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Abstract: This paper presents a machine learning based approach for the discrimination of malignant
and benign microcalcification (MC) clusters in digital mammograms. A series of morphological
operations was carried out to facilitate the feature extraction from segmented microcalcification.
A combination of morphological, texture, and distribution features from individual MC components
and MC clusters were extracted and a correlation-based feature selection technique was used.
The clinical relevance of the selected features is discussed. The proposed method was evaluated
using three different databases: Optimam Mammography Image Database (OMI-DB), Digital
Database for Screening Mammography (DDSM), and Mammographic Image Analysis Society (MIAS)
database. The best classification accuracy (95.00 ± 0.57%) was achieved for OPTIMAM using a stack
generalization classifier with 10-fold cross validation obtaining an Az value equal to 0.97 ± 0.01.

Keywords: digital mammogram; microcalcification; stack generalization; classification;
morphological features

1. Introduction

Breast cancer is one of the leading causes of cancer death in women [1,2]. The mortality
rate of breast cancer can be reduced by early detection and by using Computer Aided Diagnostic
(CADx) systems [3]. Microcalcification (MC) clusters are an important early sign of breast cancer [4].
MC clusters appear as small localized granular points of high brightness within soft breast tissue [5]
and it can be difficult to distinguish MC clusters from normal breast tissue because of their subtle
appearance and ambiguous margins [6,7]. Approximately 50% of early diagnosed cases indicate the
existence of MC clusters, revealing up to 90% of ductal carcinoma in situ [8]. Typical examples of
benign (non-cancerous) and malignant (cancerous) MC clusters are shown in Figure 1.

Double reading can improve sensitivity, but a lack of experienced radiologists can be a
challenge [9]. CADx can assist radiologists in detecting abnormalities in an efficient way [10,11]
and systems have been developed to provide a second opinion for diagnosis [12]. Previous studies
have developed computerized methods to aid the diagnosis of MC clusters. Singh et al. [13] proposed
a MC cluster classification technique based on morphology: including size of the calcifications and
number of calcifications in a cluster. A region of interest (ROI) around the MC cluster was first
enhanced using morphological operations, and two types of features, namely cluster shape and cluster
texture, were obtained. A new set of shape features generated by recursive subsampling was added to
the feature set, which improved the classification accuracy. Akram et al. [14] proposed an improved
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Fisher Linear Discriminant Analysis (LDA) approach for the linear transformation of segmented
micro-calcification data. In the proposed method, a SVM variant was used to classify benign and
malignant clusters. Multi-scale graph topological features were used by Chen et al. [15] using a
k-nearest-neighbors classifier. The performance of machine learning techniques was investigated
by Rampun et al. [16] by examining the probability outputs from classifiers in conjugation with
the classification accuracy and area under the receiver operator curve (Az) to indicate the reliability
of CADx.

(a) 12_4173_45 (b) 3_2169_58

Figure 1. Example MC clusters from the OMI-DB database: (a) benign MC cluster; and (b) malignant
MC cluster.

Bekker et al. [17] proposed a two-phase classification scheme. The method was based on
combining decisions from multiple views (craniocaudal (CC) view and mediolateral oblique (MLO)
view), implemented by a logistic regression classifier, followed by a stochastic combination of the two
view-level (CC and MLO) indications into a final benign or malignant decision. Shachor et al. [18]
examined data fusion methods for multi-view MC cluster classification. This data fusion concept was
implemented by a special purpose neural network architecture that demonstrated the task of classifying
breast microcalcifications as benign or malignant based on CC and MLO mammographic views.

Hu et al. [19] applied a hidden Markov tree model of dual-tree complex wavelet transform
(DTCWT-HMT) for microcalcification diagnosis in digital mammograms. DTCWT-HMT was used to
capture the correlation between different wavelet coefficients and model the statistical dependencies
and non-Gaussian statistics of real signals. The combined features of the DTCWT-HMT and the
DTCWT were optimized by a genetic algorithm (GA). An extreme learning machine (ELM) was used
as the classifier to diagnose the benign and malignant MC clusters.

