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Abstract: In this paper, a multi-focus image stack captured by varying positions of the imaging
plane is processed to synthesize an all-in-focus (AIF) image and estimate its corresponding depth
map. Compared with traditional methods (e.g., pixel- and block-based techniques), our focus-based
measures are calculated based on irregularly shaped regions that have been refined or split in an
iterative manner, to adapt to different image contents. An initial all-focus image is first computed,
which is then segmented to get a region map. Spatial-focal property for each region is then analyzed
to determine whether a region should be iteratively split into sub-regions. After iterative splitting,
the final region map is used to perform regionally best focusing, based on the Winner-take-all (WTA)
strategy, i.e., choosing the best focused pixels from image stack. The depth image can be easily
converted from the resulting label image, where the label for each pixel represents the image index
from which the pixel with the best focus is chosen. Regions whose focus profiles are not confident in
getting a winner of the best focus will resort to spatial propagation from neighboring confident regions.
Our experiments show that the adaptive region-splitting algorithm outperforms other state-of-the-art
methods or commercial software in synthesis quality (in terms of a well-known Q metric), depth maps
(in terms of subjective quality), and processing speed (with a gain of 17.81~40.43%).
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1. Introduction

3D scanning has been important in industry for several decades. The main methods include
passive and active types. The active type usually uses a device to illuminate light (specifically in
the near infrared band) and receive it for measuring distances or sense surface variation based on
the Time-of-Flight (TOF) [1] or Light-encoding (e.g., Kinect) [1] principles, respectively. The passive
type, however, computes three-dimensional surfaces or distance values based on the natural light
reflected from objects’ surfaces. The passive method is characterized by low hardware cost, but large
computational load. The active method, on the other hand, has a high hardware cost and large
measurement noise.

“Depth from Focus” (DFF) [2,3] algorithms were developed for 3D measurement or scanning
several years ago. In contrast to traditional stereo vision, they use a monocular camera which varies
focus lengths or changes imaging plane positions for the same scene. For example, the focal sweep
camera [4] uses a high-speed image sensor translated with respect to the lens (often a duration of
200~500 ms to capture a stack of 24~60 images), or a liquid lens whose focal length is electronically
adjusted as a function of time. Also, light field cameras (such as Lytro, CA, USA and Raytrix, Hamburg,
Germany) can be used to capture an instantaneous focal stack by trading off the spatial resolution.
Since all pictures for DFF are taken at the same viewing direction, the occlusion problem, as in stereo
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matching, can be avoided. Here we will investigate the DFF techniques to synthesize the All-In-Focus
(AIF) image and estimate the corresponding depth map based on the multi-focus image stack [5].

Principally, objects located at different distances will present different focuses on resulting pictures
due to limited depth of field of the optical system. By varying the camera settings (e.g., focal length
of the lens or position of the imaging plane) for the same scene at the same distance, a focal image
stack can be obtained, where each of them presents different in-focus regions. It is possible for DFF
techniques to reconstruct or generate an AIF image by extracting pixels of best focus from among the
focal stack and record the frame indices accordingly. Since each frame index in the stack corresponds
to a focal length or an imaging plane position, the object-to-lens distance p can be calculated from the
well-known optical imaging geometry: 1

p + 1
q = 1

f , where f is the focal length and q is the distance
between the lens and the imaging plane. The depth map can then be simply expressed as the index
map that leads to the best focus.

The success of DFF/AIF techniques rely on a reliable focus measure for image patches. The focus
measure operator often concerns a transformation of the original image patch to enhance its sharpness.
The resulting energy of the transformed patch is then calculated as the focus level estimation.
Traditional transforms often estimate the spatially high frequency information in a local window to
indicate the focusing level, e.g., Laplacian filtering [6] and the variation [2] approaches. Chen et al. [3],
however, apply Gaussian (low-pass) filtering to blur the target image and then compare the blurred
result with the original one; the difference can then be used to reveal the focus level of the original
image. Image quality measure (IQM) [7] was adopted by calculating the average of gradients for pixels
within a window. In [8], the modulation transfer function (MTF) is calculated as a ratio between the
image contrast and sharpness to indicate focus metric. In [9], the surface areas of the enclosed region
around a same given pixel in different focused input images are computed and compared, as a measure,
to distinguish focused and blurred regions. In [10], Li et al. present a Multi-scale Image Analysis (MIA)
technique to determine the focusing properties of input image pixels. However, their proposed metric
is still misjudged on smooth regions and needs a block-based consistency verification procedure for
correction. The above metrics might still result in higher focus measurements for blurred or smooth
regions due to noise or image degradation, which will certainly degrade the reconstructed AIF image
when the maximum selection rule is adopted.

