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Abstract: The RGBW color filter arrays (CFA), also known as CFA2.0, contains R, G, B, and white
(W) pixels. It is a 4 × 4 pattern that has 8 white pixels, 4 green pixels, 2 red pixels, and 2 blue
pixels. The pattern repeats itself over the whole image. In an earlier conference paper, we cast
the demosaicing process for CFA2.0 as a pansharpening problem. That formulation is modular
and allows us to insert different pansharpening algorithms for demosaicing. New algorithms in
interpolation and demosaicing can also be used. In this paper, we propose a new enhancement of
our earlier approach by integrating a deep learning-based algorithm into the framework. Extensive
experiments using IMAX and Kodak images clearly demonstrated that the new approach improved
the demosaicing performance even further.

Keywords: debayering; RGBW pattern; CFA2.0; demosaicing; pansharpening; color filter array;
Bayer pattern; deep learning

1. Introduction

Two mast cameras (Mastcams) are onboard the NASA’s rover, Curiosity. The Mastcams are
multispectral imagers having nine bands in each. The standard Bayer pattern [1] in Figure 1a has been
used for the RGB bands in the Mastcams. One objective of our research was to investigate whether
or not it is worthwhile to adopt the 4 × 4 RGBW Bayer pattern [2,3] in Figure 1b instead of the 2 × 2
one in NASA’s Mastcams. We have addressed the comparison between 2 × 2 Bayer and 4 × 4 RGBW
pattern in an earlier conference paper [4], which proposed a pansharpening approach. We observed
that Bayer has better performance than the RGBW pattern. Another objective of our paper here is to
investigate a new and enhanced pansharpening approach to demosaicing the RGBW images.

Compared to the vast number of debayering papers [2,5–12] for Bayer pattern [1], only few
papers [2–4,13] talk about the demosaicing of the RGBW pattern. In [2,3], a spatial domain approach
was described. In [13], a frequency domain approach was introduced. It was observed that the artifacts
are less severe if RGBW is used in some demosaiced images. In [14], an improved algorithm known
as least-squares luma–chroma demultiplexing (LSLCD) over [13] was proposed. Some universal
algorithms [15–17] have been proposed in the last few years. In [18], optimal CFA patterns were
designed for any percentage of panchromatic pixels.

In a 2017 conference paper [4] written by us, a pansharpening approach was proposed to
demosaicing the RGBW patterns. The idea was motivated by pansharpening [19–34], which is a mature
and well-developed research area. The objective is to enhance a low resolution color image with help
from a co-registered high resolution panchromatic image. Due to the fact that half of the pixels in the
RGBW pattern are white, we think that it is appropriate to apply pansharpening techniques to perform
the demosaicing.
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Figure 1. (a) Bayer pattern; (b) RGBW (aka color filter arrays (CFA2.0)) pattern. 

Although RGBW has some robustness against noise and low light conditions, it is not popular 
and does not have good performance [4] as compared to the standard Bayer pattern. Nevertheless, 
we would like to argue that the debayering of RGBW is a good research problem for academia even 
in the case where mosaiced images are clean and noise-free. Ideally, it will be good to reach the 
same level of performance of the standard Bayer pattern. However, it is a challenge to improve the 
debayering performance of RGBW. 

In our earlier paper [4], our pansharpening approach consisted of the following steps. First, the 
generation of the pan band and the low resolution RGB bands is similar to that in [2,3]. Second, 
instead of downsampling the pan band, we apply some pansharpening algorithms to directly 
generate the pansharpened color images. However, the results in [4] were slightly better than the 
standard method [2,3] for IMAX data, but slightly inferior for Kodak data. 

In this paper, we present a new approach that aims at further improving the pansharpening 
approach in [4]. There are two major differences between this paper and [4]. First, we propose to 
apply a recent deep learning based demosaicing algorithm in [35] to improve both the white band 
(also known as illuminance band or panchromatic band) and the reduced resolution RGB image. 
After that, a pansharpening step is used to generate the final demosaiced image. Second, it should 
be emphasized that a new “feedback” concept was introduced and evaluated. The idea is to feed 
the pansharpened images back to two early steps. Extensive experiments using the benchmark 
IMAX and Kodak images showed that the new framework improves over earlier approaches. 

Our contributions are as follows: 

• We are the first team to propose the combination of pansharpening and deep learning to 
demosaic RGBW pattern. Our approach opens a new direction in this research field and may 
stimulate more research in this area; 

• Our new results improved over our earlier results in [4]; 
• Our results are comparable or better than state-of-the-art methods [2,14,16].  

This paper is organized as follows. In Section 2, we will review the standard approach and also 
the pansharpening approach [4] of demosaicing the RGBW images. We will then introduce our new 
approach that combines deep learning and pansharpening. In Section 3, we will summarize our 
extensive comparative studies. Section 4 will include a few concluding remarks and future research 
directions. 