A feature selection method was introduced by Diamant et al. [20] based on a mutual information
(MI) criterion for automatic classification of MC clusters. The MI based feature selection method was
explored for various texture features. Wang et al. [21] used a semi-automated segmentation method to
characterize all MCs, and constructed a classifier model to assess the accuracies for microcalcifications
and breast masses, either in isolation or in combination, for classifying breast lesions. Sert et al. [22],
however, used convolutional neural networks along with various preprocessing techniques such as
contrast scaling, dilation, cropping, etc. to classify microcalcification. Adaptive thresholding and
morphological technique was used by Nguyen et al. [23] to segment nuclei for single channel image.
A superpixel-based framework was presented for segmentation that used a “hybrid” approach which
was intended to integrate the advantage of region-based clustering algorithm and an edge detector
with an integrated edge map.

The present work focused on developing a method for discriminating malignant and benign
clusters in digital mammograms. Images were first segmented using a wavelet-based method
in conjunction with a bi-cubic interpolation technique and a series of morphological operations.
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A combination of morphological, texture, and distribution features from individual MC components
and the MC cluster were extracted and MC clusters were classified with a stack generalization-based
classifier. An ensemble classifier was also used to classify MC clusters from digital and digitized
mammograms. The most important features were selected and used to classify the MC cluster as
benign or malignant. An overview of our proposed approach is presented in Figure 2.
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Figure 2. Overview of the proposed MC cluster classification methodology.

2. Materials and Methods

2.1. Image Databases

We used the digital mammograms from the Optimam Mammography Image Database
(OMI-DB) [24], which is currently an ongoing project at the Medical Physics Department of the
Royal Surrey County Hospital, which contains NHS Breast Screening Programme (NHSBSP) images
from different centres across the United Kingdom with an aim to develop a large repository of
breast images for research purposes. The database contains 3D and 2D unprocessed and processed
breast images, associated annotations and where applicable expert-determined ground truths, which
describe features of abnormalities such as microcalcification, mass, architectural distortions, etc. The
images were categorized by radiologists into three clinical categories: normal, benign, and malignant.
Core biopsies were also performed where applicable and associated with the opinion provided
by the radiologists. In our experiment, patient-based case selection was performed on the digital
mammograms, and a total number of 286 cases (136 benign and 150 malignant) were selected, which
only contained microcalcification clusters that had associated core biopsy scores. The histological and
radiographic scores were not considered for patient-based case selection, as very few images that
contained microcalcification clusters were provided with such scores, which was an obstacle to create
a balanced database. These mammograms were acquired using a Hologic Selenia mammography unit,
with a resolution of 70 microns per pixel and a depth of 12 bits [25].

The evaluation also used the digitized mammograms from two different publicly available
benchmark databases: the Mammography Image Analysis Society (MIAS) [26], and the Digital
Database for Screening Mammography (DDSM) [27]. The DDSM database contains cranial-caudal
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(CC) and mediolateral oblique (MLO) views of left and right breasts of each patient. The images
containing suspicious area have pixel-level “ground truth” information of the abnormality, and a
malignancy assessment on a five-point scale according to the American College of Radiology (ACR)
Breast Imaging Reporting and Data System (BIRADS) [28]. In total, 280 digitized mammograms
containing MC clusters (148 benign and 132 malignant) were used. The MC clusters colocated with
masses were not considered, as the existence of mass could mislead the classification results whilst
considering the neighborhood of MCs to extract relevant features. The cases were selected at a patient
level, and only MLO views were used. The mammograms in the DDSM database were digitized by
one of four different scanners: DBA M2100 ImageClear (42 microns per pixel, 16 bits), Howtek 960 (43.5
microns per pixel, 12 bits), Lumisys 200 Laser (50 microns per pixel, 12 bits), and Howtek MultiRad850
(43.5 microns per pixel, 12 bits). For our experiment, only the mammograms obtained using Lumisys
200 Laser scanners were considered to keep inline with the pixel size of another digitized database
(MIAS) [26] used for the development and evaluation of the proposed system. The MIAS database [26]
contains 322 images, among which 24 cases (12 benign and 12 malignant) contain microcalcification
clusters. The mammograms in the MIAS were digitized to 50 microns per pixel. The truth-marking of
the locations of the abnormalities were delineated by an expert radiologist.