DFF algorithms can be categorized into pixel-, block-, and region-based [11]. This kind
of categorization depends on the area where a focus measure is computed. For pixel-based
algorithms [12,13], a pixel in the AIF image is often calculated as a weighted average of the collocated
pixels in the original focal stack. However, these kinds of methods will yield a low-quality or noisy
AIF image in the presence of noise. Pertuz et al. [13] proposed a selective weighting scheme (a linear
combination of selected pixels with higher focus measures) so as to reduce the noise in the AIF image.
Other methods include post-optimization [14] on the resulting weight maps before image fusion is
performed. For block- [15,16] or patch-based algorithms, a regular shape often results in blocking or
ringing artifacts and probably fails near region boundaries. To solve this problem, [11] proposed a
region-based algorithm, where the focus measure is calculated for each segmented region of arbitrary
shape. The “average image” calculated from the focal stack is incurred segmentation by means of
the well-known mean-shift algorithm to define initial regions. In their work, region definitions are
however fixed and not further refined. Lee et al. [17] also proposed region-adaptive fusion from
focal stack images. A two-level DWT (Digital Wavelets Transform) is first applied to each frame of
the focal stack. The focus profile of each pixel is then calculated from the detailed high-frequency
sub-bands. All pixels are classified into three kinds of regions (according to the number of peaks
in the considered focus profile) and different fusion rules are applied to different kinds of regions.
Please note that in their work, pixels classified with the same kind of region in AIF are not extracted
from the same image, but only applied with the same fusion strategy. Zhang et al. [18] proposed
finding boundaries between the focused and defocused regions, from which the source images could
be naturally separated into regions with the same focus conditions. Their method, however, relies on
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the use of multi-scale morphological gradient operators to improve the precision of boundary detection
and focused region detection. Adaptive region segmentation can be also achieved via spatial quadtree
decomposition [16,19,20], which is used to define hierarchical regions for focus measures. In contrast
to the arbitrary region shapes in [11] and [18], quadtree methods require a metric to determine whether
a block will be WTA (Winner-Take-All)-fused or decomposed into four smaller ones. However, they
might suffer from over-segmentations into smaller regions, due to regular quad decomposition for
a region. Using this method, their works were focused on fusion from two images only and no
experimental reports were given for extension to multi-focus image sets whose number of images is
larger than 2.

In view of the fusion algorithm, AIF algorithms are categorized into focal-weighting [13],
WTA [12,21], and weight-optimized [14]. The focal-weighting method computes a weight of 0.1–1.0 for
each image in the stack when synthesizing a specific pixel or block of given coordinate along the focal
axis, i.e., weights are focal-position-dependent. The weight-optimized algorithms, however, refine the
pixel-dependent weights subject to certain smoothness conditions. Though they are capable of getting
better AIF and depth estimation, it seems time consuming and unsuitable for real-time applications.
On the other hand, WTA seems to be a special case of the focal-weighting strategy that only one focal
position in the stack is selected and has a weight of 1.0, while others have zero weights. WTA is
simpler and popular in many applications. There are also some modified algorithms to improve the
WTA scheme. For example, [21] proposed using gradually changing sizes of smoothing kernels for
eliminating visual artifacts in boundary regions of the initially WTA-fused AIF image. Liu et al. [22],
on the other hand, proposed a CNN model for simultaneous activity level measure (feature extraction)
and fusion rule design (classification). This deep learning approach, though new, is not appropriate for
generating the depths of the scenario. Xiao et al. [23] first extracted image depth information through
the inhomogeneous diffusion equation for simulating the optical imaging system, classified pixels
into three types of regions (clear, fuzzy, and transition) according to depth information, and finally
generated the fused image based on the clear and transition pixels. Their method actually belongs to
a kind of DFD (Depth from Defocus, in contrast to DFF herein), which often suffers from inaccurate
depth estimation from limited number (often 1 or 2) of defocused images. Some methods [24–26] tried
to construct global focus detection algorithms, making them get free of block artifacts and reducing the
loss of contrast in the fused image. For example, references [24,26] proposed to decompose each of
the multi-focus source images into cartoon and texture content; the two different contents are fused
respectively and then combined to obtain the all-in-focus image. Unfortunately, only fusion results for
two source images were reported. In [26], the authors also applied their cartoon/texture decomposition
and sparse representation algorithm for multi-modality (such as medical PET/MRI, or infrared/visible)
image fusion.