2. Enhanced Pansharpening Approach to Demosaicing of RGBW CFAs 

2.1. Standard Approach 

In [3], a standard approach was presented. Figure 2 [2] depicts the key ideas. A mosaiced 
image is first split into color and panchromatic components. The color and the panchromatic 
components are then processed separately to generate the full resolution color images. This 
approach is very efficient and can achieve decent performance, which can be explained using 
Lemma 1 of [7]. For completeness, the Lemma is included below. 
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Although RGBW has some robustness against noise and low light conditions, it is not popular
and does not have good performance [4] as compared to the standard Bayer pattern. Nevertheless,
we would like to argue that the debayering of RGBW is a good research problem for academia even in
the case where mosaiced images are clean and noise-free. Ideally, it will be good to reach the same level
of performance of the standard Bayer pattern. However, it is a challenge to improve the debayering
performance of RGBW.

In our earlier paper [4], our pansharpening approach consisted of the following steps. First,
the generation of the pan band and the low resolution RGB bands is similar to that in [2,3]. Second,
instead of downsampling the pan band, we apply some pansharpening algorithms to directly generate
the pansharpened color images. However, the results in [4] were slightly better than the standard
method [2,3] for IMAX data, but slightly inferior for Kodak data.

In this paper, we present a new approach that aims at further improving the pansharpening
approach in [4]. There are two major differences between this paper and [4]. First, we propose to
apply a recent deep learning based demosaicing algorithm in [35] to improve both the white band (also
known as illuminance band or panchromatic band) and the reduced resolution RGB image. After that,
a pansharpening step is used to generate the final demosaiced image. Second, it should be emphasized
that a new “feedback” concept was introduced and evaluated. The idea is to feed the pansharpened
images back to two early steps. Extensive experiments using the benchmark IMAX and Kodak images
showed that the new framework improves over earlier approaches.

Our contributions are as follows:

• We are the first team to propose the combination of pansharpening and deep learning to demosaic
RGBW pattern. Our approach opens a new direction in this research field and may stimulate more
research in this area;

• Our new results improved over our earlier results in [4];
• Our results are comparable or better than state-of-the-art methods [2,14,16].

This paper is organized as follows. In Section 2, we will review the standard approach and
also the pansharpening approach [4] of demosaicing the RGBW images. We will then introduce our
new approach that combines deep learning and pansharpening. In Section 3, we will summarize
our extensive comparative studies. Section 4 will include a few concluding remarks and future
research directions.

2. Enhanced Pansharpening Approach to Demosaicing of RGBW CFAs

2.1. Standard Approach

In [3], a standard approach was presented. Figure 2 [2] depicts the key ideas. A mosaiced image
is first split into color and panchromatic components. The color and the panchromatic components are
then processed separately to generate the full resolution color images. This approach is very efficient
and can achieve decent performance, which can be explained using Lemma 1 of [7]. For completeness,
the lemma is included below.
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Lemma 1. Let F be a full-resolution reference color component. Then any other full-resolution color components
C ∈ { R, G, B} can be predicted from its subsampled version Cs using

C ≈ I(Cs − Fs) + F (1)

where Fs is subsampled version of F and I denotes a proper interpolation process.

Lemma 1 provides a theoretical foundation for justifying the standard approach. Moreover, the
standard approach is intuitive and simple.
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2.2. Pansharpening Approach to Denosaicing CFA2.0 Patterns

Figure 3 shows our earlier pansharpening approach to debayering CFA2.0 images. Details can be
found in [4]. The generation of pan and low resolution RGB images is the same in both Figures 2 and 3.

In our earlier study [4], we applied nine representative pansharpening algorithms: Principal
Component Analysis (PCA) [25], Smoothing Filter-based Intensity Modulation (SFIM) [27], Modulation
Transfer Function Generalized Laplacian Pyramid (MTF-GLP) [28], MTF-GLP with High Pass
Modulation (MTF-GLP-HPM) [29], Gram Schmidt (GS) [30], GS Adaptive (GSA) [31], Guided Filter
PCA (GFPCA) [32], Partial Replacement based Adaptive Component-Substitution (PRACS) [33], and
hybrid color mapping (HCM) [19–23].
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In particular, HCM is a pansharpening algorithm that uses a high resolution color image to enhance
a low resolution hyperspectral image. HCM can be used for color, multispectral, and hyperspectral
images. More details about HCM can be found in [20] and open source codes can be found in [34].