2.2. Preprocessing and Segmentation

Enhancement was necessary as MC clusters are usually very small, and sometimes can be
situated in dense breast tissue with very low visibility. This phenomenon makes the segmentation
and classification task more challenging [11]. To overcome this problem, a wavelet-based algorithm
was applied to enhance the mammograms, and the contrast between the MC cluster and surrounding
background tissues was increased (see Section 2.2.1). Such contrast enhancement facilitated the
subsequent MC cluster segmentation, as described in Section 2.2.2. Features of MC clusters were
extracted from the segmented image and were used to classify the clusters as benign or malignant.

2.2.1. Mammogram Enhancement and Patch Extraction

A dynamic wavelet-based algorithm [29] was applied to enhance the mammograms. The Discrete
Wavelet Transform (DWT)- based method was used because of its low computational complexity and
special transformed domain properties [30]. The process of mammogram enhancement was divided
into three parts, which included decomposition, sharpness estimation and filtering. The image was first
decomposed into individual sub-bands using a multi-level separable DWT [31,32]. The log-energies of
the vertical, horizontal, and diagonal sub-bands at each decomposition level were calculated followed
by measuring the total log-energy (TLE) of each level. Subsequently, by combining the TLE of each
decomposition level [29], the Scalar Sharpness Index (SSI) was calculated. The SSI was later used to
estimate the overall sharpness of the images. Higher values of SSI were considered as an indicator
of higher sharpness of the image. More details on the wavelet-based enhancement algorithm were
described by Misra et al. [29], who applied the enhancement approach to satellite images. To enhance
the mammograms, the number of sub-bands and the image decomposition level were chosen as 3, as
we aimed to obtain the horizontal, vertical and diagonal details from the mammograms. Each sub-band
was assigned a predefined weight (0.10) to enhance the diagonal higher spatial frequency. The weight
was set to 0.10, as an increase in weight above 0.8 did not provide further increase in enhancement
and a weight less than 0.8 provided decay in enhancement. The region containing the MC cluster was
cropped (see Figure 3b) from the enhanced mammogram using the provided annotations. The effect of
the enhancement algorithm is shown in Figure 3b, where it can be noted that the appearance of MC
clusters is enhanced for both digital (OMI-DB) and digitized (DDSM) mammograms from a qualitative
point of view.
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(a) (b)

Figure 3. Example enhancement of MC clusters: digital mammogram from the OMI-DB
database (top row: 1_1076_463) and digitized mammogram from the DDSM database (bottom
row: B_3049_1.RIGHT_MLO): (a) MC patch cropped from the original mammogram (without image
enhancement); and (b) MC patch cropped after enhancement.

2.2.2. Probability Image Generation for MC Cluster

A combination of image interpolation, morphological operations, and edge-preserving filtering
was applied to generate the probability image of the MC clusters. The enhanced cropped region
of interest (ROI), containing the MC cluster, was considered as a three-dimensional plot with the
z-axis representing the intensity of each pixel (see Figure 4a). The whole image was first divided
into 30 × 30 sub-regions. The size of sub-regions was set to 30 × 30 to maintain a trade-off between
over-segmentation and under-segmentation of the MC clusters. Choosing sub-regions bigger than
30 × 30 would result in over-segmentation in low contrast images where the disparity between
the MC cluster and their background is very low. Choosing a size less than 30 × 30 would cause
under-segmentation.
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(a) (b)

(c)

Figure 4. (a) Three-dimensional intensity representation of a 158 × 189 pixel area of a digital
mammogram; (b) calculated object background intensity of the same area; and (c) the difference
image between the original image (a) and the background image (b).

