (15) holds true regardless of the shape of the observation
curve Γ. Indeed, the shape of Γ only enters in the choice of the weighting function through the
Jacobian term. In particular, when Γ is a circle surrounding the image region (as it is commonly
assumed) simple calculations show that (15) exactly returns the imaging kernel introduced in [10],
with the correcting term there introduced just being given by 1/|J|. In this regard, the formulation
introduced in this paper generalizes previous literature results, which indeed have mainly considered
circular measurement curves. Previous discussion can be summarized by the following statement:
the resolution achievable during the image stage does not depend on the shape of the measurement
curve. Moreover, by exploiting techniques similar to those in [16], an analytical expression for the
point-spread function can be obtained. In particular, it can be shown that the point-spread function
in (15) is given as

ps f (r, r′) ' 2π[ψ(2kmax|r− r′|)− ψ(2kmin|r− r′|)]
|r− r′|2 (18)

with
ψ(x) =

∫ x

0
yJ0(y)dy = xJ1(x) (19)

and J0(·) and J1(·) being Bessel functions of zero and first order. In Figure 2, the comparison between
the actual point-spread function and the one returned by (18) is shown. As can be appreciated, the two
curves overlap very well, this means that the leading term approximation exploited to derive (18)
works fine.
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Figure 2. Comparison between the normalized point-spread function amplitude (blue line) and the
one returned by (18) (red dotted line). The left panel refers to the cut along the y-axis; the right one to
the cut along the x-axis. The adopted frequency band is Ω = [0.5, 1.5] GHz while the observation curve
is an ellipse with axes of 2 m and 2.5 m, respectively.
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A further point that is worth stressing is that for a full-view scan (i.e., for a measurement curve
running all around the image region) the spectral domain Ωw does not depend on the image point r.
This means that the image kernel (15) can be actually considered to be convolution; however, this
does not hold true for (10), since to get (15) a spatially varying kernel was required. Accordingly,
the normalization procedure in [9] can be expected to work only when the image points are close to
the reference one (i.e., the one for which the point-spread function is computed and transformed).

Finally, it is remarked that to speed up the imaging procedure FFT-based routines are often
employed [17]. According to the previous formulation, this can be achieved for a generic measurement
curve. Of course, the usual interpolation and resampling step, which is required to map data over
a uniform grid, in general depends on the particular curve under concern. In the following numerical
examples we do not follow such a procedure, rather we employ (9) with the weighting function chosen
as in (16).

4. Single-Frequency Imaging

As clearly stated above, the previous RCS estimation procedure is founded on the assumption that
the targets are frequency independent or their frequency behaviors are equal and known. The latter
holds true for point-like targets but for most practical cases, even when targets can be still described
by an ensemble of scattering centers, the different contributions depend on the operating frequency.
Accordingly, the reflectivity returned by (9) is actually an averaged version performed over the
frequency band. This circumstance in general impacts negatively on the RCS computation. That is
why, the obtained image is usually used to compute the RCS only at the central (of the adopted band)
frequency [7].

Let us relax the above-mentioned assumption. Hence, here we consider the cases in which the
target frequency behavior is unknown, or it consists of scattering centers whose reflectivity coefficients
differently depends on frequency. In these cases, the frequency behavior cannot be singled out and
embodied within the scattering operator since actually γ = γ(k, r). Accordingly, the scattered field is
yielded by

ES[k, ro(s)] =
∫

DI

A[k, ro(s), r]e−jφ[k,ro(s),r]γ(k, r)d2r (20)

and the estimated reflectivity (through imaging) and the actual one are linked as

γ̃(r) =
∫

Ω
dk

γ̃(k,r)︷ ︸︸ ︷∫
DI

∫
Γ

fc[k, ro(s), r]A[k, ro(s), r′]e−jφ[k,ro(s),r′ ]γ(k, r′)dsd2r′ (21)

It is seen that γ̃(r) is now given as the coherent summation of the single-frequency images γ̃(k, r)
and as such it does not represent the (regularized) solution of (20). This could have been expected
since both scattered field data and unknown reflectivity depend on the frequency. As discussed above,
this leads to a degradation of accuracy while estimating the RCS.