2.3. Enhanced Pansharpening Approach

Figure 4 illustrates the enhanced pansharpening approach. First, we apply a deep learning
based demosaicing algorithm known as DEMONET [35] to demosaic the reduced resolution CFA.
Second, the demosaiced R and B images are upsampled and used to fill in the missing pixels in
the panchromatic (pan) band. The reason for this is that the R and B bands have some correlations
with the white pixels [36]. Some supporting arguments can be found below and also in Section 3.2.
Third, we now treat the filled in pan band as a standard Bayer pattern with two white pixels, one
R pixel, one B pixel, and then apply DEMONET again. The demosaiced image will have two white
bands, one R band, and one B band. Fourth, the two white bands are averaged and extracted as
the full resolution luminance band. Fifth, the luminance band is used to pansharpen the reduced
resolution RGB images to generate the final demosaiced image. Sixth, we introduce a feedback concept
(Figure 4b) that feeds the pansharpened RGB bands back to replace the reduced resolution RGB
image and also replace those R and B pixels in the pan band. The pan band is then generated using
DEMONET, and then pansharpening is performed again. This process repeats multiple times to yield
the final results. We believe this “feedback” is probably the first ever idea in the demosaicing of RGBW
images. Experimental results showed that the overall approach is promising and improved over earlier
results in both IMAX and Kodak images. We observed that three iterations of feedback can generate
good results.
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Figure 4. Proposed new deep learning based approach to demosaicing CFA2.0: (a) DEMONET based
approach without feedback; (b) DEMONET based approach with feedback.
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Here, we provide some more details about the DEMONET algorithm. We chose DEMONET
because a comparative study was carried out in [35] that demonstrated its performance against other
deep learning and conventional methods. As described in [35], the DEMONET is a feed-forward
network architecture for demosaicing (Figure 5). The network comprises D + 1 convolutional layers.
Each layer has W outputs and the kernel sizes are K × K. An initial model was trained using first
network using 1.3 million images from Imagenet and 1 million images from MirFlickr. Additionally,
some challenging images were searched to further enhance the training model. Details can be found
in [35].
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Figure 5. DEMONET architecture [35].

Some additional details regarding Figure 4 are described below.

• First, we will explain how DEMONET was used for improving the pan band. Our idea was
motivated by the research of [36] in which it was observed that the white (W) channel has a higher
spectral correlation with the R and B channels than the G channel. Hence, we create a fictitious
Bayer pattern where the original W (also known as P) pixels are treated as G pixels, the missing W
pixels are filled in with interpolated R and B pixels from the low resolution RGB image. Figure 6
illustrates the creation of the fictitious Bayer pattern.
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Figure 6. Fictitious Bayer pattern for pan band generation.

Once the fictitious Bayer pattern is created, we apply DEMONET to demosaic this pattern. The W
or P pixels will be extracted from the G band in the demosaiced image. Although the above simple idea
is very straightforward, the results of the improvement are quite large, which can be seen in Table 1.

• Second, we would like to emphasize that we did not re-train the DEMONET because we do not
have that many images. Most importantly, the DEMONET was trained with millions of diverse
images. The performance of the above way of generating the pan band is quite good, as can be
seen from Table 1;

• Third, we will explain how feedback works. There are two feedback paths. After the first iteration,
we will obtain an enhanced color image. In the first feedback path, we replace the reduced
resolution color image in Figure 4 with a downsized version of the enhanced color image. In the
second feedback path, we directly replace the R and B pixels with the corresponding R and B
pixels from the enhanced color image as shown in Figure 7.
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We then apply DEMONET to the above enhanced Bayer pattern to generate an enhanced pan
band and go through the pansharpening step to create another enhanced color image. The above
process repeats three or more times. In our experiments, we found that the performance reaches the
maximum after three iterations.

For ease of illustration of the work flow, we created a pseudo-code as follows:

Combined Deep Learning and Pansharpening for Demosaicing RGBW Patterns

Input: An RGBW pattern
Output: A demosaiced color image
I = 1; iteration number

Step 1. For each 4 × 4 RGBW patch, create a 2 × 2 reduced resolution Bayer pattern, and also a 4 × 4 pan band
with half of the pixels white and half of pixels missing. Repeat the above for the whole image.

Step 2. Demosaic the 2 × 2 Bayer pattern using DEMONENT algorithm (pre-trained offline). Furthermore,
upsample the demosaiced image to the same size of the original image.

Step 3. Fill in the missing pixels of pan band.

a. Creation of a fictitious Bayer pattern for the pan band: Take R and B pixels from the upsampled
demosaiced image and alternately fill in the missing pixels in the original pan band. Here, the
green band of the fictitious Bayer pattern has pixels from the original white pixels in the
pan band.

b. Apply DEMONET to demosaic the fictitious Bayer pattern in Step 3a. Take the green band of
the DEMONET output as the pan band.

c. Replace half of the pixels in the output of Step 3b with the original white pixels in the original
pan band.