Though many AIF algorithms have been proposed up to now, a large part of them are targeted
at a stack of two images only and thus unsuitable for extension to depth estimation for larger image
stacks (often up to several dozen) in industrial applications. As introduced, region-based methods play
tradeoffs between pixel- and block-based algorithms in aspects of complexity and quality. However,
a content-adaptive region determination algorithm is seldom developed. We are then motivated
by the above two situations. In this paper, we extend our prior work [1] to propose a region-
(in spatial domain) and WTA-based (in focal domain) algorithm which overcomes the above two
problems and use industrially captured image dataset for testing. Figure 1 illustrates our iterative
region-splitting algorithm for AIF image fusion and depth estimation. Differing from traditional
region-based algorithms (e.g. [11,16,18–20]), our definition of focusing regions is subject to iterative
focal-spatial analysis (rather than spatial analysis only, as in [11,18]). No limitation on the manner
of region splitting (unlike quadtree [16,19,20]) also makes our algorithm less affected by the possible
blocking effect.
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First of all, the image domain is initially segmented into regions based on an “initial AIF image”
synthesized based on a simple pixel-wise and focal-weighting scheme (Section 2). The focus measures
are then computed for each region definition at different focal positions. By analyzing the focus profile
(a curve of regional focus measure along the focal axis) for each region, we are able to determine if
the targeted region should be split. If the focus profile meets the no-splitting criterion, WTA-fusion
along the focal axis is performed to get the fused result for the region. Otherwise, the region is split
into subparts after spatial analysis and each divided part is incurred a recursive process for focus
computation and analysis. The depth map can be obtained from the AIF image by assigning, to each
region, the index of the frame that has the best focus measure (each index corresponds to a focal position
and object distance). To sum up, we propose a region-based (in spatial domain) and WTA-based
(in focal domain) algorithm for DFF.

2. Initial AIF Image Computation and Region Segmentation

First, we define a focal stack I =
{
I1, . . . Ik, . . . , IK

}
(where k is the image index corresponding to an

imaging-plane position and K is the number of images contained in the stack). Our aim is to synthesize
an AIF image P and estimate the depth map D from I. It is known that the high frequency strength
around a pixel can be used as a metric of focusing. High-focusing pixels will be given larger weights in
image fusion from the focal stack. The following formula [14] is used here:

yk
i = θk

i

erf


∣∣∣gk

i

∣∣∣
σk




K

(1)

where subscript i represents the pixel index, the superscript k is the image index, gk
i stands for the

gradient, σk indicates the variance of gradients for the k-th image, erf(.) stands for Gaussian error
function, θk

i represents the frequency of non-zero gradients around pixel i in the k-th image, yk
i is the

weight at pixel i of the k-th image, and K here is an exponent. Therefore, the k-th image in the stack has
its corresponding pixel-weighting map. The weighting map stack can then be adopted to synthesize
an initial AIF image P as:

Pi=
∑K

k=1
wk

i Ik
i (2)

wk
i =

yk
i

Yi
, Yi =

K∑
k=1

yk
i , (3)

where Ik
i stands for the intensity of pixel i in the k-th image, and Pi is the value of pixel i in P. Obviously,

all wk
i ’s are summed to 1.0 for any given pixel i.
Region segmentation technique, e.g., the mean-shift segmentation algorithm [27] in OpenCv,

is applied to the initial AIF image P to get an initial region set S = {s1, . . . , sr}, where r is the number of
segmented regions, which depends on some parameters (e.g., “spatialRadius” and “colorRadius”) to
control the average of color and space together to form a segmentation. Compared to the “average image”
derived in [11], i.e.,

Pi =
1
K

∑K

k=1
Ik
i , (4)
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our initial AIF image P (Equation (2)) is capable of achieving more focusing, getting more accurate
segmentation, and then better/faster convergence in region splitting (see experimental section).

3. Spatial-Focal Analysis for Iterative Region Splitting

3.1. Focus Measure

According to Figure 1, the initial region set S should be subject to focus profile analysis and further
refinement (splitting). Here, the variation function in [2] is adopted as our regional focus measure:

Fk
s =

1
|S|

∑
(x,y)∈s

[
Ik
Laplacian(x, y) − µk

s

]2
, (5)

µk
s =

1
|s|

∑
(x,y)∈s

Ik
Laplacian(x, y), (6)

where (x,y) stands for image coordinates, s is a given region, |s| represents the size of s, Ik
Laplacian is the

Laplacian response for the k-th image, µk
s represents the average of Ik

Laplacian for the region s, and Fk
s is

the focus measure for region s in the k-th image.
According to our experience from experiments, a universal measure that is capable of

distinguishing focusing/defocusing for every kind of regions (especially, plain or textureless regions) is
hard to find. Thus, the traditional measure of variation is adopted here and more emphases will be
placed on spatial-focal analysis that follows.

3.2. Spatial-Focal Analysis

To decide whether region s should be split, a focus profile analysis in focal axis is conducted.
The focus profile of a region s is defined to be the curve of focus measures at different focal positions k, i.e.,
FPs =

{
F1

s , . . . , Fk
s , . . . , FK

s

}
. Essentially, a single outstanding peak (at position k∗) FPs in (e.g., Figure 2b)

represents a very good focusing at image k* and will make WTA a confident success. Pixels in region s
of image k* will be selected for rendering in AIF image, i.e.,

k∗= arg max
k

(
Fk

sh(i)

)
(7)

Pi = Ik∗
i (8)

where sh(i) represents the region where pixel i is located. Contrarily, for bi-modal behavior
(e.g., Figure 2c), or even worse (e.g., multi-modal (Figure 2d), flat, or random), the WTA strategy might
fail due to multiple objects of different depths in s. Therefore, the region s should be subject to further
splitting so that each sub-region contains only objects of a depth and the corresponding focus profile
presents a good single peak.

For spatial-domain analysis, a label histogram (LH) is generated for region s. Denote LHs as
the histogram about the image number of best focusing (i.e., the winner) for each pixel in region s.
The regional focus measures in Equations (5) and (6) are changed for pixels as:

Fk
(x,y)=

(
Ik
Laplacian(x, y) − µk

(x,y)

)2
, (9)

µk
(x,y) =

1
|X|

∑
(x,y)∈X

Ik
Laplacian(x, y), (10)

where X represents a window centered at (x,y). The analysis of LHs, as shown in Figure 3, is similar to
FPs in Figure 2. If there is a two- or multi-modes in LHs, a splitting into sub-regions is required.
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Figure 3. An example of label histogram LHs.

Since LHs and FPs represent feature descriptions along the spatial and focal domain, respectively,
the combination of these two features is capable of providing more information for region splitting.
Joint analysis of FPs and LHs can be described in Figure 4. FPs and LHs are first analyzed to see whether
they satisfy some SP (single-peak) criteria. If they do, WTA can be applied to extract the focusing pixels
and assign the corresponding depth value. Otherwise, it turns to the analysis of spatial behavior LHs,
where the Otsu’s thresholding algorithm [28] is applied to see whether it belongs to the TP (two-peak)
category. For TP-type regions, they need to be split into sub-regions, or classified as x-regions, otherwise.
For x-regions, their processing for focusing pixel extraction and depth estimation should rely on
support information propagated from neighboring regions. After each region is classified and all
x-regions are processed, the final AIF can be obtained.