The arising question is whether, in order to estimate the RCS at a given frequency, a frequency
band must necessarily be employed. The answer to this question seems positive if high-resolution
radar imaging is aimed. At the other hand, single-frequency images are not affected by previous
drawback but the performance in the reconstruction in general results much lower. Hence, the question
can be rephrased as whether image degradation (due to single-frequency data) impairs RCS estimation.
To this end, we particularize (15) to the single-frequency case, for example by considering k = kav

(i.e., the average one)

ps fs f (r, r′) '
∫

Cw
e−jw·(r−r′)d2w (22)

where the subscript s f stands for single-frequency and Cw = {w : w = 2k}. (22) can be easily
computed and the result is

ps fs f (r, r′) ' 4πkJ0(2k|r− r′|) (23)
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In Figure 3 the comparison between the actual point-spread function and the one returned by (23)
is shown. Again, the estimated psf allows us to obtain a good approximation of the actual one.

To understand how resolution degrades when single-frequency data are used, Equation (23) can
be compared to (18). It is clear that now the spatial spectrum that can be retrieved about the unknown
reflectivity is much lower since Cw consists of a single circle instead of the circular annulus Ωw.
Nonetheless, as shown in [16], it is the relative bandwidth (i.e., (kmax − kmin)/kav), rather than the
frequency band, that plays the major role. This is somewhat different from the common belief that
the frequency band is necessary and is a consequence of the full-view (i.e., measurements are taken
all around the target) configuration. However, we do not want to dwell any further on that point
since this is not the focus of the paper. The point is whether image degradation impairs the possibility
of obtaining RCS. To this end, we once again remark that (22) introduces a filtering that allows
retention of only the target reflectivity over the circle Cw, which is the Ewald circle corresponding to
the wavenumber k and which is, according to (6), what is necessary to compute the RCS.

Finally, by looking at Figure 3, it can be seen that the side-lobes are higher than the multi-frequency
case. This allows expectation that while comparing multi-frequency and single-frequency RCS
estimations, the spatial truncation introduced by the size of the investigated area will play a crucial role.
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Figure 3. Comparison between the normalized point-spread function amplitude (blue line) and the
one returned by (23) (red dotted line). The left panel refers to the cut along the y-axis whereas the right
one to the cut along the x-axis. The frequency is 1 GHz while the observation curve is an ellipse with
axes 2 m and 2.5 m.

To check previous arguments, we conclude this section by running a simple case.
In particular, we consider two point-like objects whose reflectivity is given by γ(x, y) =

0.1(j k
kmin

)2 [δ(x, y− 0.5) + δ(x, y + 0.5)]. The electric field is collected over an ellipse whose axes are
3 m and 3.5 m and the working frequency is f = 1.75 GHz. Since the far-field distance is 11.7 m,
the ellipse lies in the near-field region of two point scatterers. In Figure 4 the RCS at that frequency
is shown. The green lines refer to the actual RCS, while the blue and red lines to the ones computed
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from the multi-frequency (Ω = [0.5, 3]GHz) and single-frequency images, respectively. In particular,
in the panel a) DI = [(−1, 1)× (−1, 1)] is considered whereas for panel b) DI = [(−2, 2)× (−2, 2)].
From the Figure 4a) it can be appreciated that the multi-frequency configuration allows us to obtain
a better RCS estimation. However, when DI increases (see Figure 4b) the red line becomes very similar
to the blue one. This confirms that single-frequency RCS is feasible and competitive with respect to the
multi-frequency one provided the size of the investigated area is enlarged.
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Figure 4. Normalized RCS (in db scale) at f = 1.75 GHz. The green lines refer to the actual RCS, while
the blue and red lines to the ones computed from the multi-frequency and single-frequency images,
respectively. (a) DI = [(−1, 1)× (−1, 1)] and (b) DI = [(−2, 2)× (−2, 2)].