Step 4. Apply the HCM pansharpening algorithm to fuse the pan band from Step 3 and the reduced
resolution color image from Step 2.

* I = I + 1
If I > K, then stop. K is a pre-designed integer. We used K = 3 in our experiments.
Otherwise,

Step 5. Downsample the pansharpened image; feed it back to Step 2 to replace the reduced resolution
color image.

Step 6. Go to Step 3a, take R and B pixels from the pansharpened image, and fill them into those missing
pixels in original pan band.

Step 7. Repeat Steps 3b and 3c.
Step 8. Repeat Step 4.

Go to *
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One may ask why an end-to-end deep learning approach was not developed for RBGW. This is
a good question for the research community and we do not have an answer for this at the moment.
We believe that it is a non-trivial task to modify an existing scheme such as DEMONET to deal with
RGBW. This extension by itself could be a good research direction for future research.

For the pansharpening module in Figure 4, we used HCM because it performed well in our earlier
study [4].

3. Experimental Results

3.1. Data: IMAX and Kodak

Similar to earlier studies in the literature, we used IMAX (Figure 8) and Kodak (Figure 9) data sets.
In the original Kodak data, there are 24 images. We chose only 12 images because other researchers [2]
also used these 12 images.
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3.2. Performance Metrics and Comparison of Different Approaches to Generating the Pan Band

Two well-known performance metrics were used: Peak signal-to-noise ratio (PSNR) and
CIELAB [37]. In Table 1, we first show some results that justify why we fill in the R and B pixels in
the missing locations of the panchromatic band. Table 1 shows the PSNR values of several methods
for generating the pan band. It can be seen that the bilinear and Malvar-He-Cutler (MHC) methods
have 31.26 and 31.91 dBs, respectively. To explore alternatives for generating better pan band, we used
DEMONET with filled in R and B pixels from two cases (one from the reduced resolution color image
and one from the ground truth RGB images). We can clearly see that the PSNR values (33.13 and 37.48)
are larger with DEMONET than those by using bilinear and MHC methods. This is because the R
and B pixels have some correlations with the white pixels and DEMONET was able to extract some
information from the R and B pixels in the demosaicing process. In practice, we will not have the
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ground truth RGB bands and hence the 37.4825 dBs will never be attained. However, as shown in
Figure 4b, we can still take R and B values from the pansharpened RGB image. It turns out that such a
feedback process further enhances the performance of our proposed method. We believe the above
“feedback” idea is a good contribution to the demosaicing community for CFA2.0.

In our study, we also did customize the deep learning demosaicing method for Mastcam images
from NASA because Mastcam images are of interest to NASA. It is interesting to observe that our
customized model did not perform as well as the original model. This is because (1) our Mastcam
image database is limited in size; (2) the original DEMONET used millions of images. Based on the
above, we decided to use the original model instead of re-training it. In other words, if the original
model is already good enough, there is no need to re-invent the wheel.

Table 1. Peak signal-to-noise ratio (PSNR) of pan bands generated by using different
interpolation methods.

Interpolation Method PSNR

BILINEAR 31.2574

Malvar-He-Cutler (MHC) 31.9133

DEMONET using R and B pixels from the Reduced resolution RGB 33.1281

DEMONET using R and B pixels from the GROUND TRUTH RGB image 37.4825

3.3. Evaluation Using IMAX Images

Table 2 summarizes the PSNR and CIELAB scores for the IMAX images. The column “Before
Processing” contains results using the bicubic interpolation of the reduced resolution color image in
Figure 4. We could have included results using some other RGBW demosaicing algorithms [13–17].
However, we contacted those authors for their codes. Some [13,15] did not respond and some [16,17]
provided codes that were not for the RGBW pattern. Actually, we tried to implement some of those
algorithms [16,17], but could not get good results. We were able to obtain LSLCD codes from [14] and
have included comparisons with [14] in this paper. The column “Standard” refers to results using the
standard demosaicing procedure in Figure 2. The column “LSLCD” shows results using the algorithm
from [14]. The “HCM” contains results using the framework in Figure 3. The last two columns contain
the results generated by using the proposed new framework (without and with feedback) in Figure 4.
It can be seen that the new framework with feedback based on DEMONET achieved better results in
almost all images as compared to the earlier approaches. The improvement is about 0.8 dBs over the
best previous approach in terms of averaged PSNR for all images.

Table 2. PSNR and CIELAB metrics of different algorithms: IMAX data. Bold numbers indicate the
best performing method in each row.