Please note that our SP test is based on both focal and spatial analyses over a region, while the TP
test is simply based on spatial analysis of the same region. WTA fusion is applied to a region only
wherein the stricter SP criteria are met. If they are not met, a TP criterion in spatial domain is tested for
splitting into sub-regions. Usually, the TP criterion is looser so that regions unsatisfying SP criteria
are easier to be further split based on their spatial feature and only a limited number of x-regions
are classified.

According to some experimental observationhs (Figures 5–7), we propose three SP tests on FPs

and LHs as follows.
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(T1) The first test is to calculate the second derivative of FPs and count the number of zero-crossings
(ZC). For SP curves, the ZC is normally 4 and the positive and the negative parts have similar areas,
as shown in Figure 5. If the above conditions are satisfied, then set an indicator SM1 to “True”,
otherwise, to “False”. Please note that this is only a necessary condition since we can find non-SP
curves also satisfying T1. See, for example, Figure 6, where the FPs curve is obviously not SP-type,
but satisfies the ZC and area conditions.

(T2) A second indicator SM2, built on the analysis of local peaks of FPs, is calculated. Local peaks
of FPs are determined, then a convexity/concavity indicator γ for each j-th peak (LP j), with respect to
the global peak (GP), is calculated as:

γLP j
=

1∣∣∣GP− LP j + 1
∣∣∣ ∑GP

i=LP j
U
(
Fi

s − F
LP j
s − thd

)
, (11)

where LP j and GP represent the corresponding image indices of the local and global peaks, thd
represents a threshold, and U(.) is the mathematic step function (i.e., U(x) = 1 for x > 0 and U(x)
= 0 for x ≤ 0). We take the curve in Figure 7 as an example, where LP1 and LP7 are two local-peak
positions and GP is the global-peak position. Since the curve A from LP1 to GP is decreasing and then
increasing, γLP1 is small, while that for γLP7 (curve B, increasing) is large. A larger γLP j represents high
convexity probably existing in an SP curve. Please note that our computation for γLP j is robust to noise
in the curve.

By combining γLP j from each local peak LP j, SM2 is expressed as:

SM2 =
1
H

∑
j

(
γLP j ·βLP j ·F̃

LP j
s

)
, (12)

where
βLP j =

∣∣∣LP j −GP
∣∣∣, (13)

H =
∑

j

(
γLP j ·βLP j

)
. (14)

and F̃
LP j
s is a normalized (0~1.0) version of F

LP j
s (i.e., set F̃GP

s = 1.0). It can be seen from Equation (12)

that the contribution of F̃
LP j
s from each local peak LP j is distance-weighted by β. If LP j is near GP,

it could be a noise and given a small weight. SM2 is capable of measuring the curve trend from all
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local peaks to the global peak. A larger SM2 (e.g., approximate to 1.0) indicates a higher likelihood of
being an SP curve.

(T3) The 3rd test is to apply Equations (11)–(14) to the curve LHs and name the corresponding
indicator as SM3.

For each region s, SP is identified when T1 ~ T3 are all satisfied. Otherwise, T4 as follows will
be tested.

(T4) The 4th indicator SM4 is to verify the bi-modality (two-peak, TP) of LHS. First, traditional
Otsu’s thresholding algorithm [28] is adopted to binarize LHS and produce two clusters (their
probabilities are denoted as P0 and P1, P0 + P1 = 1.0. If both P0 and P1 are between 0.4~0.6 (i.e., sizes
of the two clusters are approximate) and the frame distance between these two peaks is greater than a
threshold, a TP characteristic of LHs is then identified and SM4 is set to “True”; otherwise, “False”.