Bi-cubic interpolation [33] was applied to each sub-region to obtain pixel intensities of the
background tissue (see Figure 4b). The resulting image (Figure 4b) was subtracted from the original
image (Figure 4a) to obtain the difference between the original and local background pixel values
(Figure 4c). In Figure 4b,c, high picks indicate higher pixel intensities and sharp edges in the image.
From this difference image (Figure 4c), the pixels with positive values were identified and a percentage
of these (5%) with the highest values was selected to generate a binary image (see Figure 5b). The
reason for selecting the 5% highest pixel values was to avoid under-segmentation. The highest positive
pixel values considered as MC clusters were characterized by higher intensity compared to their local
background tissue. Single pixels were removed from the generated binary image, and an erosion
operation was performed to eliminate false positive pixels (see Figure 5c). To perform the erosion
operation, a square structuring element of size 3 × 3 was used with all values set to one to retain the
original morphology of the segmented MC cluster. The lowest value among the 5% selected pixels
was specified as a threshold. If the number of the existing pixels, in Figure 5c, was lower than 10%
of the total number of pixels in the cropped image patch, the pixels with intensity higher than half
of the previously specified threshold were included in the binary image (see Figure 5d). Overall,
10% of the total pixels in the cropped image patch maintained a trade-off between over-segmentation
and under-segmentation. By doing so, enough pixels were generated for the binary image (A) (see
Figure 5d). The above procedure was performed to avoid under-segmentation when the mammogram
exhibited very low contrast, which was usually due to erroneous exposure conditions.
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(a) (b) (c)

(d) (e) (f)

(g)
Figure 5. (a) Enhanced image patch (1_1076_463) from the OMI-DB database; (b) binary image
containing 5% of the highest positive intensity values from the difference image; (c) eliminating
single pixels and perform erosion on (b); (d) Image A: pixels having higher value than the specified
threshold mention in Section 2.2.2 are added to (c); (e) contrast enhancement filter applied to the
bi-cubic interpolated image of (a); (f) Image B: five percent of the pixels having the highest intensity
are selected from the filtered image; and (g) Image C: Logical summation of (d) and (f).

Subsequently, a contrast enhancement filter, having a 9 × 9 kernel with its central pixel element
equal to 80, was applied to the bi-cubic interpolated image [33] (see Figure 5e). Five percent of the pixels
having the highest intensity were selected from the filtered image, producing another binary image (B)
(see Figure 5f). Finally, logical summation (AND) of the two binary Images A and B (Figure 5e,f) was
performed to keep pixels that have high intensity values in comparison with the background intensity
of their local neighborhood tissues (see Figure 5g).

2.2.3. Specifying MC Cluster

The clinical definition of the MC cluster was used for the reduction of false positives from the
probability image generated in Section 2.2.2. According to the medical definition of clustered MC,
more than three MCs should reside in a 1 cm2 area [34], which is equivalent to 200 × 200 pixels in the
digitized data (DDSM and MIAS) with a pixel size equal to 50 µm, and 143 × 143 pixels in the digital
data (OMI-DB) with a pixel size equal to 70 µm. This results in 143 × 143 pixel equivalent to 1 cm2

block area for OMI-DB, and 200 × 200 pixel equivalent to 1 cm2 block area for DDSM and MIAS.
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From the probability image generated in Section 2.2.2 (see Figure 5g), regions containing one or
two pixels were removed, as they were considered artifacts [35], and an erosion operation with a 2 × 2
unit element kernel was performed (see Figure 6a). Here, a 2 × 2 unit element kernel was used for the
erosion operation, as a bigger kernel size generated under-segmented images and a smaller kernel had
barely any effect. Removal of individual objects with a morphological erosion operation was necessary,
because the diagnostic information was based on the existence of a group of MCs [34]. Subsequently,
neighboring pixels with eight connectivity were grouped together [11] and, considering the clinical
definition of MC cluster formation, the binary image having only eight-connected component was
divided into 1 cm2 block areas. This results in 143 × 143 pixel equivalent to 1 cm2 block area for
OMI-DB, and 200 × 200 pixel equivalent to 1 cm2 block area for DDSM and MIAS.