Image Metric Before
Processing Standard LSLCD HCM DEMONET w/o

FEEDBACK
DEMONET w
FEEDBACK

1
PSNR 23.965 26.203 24.648 26.210 25.783 26.182

CIELAB 9.447 8.182 9.611 7.755 7.897 7.682

2
PSNR 28.879 32.812 31.594 32.354 32.010 32.759

CIELAB 6.384 5.459 6.524 5.105 5.053 4.858

3
PSNR 24.390 28.917 29.563 28.880 29.026 30.085

CIELAB 8.777 6.400 6.833 5.806 6.028 5.635

4
PSNR 26.838 31.528 31.699 32.980 32.386 34.061

CIELAB 3.887 2.723 2.935 2.101 2.286 2.080

5
PSNR 27.709 30.433 28.937 31.460 30.968 31.503

CIELAB 5.087 4.107 5.073 3.753 4.073 3.901
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Table 2. Cont.

Image Metric Before
Processing Standard LSLCD HCM DEMONET w/o

FEEDBACK
DEMONET w
FEEDBACK

6
PSNR 31.355 32.866 30.795 33.715 33.538 33.999

CIELAB 4.530 3.995 5.014 3.600 3.705 3.583

7
PSNR 28.637 33.545 34.391 32.293 33.547 34.786

CIELAB 5.045 3.340 3.484 3.654 2.991 2.836

8
PSNR 29.614 34.583 34.438 34.239 34.610 36.118

CIELAB 6.441 5.235 6.394 5.198 5.101 4.884

9
PSNR 30.964 34.298 32.133 34.899 33.962 34.869

CIELAB 4.867 4.325 5.561 3.584 3.474 3.304

10
PSNR 32.068 35.430 33.407 34.996 34.982 35.518

CIELAB 5.191 4.458 5.754 4.076 4.198 4.038

11
PSNR 33.733 36.475 34.332 36.364 36.654 37.203

CIELAB 5.523 5.159 6.704 4.206 4.043 3.893

12
PSNR 29.501 34.629 34.493 34.982 35.126 36.358

CIELAB 4.289 3.091 3.700 2.886 2.908 2.697

13
PSNR 34.374 38.003 36.480 38.686 38.542 39.245

CIELAB 2.285 1.825 2.186 1.729 1.760 1.705

14
PSNR 33.535 36.651 35.852 36.826 36.545 37.080

CIELAB 3.784 3.357 3.919 3.175 3.224 3.147

15
PSNR 34.716 37.254 35.470 37.610 37.010 37.641

CIELAB 4.208 3.992 5.306 3.586 3.805 3.677

16
PSNR 27.638 29.756 28.101 31.011 30.811 31.567

CIELAB 9.417 8.560 9.837 6.578 6.053 5.793

17
PSNR 28.159 29.222 26.304 28.806 28.528 28.927

CIELAB 9.477 9.381 12.852 8.330 8.329 8.111

18
PSNR 28.113 33.122 31.152 32.376 32.857 33.840

CIELAB 6.270 4.808 5.475 4.368 3.828 3.636

Average PSNR 29.677 33.096 31.877 33.260 33.160 33.986

CIELAB 5.828 4.911 5.954 4.416 4.375 4.192

Figures 10 and 11 depict the averaged PSNR and CIELAB scores of the various methods for IMAX
images. The scores of the new framework are better than earlier methods. Figure 12 visualizes all the
demosaiced images as well as the original image for one IMAX image. It can be seen that the images
using the new framework are comparable to others.
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3.4. Evaluation Using Kodak Images

Table 3 summarizes the PSNR and CIELAB scores of various algorithms for the Kodak images.
The arrangement of columns in Table 3 is similar to that in Table 2. We observe that the new approach
based on DEMONET yielded better results than most of the earlier methods. Figures 13 and 14 plot
the averaged PSNR and CIELAB scores versus different algorithms. The averaged CIELAB scores of
the proposed approach without and with feedback are close to each other to the third decimal place.
In terms of PSNR, the approach with feedback is 0.3 dBs better than that without feedback. In general,
Kodak images have better correlations between bands than that of IMAX images according to [5].
Because of the above observation, algorithms working well for Kodak images may not work well for
IMAX images. Figure 15 shows the demosaiced images of various algorithms. We also included one
demosaiced image from one universal demosaicing algorithm [16] in Figure 15. We can see that results
using proposed framework with DEMONET look slightly better than the other methods in terms of
color distortion.
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Table 3. PSNR and CIELAB metrics of various algorithms: Kodak data. Bold numbers indicate the best
performing method in each row.