If T4 is satisfied, a TP region is identified. Otherwise, s is identified as an x-region. The test flow is
summarized as in Figure 8, where Thd1 is an empirical threshold on both SM2 and SM3.
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3.3. Iterative Region Splitting

If a region s satisfies T4 (or, identified as TP), it will be split into sub-regions. Our method relies on
Otsu’s thresholding in T4, i.e., a pixel is classified into cluster 1 or 2, depending on whether its winner
(image) index is larger (cluster 2) or smaller (cluster 1) than the estimated threshold. Notice that it is
not guaranteed that pixels in cluster 1 or 2 are connected; i.e., either the region of cluster 1 or cluster
2 may not be connected after splitting. Each connected sub-region of s will be led to restart of the
procesing flow in Figure 8.

3.4. Processing of x-Regions

Best focus or depth for regions marked as x-type (for examples, whose focus profiles have
flat or multi-peak features) cannot be estimated reliably from WTA strategy based on their own
pixel data. They can be instead derived from those of neighboring regions successfully classified to
SP-type. Though the algorithm of depth propagation [29] can be used to estimate unknown depths of
a pixel/region from other adjacent ones, the blending expression in [29] often results in a weighted
average which does not necessarily reveal the true depth value. Instead, we adopt a strategy that an
x-type region will be assigned with a depth value the same as that of the dominant one that is adjacent
and has the largest borderline length. Since two x-type regions may be adjacent, the one has a larger
proportion of known boundary depths will have a higher priority for depth assignment. Once the
priority one is assigned with a depth value, it can then be propagated to those adjacent x-regions of
lower priorities. This depth assignment process is iteratively performed until depths of all x-types
regions are estimated.
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Please note that once the depths (image indices) of the x-regions are determined, pixels of best
focus can be extracted accordingly.

4. Depth Image Post-Processing

Even when we designed three strict tests (T1~T3) to identify SP-type regions, it is still possible
that pixels extracted from the peak frame k∗ do not show better focusing than others. This may result
in noise in depth estimates. They need to be further corrected.

First, candidates of depth-noisy regions, denoted as snz, are identified. They are identified to
be regions with large depth change (above an empirical threshold Thd2) regarding to neighboring
regions along ρ% of the outer boundaries. Depth correction here is similar to depth assignment of
x-regions, i.e., depth correction/replacement of snz is conducted by that of the dominant neighboring
region. This correction is iteratively performed until no regions snz can be identified.

Our proposed Algorithm 1 is summarized as follows.

Algorithm 1: Iterative region splitting for multi-focus image fusion and depth map estimation

1 Input a focal stack image set I =
{
I1, . . . Ik, . . . , IK

}
.

2 Form an initial AIF image P based on Equations (1)–(3).
3 Initialize region segmentation for P by mean-shift algorithm to get an initial region set S = {s1, . . . , sr}.
4 Determine, for each region s, whether it should be split based on spatial-focal analysis in steps 5~8.
5 Compute the focus profile FPs =

{
F1

s , . . . , Fk
s , . . . , FK

s

}
(Equations (5)–(6)).

6 Perform spatial-domain analysis by calculating the label histogram LHs.
7 Perform joint analysis of LHs and FPs based on T1~T4 and classify a regions into SP, TP, or x-region, based on
the flow in Figure 8.
8 Iteratively split (based on Otsu algorithm) a region s if T4 is satisfied (or, identified as TP) and go to step 4.
9 Perform depth assignments for regions classified as SP and x-regions to form depth map image.
10 Perform depth image post-processing.

5. Experiment Results

Four focal stack images for industrial use are captured by adjusting the camera imaging plane
at different positions. As shown in Figure 9, the four test image sets include: “Battery” (65 images),
“Screw” (48 images), “PCB” (48 images), and “Tool” (7 images), all of 640 × 480 pixels. The parameters
are set empirically as: Thd1 = 0.8 (Figure 8), Thd2 = 0.67 *K, ρ = 53 (Section 4), to control final region
segmentation and the formation of x-type regions.

Figure 10 shows the region segmentation for the four test images, where x-type regions are colored
in black. The initial and final numbers of segmented regions are listed below and the numbers of
x-type regions are also shown in parentheses.