5. Numerical Examples

In this section, some further examples are addressed to check RCS estimation.
In all the following examples, the RCS is evaluated at favg = 4.5 GHz, the field is collected

over an ellipse whose axes are 30λavg and 35λavg with λavg the wavelength at favg and DI =

[(−20λavg, 20λavg) × (−20λavg, 20λavg)]. Moreover, when the multi-frequency configuration is
exploited Ω = [3, 6] GHz. The target, always a perfect electric conducting scatterer, is contained
within a circular image region with radius 5

√
2λavg. Accordingly, the far-field distance is 400λavg

and the ellipse lies in the near-field region of the object. Three different objects, shown in Figure 5,
are considered.

The first object is a bar of length 10
√

2λavg. The corresponding multi-frequency and
single-frequency images are reported in the panels (a) and (b) of Figure 6, while the RCS estimations
are compared in (c). As can be seen, despite the evident degradation of the reconstructed image,
single-frequency configuration allows us to obtain an RCS estimation which is very similar to the
multi-frequency one; indeed the three curves overlap very well.



J. Imaging 2019, 5, 61 10 of 13

The circular object (of radius 5
√

2λavg) is addressed in Figure 7. As can be seen, the multi-frequency
reconstruction allows us to clearly discern the shape of the target which is completely lost in the
single-frequency case. Nonetheless. the RCS estimation is comparable with the multi-frequency one.

The last considered example, the missile shaped target is addressed in Figure 8. The same
discussion as for the previous examples still holds. In this case, it must be remarked that even
though the main RCS features (spikes) are captured, both the multi-frequency and the single-frequency
approaches show some deviation from the actual RCS. This can be ascribed to the model error (for
example multiple scattering, which is more relevant for this complex shaped target) that inherently
affects image-based procedure.
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Figure 5. Contours of the objects under test.
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Figure 6. Object in Figure 5a. (a) Multi-frequency image. (b) Single-frequency image. (c) Normalized
RCS at f = 4.5 GHz. The green line refers to the actual RCS, while the blue and red lines to the ones
computed from multi-frequency and single-frequency images, respectively.
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Figure 7. Object in Figure 5b. (a) Multi-frequency image. (b) Single-frequency image. (c) Normalized
RCS at f = 4.5 GHz. The green line refers to the actual RCS, while the blue and red lines to the ones
computed from the multi-frequency and single-frequency images, respectively.

-20 -10 0 10 20

x/
avg

-20

-10

0

10

20

y
/

a
v
g

-20 -10 0 10 20

x/
avg

-20

-10

0

10

20

y
/

a
v
g

0 50 100 150 200 250 300 350

[deg]

-50

-40

-30

-20

-10

0

[d
B

]

b)a)

c)

Figure 8. Object in Figure 5c. (a) Multi-frequency image. (b) Single-frequency image. (c) Normalized
RCS at f = 4.5 GHz. The green line refer to the actual RCS, while the blue and red lines to the ones
computed from the multi-frequency and single-frequency images, respectively.
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6. Conclusions

In this paper, the problem of estimating the RCS from near-field data by image-based approaches
has been addressed.

The first contribution we conveyed in this manuscript was the rigorous derivation of a focusing
procedure based on a weighted adjoint scheme which generalizes for an arbitrary measurement curve
the results presented in [10] that have been developed for a circular measurement curve.

Secondly, the important question concerning the necessity to use a multi-frequency configuration
to estimate the RCS has been studied. Accordingly, a deep analysis of the introduced analytical
tools highlighted that if RCS is required at a given frequency, then the target image obtained solely
at such a frequency can be in principle exploited. This opens the possibility of employing cheaper
measurement systems and to take into account target frequency dependence. However, the spatial
truncation introduced by the size of the investigated area must be properly taken into account.

Several numerical examples corroborated the possibility of computing the RCS from
single-frequency image.

For the sake of simplicity, the study has been developed for a 2D scalar configuration.
The generalization to 3D real scenario is a possible future development.
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