Image Metric Before
Processing Standard LSLCD HCM DEMONET w/o

FEEDBACK
DEMONET w
FEEDBACK

1
PSNR 33.018 37.560 32.111 37.095 37.994 37.986

CIELAB 2.123 1.534 3.646 1.632 1.623 1.657

2
PSNR 26.305 31.862 36.086 31.756 33.306 33.827

CIELAB 4.869 2.719 2.022 2.820 2.485 2.518

3
PSNR 31.690 36.777 34.484 36.180 36.433 36.616

CIELAB 2.936 1.877 2.831 2.103 2.155 2.198

4
PSNR 22.690 29.447 31.288 29.536 30.780 31.439

CIELAB 7.593 3.608 3.343 3.608 3.211 3.196

5
PSNR 30.919 36.883 35.855 36.742 37.534 37.884

CIELAB 2.469 1.424 1.783 1.452 1.400 1.430

6
PSNR 27.652 32.932 35.045 32.613 33.615 33.866

CIELAB 5.110 2.918 2.885 3.139 3.110 3.206

7
PSNR 29.738 35.484 39.361 35.385 36.821 37.307

CIELAB 3.813 2.123 1.519 2.164 1.881 1.907

8
PSNR 26.933 33.454 35.077 33.394 34.466 34.816

CIELAB 4.562 2.538 2.116 2.722 2.501 2.564

9
PSNR 30.288 35.407 36.015 35.186 35.826 36.229

CIELAB 2.871 1.766 1.954 1.867 1.777 1.813

10
PSNR 27.065 32.453 34.956 32.315 33.514 33.756

CIELAB 4.572 2.698 2.413 2.758 2.529 2.606

11
PSNR 28.571 33.534 33.472 33.207 33.790 33.804

CIELAB 4.115 2.679 2.979 2.750 2.726 2.756

12
PSNR 25.367 29.691 33.538 29.561 30.478 30.702

CIELAB 4.766 2.860 2.375 2.905 2.620 2.616

Average PSNR 28.353 33.790 34.774 33.581 34.546 34.853

CIELAB 4.150 2.395 2.489 2.493 2.335 2.372
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4. Conclusions

We present a deep learning-based approach that improves an earlier pansharpening approach to
debayering CFA2.0 CFAs. Our key idea is to utilize the deep learning-based algorithm to improve
the interpolation of the illuminance/pan band and also the reduced resolution color image. A novel
feedback concept was introduced that can further enhance the overall demosaicing performance. Using
IMAX and Kodak data sets, we carried out a comparative study between the proposed approach and
earlier approaches. One can observe that the proposed new approach has better performance than
earlier approaches for both the Kodak data and the IMAX data.

One future research direction is on how to improve the quality of the pan band. Another direction
is to develop a stand-alone and end-to-end deep learning based approach for RGBW patterns.

Author Contributions: C.K. conceived the overall concept and wrote the paper. B.C. implemented the algorithm,
prepared all the figures and tables, and proofread the paper.

Funding: This research was supported by NASA JPL under contract # 80NSSC17C0035. The views, opinions,
and/or findings expressed are those of the author(s) and should not be interpreted as representing the official
views or policies of NASA or the U.S. Government.

Conflicts of Interest: The authors declare no conflict of interest.



J. Imaging 2019, 5, 68 13 of 14

References

1. Bayer, B.E. Color Imaging Array. U.S. Patent 3,971,065, 20 July 1976.
2. Losson, O.; Macaire, L.; Yang, Y. Comparison of color demosaicing methods. Adv. Imaging Electron Phys.

Elsevier 2010, 162, 173–265.
3. Kijima, T.; Nakamura, H.; Compton, J.T.; Hamilton, J.F.; DeWeese, T.E. Image Sensor With Improved Light

Sensitivity. U.S. Patent US 8,139,130, 20 March 2012.
4. Kwan, C.; Chou, B.; Kwan, L.M.; Budavari, B. Debayering RGBW color filter arrays: A pansharpening

approach. In Proceedings of the IEEE Ubiquitous Computing, Electronics & Mobile Communication
Conference, New York, NY, USA, 19–21 October 2017; pp. 94–100.

5. Zhang, L.; Wu, X.; Buades, A.; Li, X. Color demosaicking by local directional interpolation and nonlocal
adaptive thresholding. J. Electron. Imaging 2011, 20, 023016.

6. Malvar, H.S.; He, L.-W.; Cutler, R. High-quality linear interpolation for demosaciking of color images. IEEE
Int. Conf. Acoust. Speech Signal Process. 2004, 3, 485–488.

7. Lian, N.-X.; Chang, L.; Tan, Y.-P.; Zagorodnov, V. Adaptive filtering for color filter array demosaicking. IEEE
Trans. Image Process. 2007, 16, 2515–2525. [CrossRef] [PubMed]

8. Kwan, C.; Chou, B.; Kwan, L.M.; Larkin, J.; Ayhan, B.; Bell, J.F.; Kerner, H. Demosaicking enhancement using
pixel level fusion. J. Signal Image Video Process. 2018, 12, 749–756. [CrossRef]

9. Zhang, L.; Wu, X. Color demosaicking via directional linear minimum mean square-error estimation. IEEE
Trans. IP 2005, 14, 2167–2178. [CrossRef]

10. Lu, W.; Tan, Y.P. Color filter array demosaicking: New method and performance measures. IEEE Trans. IP
2003, 12, 1194–1210.