(a) (b)
Figure 6. (a) Elimination of blobs containing one or two pixels from the probability image generated
in Section 2.2.2 (see Figure 5g); and (b) final probability image, for example case (1_1076_463),
after discarding all blobs from 1 cm2 pixel block whilst objects inside the block were less than 3. In this
example, all the 1 cm2 pixel blocks contained more than three blobs so no object elimination was done.

Elimination of all the elements inside each 1 cm2 block area were done; where the minimum
number of objects inside a block was less than 3 [34], all the elements were removed (see Figure 6b).
In Figure 6b, no object elimination was done inside any block since all the 1 cm2 blocks contained more
than three objects; a sample case is shown in Figure 7, which represents how the images were divided
into 1 cm2 block areas, and the elements inside each block were eliminated, where the minimum
number of objects inside the block was less than 3 [34]. For better visual understanding, the MC clusters
were highlighted in yellow (see Figure 7c,d) and green (see Figure 7e,f). Image C was generated for
the sample image patch (10_35_242) from the OMI-DB database (Figure 7b). All single pixels were
eliminated to remove a fraction of false positive MC objects (Figure 7c). The image was then divided
into 1 cm2 pixel blocks (see Figure 7d). The blocks containing less than three MCs, marked by a
rectangle, were removed (see Figure 7e). All blocks were stitched together to generate the final
segmented image (Figure 7e).

The whole MC cluster may not be covered by the proposed approach. The block area has to be slid
to different locations of the patch image to build up a complete MC cluster network. For the sliding
window approach, we would have to come up with a methodology to harmonize the changes in MC
clusters between windows and how this representation is affecting the classification. In addition, the
sliding window approach would be time consuming, and is an interesting research question to address
in future.
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(a) (b) (c)

(d) (e) (f)

Figure 7. (a) Enhanced image patch (10_35_242) from the OMI-DB database; (b) Image C: logical
summation of two binary Images A and B for image patch (10_35_242); (c) eliminating single pixel
from (b) (all MCs are highlighted for better visual understanding); (d) dividing (c) into 1 cm2 pixel
blocks: the blocks containing fewer than three MCs are marked by a rectangle, the last row and
the last column of image blocks were not 1 cm2 pixel block as they were adjusted according to the
patch image size; (e) elimination of all MCs inside each 1 cm2 pixel block that contained fewer than
three MCs (marked by a rectangle); and (f) all blocks in (e) are stitched together to produce the final
segmented image.

3. Segmentation Evaluation

The evaluation was carried out using the Dice similarity metric [36,37], and is in line with
our previous work [11]. The reference masks (see Figure 8b) were generated from the radiologist’s
annotation outline (see Figure 8a). Subsequently, individual MCs that reside inside the radiologist’s
annotation were considered to generate convex hull. This convex hull (see Figure 8f) and the reference
mask (see Figure 8b) were used to calculate the Dice similarity score (see (Figure 8g–i)). The Dice
similarity metric for DDSM and MIAS is presented in Figure 9.
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 8. (a) Annotation by radiologist (B_3121_1.RIGHT_MLO); (b) reference MC cluster mask
generated from (a); (c) border extraction from reference MC mask and overlaid on segmented image
generated using morphological segmentation approach; (d) MC resides inside the border annotated by
expert radiologist; (e) convex hull outline using the border points of segmented blobs residing inside
annotation outline; (f) mask generation from convex hull border of segmented image; (g) Dice similarity
score (based on morphological segmentation approach) = 0.85599 (white region, true positive; green
region, false positive; magenta region, false negative); (h) Dice similarity score (based on Oliver’s [38]
segmentation approach) = 0.76514; and (i) Dice similarity score (based on area ranking segmentation
approach) = 0.5494.

In Figure 9, it is clear that the segmentation technique based on the morphological approach
works better than the area-rank based segmentation method proposed in [11]. In addition, it is worth
noting that the segmentation results generated by applying the method of Oliver et al. [38] give almost
the same similarity score as gained by our proposed morphological operation-based segmentation
method, although the similarity score for our proposed approach is slightly higher than with Oliver’s
method [38].