(1) “Battery”: 299→ 367 (x-type: 15)
(2) “Screw”: 242→ 256 (x-type: 15)
(3) “PCB”: 343→ 367 (x-type: 49)
(4) “Tool”: 102→ 102 (x-type: 0).
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fused result by weighting co-located pixels from all source images. The Zerene Stacker, a commercial 
software much expensive than Helicon, is featured of accurate and robust alignment, scale correction 
by interpolation, and advanced stacking algorithm. It can also generate stereo and 3-D rocking 
animation from a single stack. Reference [12] is a pixel- and WTA-based algorithm, enhanced with 
post-processing on the resulting AIF image. It also applies point diffusion function to the filtered AIF 
to generate the re-focused image and depth map, whose number of levels is actually larger than the 
original image number K. Since Zerene Stacker cannot provide the resulting depth maps for the trial 
version, they are not shown in Figure 11. Depth maps estimated by [12] differs from Helicon’s and 
ours because of its recalculation by using point-diffusion function. 

It is observed from Figure 11 that both our proposed algorithm and Zerene Stacker are capable 
of achieving a better synthesis quality near electrodes and bodies of the “Battery”, but it seems that 

Figure 9. Our test focal stacks (only two images among them are shown). (a,b) “Battery”, (c,d) “Screw”,
(e,f) “PCB”, (g,h) “Tool”.

It can be observed that most of the x-regions occur at plain backgrounds that have less textures
for focus measure, e.g., in top background of “Battery” and “Screw”. This however does not cause any
difficulty in identifying SP property for the bottom and whole background of “Screw” and “Tool”,
respectively. For “PCB”, the number of regions is increased by 24 after splitting, while 49 out of
367 are classified to be x-type. This means at least 49 − 24 = 25 regions in initial segmentation are
neither classified as SP nor TP type. According to Figure 10c, x-type regions concentrate on the green
backgrounds of the right part image. This is similar to the behavior of the green backgrounds in
“Battery”. Notable is the result of “Tool”, where no regions are further split and classified as x-type.
This good behavior also lead to better AIF synthesis and depth map estimation (see the results later).
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Figure 11. compares four methods on AIF synthesis and depth map estimation: (1) Helicon,
(2) Zerene Stacker, (3) [12], and (4) our proposed method. For visual clarity, all depth maps are scaled
to gray levels in 0~255). The Helicon, being a popular commercial software, adopts a pixel-weighting
strategy, i.e., it calculates a weight for each pixel according to the image content and then gets final
fused result by weighting co-located pixels from all source images. The Zerene Stacker, a commercial
software much expensive than Helicon, is featured of accurate and robust alignment, scale correction by
interpolation, and advanced stacking algorithm. It can also generate stereo and 3-D rocking animation
from a single stack. Reference [12] is a pixel- and WTA-based algorithm, enhanced with post-processing
on the resulting AIF image. It also applies point diffusion function to the filtered AIF to generate the
re-focused image and depth map, whose number of levels is actually larger than the original image
number K. Since Zerene Stacker cannot provide the resulting depth maps for the trial version, they are
not shown in Figure 11. Depth maps estimated by [12] differs from Helicon’s and ours because of its
recalculation by using point-diffusion function.
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image sets (with an average gain (defined as (compared_time-our_time)/compared_time) of 17.81%, 
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Figure 11. Results of AIF images (odd rows) and depth maps (even rows) for “Battery”(rows 1–2),
“Screw” (rows 3–4), “PCB” (rows 5–6), and “Tool” (rows 7–8) obtained by Helicon (column 1),
Zerene Stacker (column 2), [12] (column 3), and proposed method (column 4).