11. Dubois, E. Frequency-domain methods for demosaicking of bayer-sampled color images. IEEE Signal Proc.
Lett. 2005, 12, 847–850. [CrossRef]

12. Gunturk, B.; Altunbasak, Y.; Mersereau, R.M. Color plane interpolation using alternating projections. IEEE
Trans. Image Process. 2002, 11, 997–1013. [CrossRef]

13. Rafinazaria, M.; Dubois, E. Demosaicking algorithm for the Kodak-RGBW color filter array. In Proceedings
of the Color Imaging XX: Displaying, Processing, Hardcopy, and Applications, San Francisco, CA, USA, 9–12
February 2015; Volume 9395.

14. Leung, B.; Jeon, G.; Dubois, E. Least-squares luma-chroma demultiplexing algorithm for Bayer demosaicking.
IEEE Trans. Image Process. 2011, 20, 1885–1894. [CrossRef]

15. Zhang, C.; Li, Y.; Wang, J.; Hao, P. Universal demosaicking of color filter arrays. IEEE Trans. Image Process.
2016, 25, 5173–5186. [CrossRef] [PubMed]

16. Condat, L. A generic variational approach for demosaicking from an arbitrary color filter array. In
Proceedings of the IEEE International Conference on Image Processing (ICIP), Cairo, Egypt, 7–10 November
2009; pp. 1625–1628.

17. Menon, D.; Calvagno, G. Regularization approaches to demosaicking. IEEE Trans. Image Process. 2009, 18,
2209–2220. [CrossRef] [PubMed]

18. Li, J.; Bai, C.; Lin, Z.; Yu, J. Automatic design of high-sensitivity color filter arrays with panchromatic pixels.
IEEE Trans. Image Process. 2017, 26, 870–883. [CrossRef] [PubMed]

19. Zhou, J.; Kwan, C.; Budavari, B. Hyperspectral image super-resolution: A hybrid color mapping approach.
Appl. Remote Sens. 2016, 10, 035024. [CrossRef]

20. Kwan, C.; Choi, J.; Chan, S.; Zhou, J.; Budavari, B. A Super-Resolution and fusion approach to enhancing
hyperspectral images. Remote Sens. 2018, 10, 1416. [CrossRef]

21. Kwan, C.; Budavari, B.; Feng, G. A hybrid color mapping approach to fusing MODIS and Landsat images for
forward prediction. Remote Sens. 2017, 10, 520. [CrossRef]

22. Ayhan, B.; Dao, M.; Kwan, C.; Chen, H.; Bell, J.F., III; Kidd, R. A novel utilization of image registration
techniques to process Mastcam images in Mars rover with applications to image fusion, pixel clustering, and
anomaly detection. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2017, 10, 4553–4564. [CrossRef]

23. Kwan, C.; Budavari, B.; Bovik, A.; Marchisio, G. Blind quality assessment of fused WorldView-3 images by
using the combinations of pansharpening and hypersharpening paradigms. IEEE Geosci. Remote Sens. Lett.
2017, 14, 1835–1839. [CrossRef]

http://dx.doi.org/10.1109/TIP.2007.904459
http://www.ncbi.nlm.nih.gov/pubmed/17926933
http://dx.doi.org/10.1007/s11760-017-1216-2
http://dx.doi.org/10.1109/TIP.2005.857260
http://dx.doi.org/10.1109/LSP.2005.859503
http://dx.doi.org/10.1109/TIP.2002.801121
http://dx.doi.org/10.1109/TIP.2011.2107524
http://dx.doi.org/10.1109/TIP.2016.2601266
http://www.ncbi.nlm.nih.gov/pubmed/27552751
http://dx.doi.org/10.1109/TIP.2009.2025092
http://www.ncbi.nlm.nih.gov/pubmed/19527958
http://dx.doi.org/10.1109/TIP.2016.2633869
http://www.ncbi.nlm.nih.gov/pubmed/28114016
http://dx.doi.org/10.1117/1.JRS.10.035024
http://dx.doi.org/10.3390/rs10091416
http://dx.doi.org/10.3390/rs10040520
http://dx.doi.org/10.1109/JSTARS.2017.2716923
http://dx.doi.org/10.1109/LGRS.2017.2737820


J. Imaging 2019, 5, 68 14 of 14

24. Qu, Y.; Qi, H.; Ayhan, B.; Kwan, C.; Kidd, R. Does multispectral/hyperspectral pansharpening improve the
performance of anomaly detection? In Proceedings of the IEEE International Geoscience and Remote Sensing
Symposium, Fort Worth, TX, USA, 23–28 July 2017, pp. 6130–6133.