J. Imaging 2019, 5, 76 11 of 24

(a) (b)
Figure 9. (a) Dice similarity score to compare segmentation results of Oliver’s segmentation method,
and our proposed two segmentation methods using the DDSM database; and (b) Dice similarity score
to compare segmentation results of our proposed two segmentation methods using the MIAS database.

4. Classification Module Construction

To classify MC clusters into benign or malignant, a series of classification algorithms was explored
to create an ensemble learner instead of using only one classification method. A set of nine different
machine learning algorithms was used: k-nearest neighbor (kNN) classification [39], a multilayer
perception (MLP) classifier [40], a classification tree [41], random forest [42], support vector machines
using four different kernels (Gaussian RBF, sigmoid, linear, and polynomial) [43], and a Naive Bayes
network [44]. All the classifiers individually provide a binary decision by classifying the images as
benign or malignant. Each classification algorithm was separately applied to the images and the
number of malignancy predictions (votes for malignancy) were counted. Afterwards, the total number
of malignancy prediction was divided by the total votes. For example, if eight of the nine classifiers
classified a case as malignant, then the final estimation of the ensemble classifier for malignancy would
be 89%. The advantage of employing an ensemble classifier was to aggregate a set of models to provide
more robust classification results rather than using the opinion from a single classification model.
The predictions from individual classifiers were combined using majority voting, and as such the
possibility of over-fitting of any particular classifier was avoided. The individual classification results
from different classification algorithms are presented and discussed in Section 6.

A stacked generalization [45] approach was also applied to create a classifier for classifying the
MC clusters. In this approach, the above-mentioned nine learning algorithms were considered as
base classifiers, and the Naive Bayes classifier [44] was used as the meta-classifier (combiner), as a
previous experiment [46] confirmed that the Naive Bayes classifier as a combiner performed better than
majority voting. In a stacked generalization approach, the meta-learner was used instead of averaging
to combine predictions of the base classifiers. Predictions of the base classifiers were used as input for
the meta-classifier. The meta-classifier attempted to learn the relationships between predictions and
the final decision. The meta-classifier also corrected some mistakes of the base classifiers [45].

The aim of this research was to investigate the merit of using a conventional stack generalization
approach to classify MC cluster in mammogram. Using modern methods such as auto-encoders or
generic neural networks for feature selection and classification is an interesting research question to be
addressed in the future [47,48].

5. Feature Extraction and Feature Selection

It is crucial to extract and select appropriate features that can classify MC clusters into their
clinical categories. MC clusters can be assessed based on specific properties such as: size, shape,
number, distribution, etc. [33]. A set of 51 features [49] was computed from the segmented blobs
(see Section 2.2.3) for extracting the statistical and morphological properties of the MC clusters,
which form the feature space. All computed features characterize either an individual MC or an
MC cluster. These features were grouped into three categories: shape, size and texture (see Table 3).
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Since the number of computed features was large and their discriminating power varied (see Table 3),
a feature selection approach was used to obtain the most salient features. More details on the
performance of individual features to classify MC clusters are discussed in Section 6.

Feature selection was done by employing the CfsSubsetEval [50] attribute evaluator and the
BestFirst search method [51] in Weka [51]. CfsSubsetEval [50] evaluated the significance of a subset
of features by approximating the individual predictive ability of each feature and the redundancy
between them: this meant that features that were highly correlated with the class whilst having low
inter-correlation were more likely to be selected [51]. On the other hand, BestFirst [51] searched the
feature space subsets by greedy hill-climbing augmented with a backtracking facility [51], which could
start from any point and search forwards and backwards, by considering all possible single feature
vector additions and deletions [52]. The selected features from unenhanced images were put into a
group (α). Subsequently, the same 51 features were extracted from the segmented images that were
generated from the enhanced mammograms. The most significant features from the enhanced images
were gathered into another group (β), using the same feature selection technique. The common features
from group α and group β formed a new feature space.

To ensure the robustness of the feature selection and avoid bias, all data were divided using
10-fold cross-validation scheme and 9-fold cross-validation scheme, respectively. Important features
were extracted using the images residing in each fold, which showed the same features extracted
consistently. When the images were split into different number of groups by changing the fold-number
higher and lower than 10, we constantly obtained the same set of features extracted. A similar approach
was applied to measure the robustness of the feature selection in a previous publication [49].