It is observed from Figure 11 that both our proposed algorithm and Zerene Stacker are capable
of achieving a better synthesis quality near electrodes and bodies of the “Battery”, but it seems
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that Zerene Stacker has better performance on table’s surface. For “Screw”, Zerene Stacker’s result
presents two dark dots, while Helicon wrongly estimates the depths for background area and blurs the
top boundaries of the screw. For “PCB”, Helicon presents geometrical distortions near the left-top
portion of the image, defocusing at “1”, and distorted bright spots at “2” and “3”; Zerene Stacker
shows defocusing and redundant textures as indicated in the red circles; [12] gives ripples around
object boundaries. For depth estimation, our algorithm has some errors, while Helicon blurs depth
boundaries near objects. For “Tool”, our proposed algorithm and [12] show the best results, while
Helicon and Zerene Stacker lead to light defocusing. In view of the depth map, Helicon and [12] show
several errors. In Figure 11, depth maps for [12] are generally noisy (especially in background areas of
the “Battery” and “Screw” and the right part of the “PCB”) and might have a copy-pattern from the
color part.

Figure 12 shows the results that the initial AIF image P calculated from Equation (2) is replaced
with the average image calculated by Equation (4) [11], which is then used for the same procedures
of initial region segmentation and iterative region splitting. Focusing improvement by Equation (2)
against Equation (4) as initial AIF image generation can be found by comparing the parts in red circles.
Obviously, Equation (2) is capable of providing better AIF results compared with Equation (4).

To evaluate the performance for AIF fusion in an objective manner, the metric proposed in [30] (Q,
whose values are between 0.0 and 1.0, and a larger value means better quality) is measured with four
methods for comparison. Table 1 illustrates the result, where “*” represents the winner. It is obvious
that our proposed algorithm outperforms others except the “Screw” set. This could be due to some
spots that are present in the bottom background. However, Figure 11 reveal our superiority in depth
estimation compared with Helicon for the top and bottom backgrounds of “Screw”.
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Table 1. Quality assessment for image fusion results. The “*” represents the winner for each case of
image stack.

Battery Screw PCB Tool Average

Resolution × number of
images 640 × 480 × 65 640 × 480 × 48 640 × 480 × 48 640 × 480 × 7

Helicon 0.32721 0.32846 * 0.3015 0.4087 0.3415
Zerene Stacker 0.27272 0.24245 0.30591 0.4027 0.3059

[12] 0.35688 0.26358 0.45498 0.4750 * 0.3876
proposed 0.38451 * 0.27735 0.48273 * 0.4750 * 0.4049 *



J. Imaging 2019, 5, 73 14 of 16

Table 2 compares the computing time. The computing platform is based on the Intel Core i7-3770
3.40 GHz with 4 GB RAM for Helicon, Zerene Stacker, and our proposed method. The execution time
for [12] is, however, based on a CPU of 2.8 GHz and 16 GB RAM. It is observed that our algorithm
(with non-optimized code) is faster than Helicon and Zerene Stacker for nearly all four image sets
(with an average gain (defined as (compared_time-our_time)/compared_time) of 17.81%, and 40.43%,
respectively), while slightly slower than [12] (−15.54%), especially for small image sets (like “Tool”).

Table 2. Comparison of computing time (sec).

Battery Screw PCB Tool

Resolution × number of
images 640 × 480 × 65 640 × 480 × 48 640 × 480 × 48 640 × 480 × 7

Helicon 12.47 7.86 9.06 3.21
Zerene Stacker 19.89 24.84 15.48 2.89

[12] 10.89 7.43 7.48 1.29
proposed 12.605 5.949 7.93 2.068

6. Conclusions

A region-based algorithm is proposed in this paper to synthesize an All-in-focus image and
estimate the corresponding depth image for multi-focus image set. Our contributions come from the
following aspects: (1) focus measures are calculated based on irregularly shaped regions so as to adapt
to varying image contents (unlike the complex pixel-based and the simple block-based methods); (2) our
method is capable of refining or splitting the segmented regions iteratively by analyzing spatial-focal
behaviors about the regional focus measure; (3) suitable for both AIF and depth estimation purposes.

Our software simulations show that the proposed region-based method works well in the
aspects of fusion quality, depth estimation, and speed, with respect to some commercial software that
adopt pixel-based or pixel-weighting strategy. Possible future studies may include further detailed
classification of a region s (currently, SP, TP, and x-type) so as to adopt more suitable arrangements.
Other fusion strategies that are more effective than the well-known WTA and simpler than the
pixel-weighting can be also investigated.
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