25. Chavez, P.S., Jr.; Sides, S.C.; Anderson, J.A. Comparison of three different methods to merge multiresolution
and multispectral data: Landsat TM and SPOT panchromatic. Photogramm. Eng. Remote Sens. 1991, 57,
295–303.

26. Vivone, G.; Alparone, L.; Chanussot, J.; Mura, M.D.; Garzelli, A.; Licciardi, G.; Restaino, R.; Wald, L. A
critical comparison among pansharpening algorithms. IEEE Trans. Geosci. Remote Sens. 2015, 53, 2565–2586.
[CrossRef]

27. Liu, J.G. Smoothing filter based intensity modulation: A spectral preserve image fusion technique for
improving spatial details. Int. J. Remote Sens. 2000, 21, 3461–3472. [CrossRef]

28. Aiazzi, B.; Alparone, L.; Baronti, S.; Garzelli, A.; Selva, M. MTF-tailored multiscale fusion of high-resolution
MS and pan imagery. Photogramm. Eng. Remote Sens. 2006, 72, 591–596. [CrossRef]

29. Vivone, G.; Restaino, R.; Mauro, D.M.; Licciardi, G.; Chanussot, J. Contrast and error-based fusion schemes
for multispectral image pansharpening. IEEE Trans. Geosci. Remote Sens. Lett. 2014, 11, 930–934. [CrossRef]

30. Laben, C.; Brower, B. Process for Enhancing the Spatial Resolution of Multispectral Imagery Using
Pan-Sharpening. U.S. Patent 6,011,875, 4 January 2000.

31. Aiazzi, B.; Baronti, S.; Selva, M. Improving component substitution pansharpening through multivariate
regression of MS+pan data. IEEE Trans. Geosci. Remote Sens. 2007, 45, 3230–3239. [CrossRef]

32. Liao, W.; Huang, X.; Coillie, F.V.; Gautama, S.; Pižurica, A.; Liu, H.; Philips, W.; Zhu, T.; Shimoni, M.;
Moser, G.; et al. Processing of multiresolution thermal hyperspectral and digital color data: Outcome of the
2014 IEEE GRSS data fusion contest. IEEE J. Select. Top. Appl. Earth Observ. Remote Sens. 2015, 8, 2984–2996.
[CrossRef]

33. Choi, J.; Yu, K.; Kim, Y. A new adaptive component-substitution based satellite image fusion by using partial
replacement. IEEE Trans. Geosci. Remote Sens. 2011, 49, 2984–2996. [CrossRef]

34. Hybrid Color Mapping (HCM) Codes. Available online: https://openremotesensing.net/knowledgebase/

hyperspectral-image-superresolution-a-hybrid-color-mapping-approach/ (accessed on 22 December 2018).
35. Gharbi, M.; Chaurasia, G.; Paris, S.; Durand, F. Deep joint demosaicking and denoising. Acm. Trans. Graph.

2016, 35, 191. [CrossRef]
36. Oh, L.S.; Kang, M.G. Colorization-based rgb-white color interpolation using color filter array with randomly

sampled pattern. Sensors 2017, 17, 1523. [CrossRef]
37. Zhang, X.; Wandell, B.A. A spatial extension of cielab for digital color image reproduction. SID J. 1997, 5,

61–63.

© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1109/TGRS.2014.2361734
http://dx.doi.org/10.1080/014311600750037499
http://dx.doi.org/10.14358/PERS.72.5.591
http://dx.doi.org/10.1109/LGRS.2013.2281996
http://dx.doi.org/10.1109/TGRS.2007.901007
http://dx.doi.org/10.1109/JSTARS.2015.2420582
http://dx.doi.org/10.1109/TGRS.2010.2051674
https://openremotesensing.net/knowledgebase/hyperspectral-image-superresolution-a-hybrid-color-mapping-approach/
https://openremotesensing.net/knowledgebase/hyperspectral-image-superresolution-a-hybrid-color-mapping-approach/
http://dx.doi.org/10.1145/2980179.2982399
http://dx.doi.org/10.3390/s17071523
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction 
	Enhanced Pansharpening Approach to Demosaicing of RGBW CFAs 
	Standard Approach 
	Pansharpening Approach to Denosaicing CFA2.0 Patterns 
	Enhanced Pansharpening Approach 

	Experimental Results 
	Data: IMAX and Kodak 
	Performance Metrics and Comparison of Different Approaches to Generating the Pan Band 
	Evaluation Using IMAX Images 
	Evaluation Using Kodak Images 

	Conclusions 
	References