The feature extraction and selection technique, as mentioned above, was applied separately on the
digitized and digital databases to investigate whether the provided features from the digital database
outperformed those extracted from the digitized database in classifying MC clusters. Table 1 represents
the four most important features extracted and selected using Digitized database (DDSM), and Table 2
represents the two most important features extracted and selected using the Digital database (OMI-DB)
with the associated clinical interpretations.

Table 1. Clinical description of the selected features using the DDSM database for classification of
MC clusters.

MC Cluster Classification Features Radiologists Characterization Features

Summation of the mean of individual Density of MC cluster
MC intensity

Variance of the standard deviation of the distances MC distribution
from cluster centroids

MC cluster convex hull area Cluster size

Mean of MC perimeter Individual MC size

Table 2. Clinical description of the selected features using the OMI-DB database for classification of
MC clusters.

MC Cluster Classification Features Radiologists Characterization Features

MC cluster area Cluster size

Size of individual MC Individual MC size

The in-depth details on the impact of our feature selection approach are described in Section 6.
Here, all images were segmented maintaining the clinical grounding of the distribution of the MC
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cluster which indicate that an area of 1 cm2 contains no fewer than three MCs [34]. The spatial
resolution of mammography is normally ranging from 40–100 µm per pixel, which enables detection
of MC clusters at an early stage [15]. The aforementioned feature extraction and selection method
was also employed on the segmented images from the digital and digitized databases by randomly
considering a 100 × 100 pixel area as 1 cm2, to investigate if this had an impact on the MC cluster
classification. The results are presented in Table 6 in Section 6.

To evaluate the reliability of the feature selection approach, images from the digital and digitized
databases were separately divided into ten folds. The process of feature selection was performed on
each fold, which indicated the same selection of features. Detailed evaluation of the feature selection
for MC cluster classification is provided in Section 6.

6. Result Analysis

To investigate the influence of shape, size, and texture aspects, each individual feature type was
separately used for the classification using ensemble learning (see Table 3). The experiment was
separately applied on the individual databases, where the features cognate with size provided the
highest Az values over the shape and texture features for both digital and digitized databases with
no feature selection. Whilst only considering the size features, the highest Az value (0.87 ± 0.01) was
gained for the digital database (OMI-DB). With feature selection, as described in Section 5, the value
of Az was 0.83 ± 0.01 for OMI-DB, 0.72 ± 0.01 for DDSM, and 0.68 ± 0.02 for MIAS. The most
important size features were related to the area covered by individual MC, eccentricity of individual
MCs, eccentricity of MC cluster, MCs distances covered from MC cluster centroid, perimeter of MC
cluster, and elongation of MC cluster.

Table 3. Az estimation for the classification of MC clusters while applying 10-fold CV using ensemble
learning on segmented image using a block size based on clinical rules.

Feature Feature No. of Total Feature Az (AUC)

Selection Category Feature No. OMI-DB DDSM MIAS

Size 17 0.87 ± 0.01 0.75 ± 0.01 0.74 ± 0.03
No Shape 17 51 0.70 ± 0.02 0.69 ± 0.02 0.61 ± 0.04

Texture 17 0.77 ± 0.01 0.66 ± 0.01 0.50 ± 0.03

Size 7 0.83 ± 0.01 0.72 ± 0.01 0.68 ± 0.02
Yes Shape 4 12 0.71 ± 0.01 0.68 ± 0.01 0.82 ± 0.04

Texture 5 0.78 ± 0.02 0.68 ± 0.01 0.67 ± 0.03

We used 10-fold cross-validation with different seed values. The seed values initialize
randomization of data in each fold. For example, if the value were set to 3, it would mean that
the data were shuffled among the folds three times. Saving the seed value or setting it to the same
number each time guarantees that the algorithm will come up with the same results—identical for each
run. In this experiment, the seed number was set to 1 for the first run and its value was increased by 1
with each run. Hence, for 10 runs, the maximum seed value was set to 10. In 10-fold cross-validation,
the original sample is randomly partitioned into 10 equal size sub samples (folds). Of the 10 sub
samples, a single sub-sample is retained for testing the model, and the remaining (10 − 1) sub-samples
were used as training data. The cross-validation process is then repeated 10 times, with each of the
folds used exactly once as the test data. The 10 results from the folds are averaged to produce a single
estimation. The advantage of this method is that all observations are used for both training and testing,
and each observation is used for testing exactly once.

Note that the feature selection was only performed on the training data and therefore it was
not expected that overfitting would happen. By using stratified 10-fold cross-validation, we avoided
the risk of over-training. When using the ensemble learning and stack generalization approach,
the hyper-parameters were kept as the default parameters set in Weka, since the advantage of using
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default parameters is that we eliminated the risk of introducing optimistic bias by tuning the parameter
to maximize performance [53]. The segmentation and feature extraction were implemented using
MATLAB Version 9.3.0.713579 (R2017b) on Windows 10. The features extracted from the images were
converted from “.mat” format to “.arff” format to facilitate data structures as input for WEKA.

All nine classifiers, described in Section 4, were tested individually to assess their performance
with results shown in Figure 10. SVM provided very low classification accuracy compared to the other
classifiers, which is caused by low bias and high variance [54]. Another point to note is the SVM trained
classifier used the trained data partly to estimate the margin, the support vectors, whereas others
function classifiers considered the training set to define the decision function, making them more
generalizable. When SVM was discarded from the classifier stack the overall classification performance
decreased [11], while including SVM resulted in improved classification accuracy (around 90% for the
DDSM database) [11], indicating the positive influence of SVM on ensemble learning, where a majority
voting scheme was applied for improved generalization and to gain more flexibility to maintain strong
prediction performance by averaging out classifiers individual mistakes and thus reducing the risk
of over-fitting.
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Figure 10. The accuracy of microcalcification cluster classification by individual classifiers:
(a) classification accuracy for k-nearest neighbor, Multilayer perception, J48 decision tree, Random
forests, and Naive bayes; and (b) classification accuracy by SVM using four different kernels: Gaussian
RBF, Sigmoid, Linear, and Polynomial.

For the k-nearest neighbor (kNN) classifier, Figure 10a, the value of k was set to 5 based on
cross-validation. The classification accuracy for digitized and digital mammograms was 93.77% and
81.37%, respectively. Lower value of k caused a decrease in classification accuracy and values higher
than 5 provided the same accuracy as for k = 5. For a multilayer perceptron (MLP), the number of
attributes were summed up with the number of classes and the result was divided by 2 to set the
number of hidden layers whilst using the learning rate 0.3 and setting the validation threshold as 20
to terminate the validation testing. Such parameter settings were chosen because they provided the
best classification accuracy for digital mammograms (around 84%), but the classifier showed poorer
performance for digitized mammograms (around 73% classification accuracy). It is also worth noting
that the accuracy increased to above 92% for both digital and digitized mammograms whilst using a
classification tree, i.e., C4.5 (J48). Here, the confidence value was chosen to be 0.25 for pruning and the
number of folds was set to 3 , to determine the amount of data for reduced-error pruning and producing
a decision tree. While applying a random forest, the accuracy for digitized mammograms was 84%,
but the accuracy for digital mammograms was above 90%. The Naive Bayes classifier provided an
increase in classification accuracy for digital mammograms (around 92%), but the accuracy decreased
to around 76% for the digital database.

All classifiers were used to create an ensemble learner (see Section 4). The ensemble learner was
applied to images from the three different databases: OMI-DB, DDSM, and MIAS. The performance
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of the ensemble learner is presented in Table 4. Ten-fold cross-validation (10-FCV) scheme and
leave-one-out cross-validation (LOOCV) approach were used. For 10-FCV, the images were split into
10 folds, ensuring that each fold has the same proportion of observations with a given categorical
value. In our experiment, each fold contained roughly the same proportions of the two types of class
labels (benign and malignant). 10-FCV allows using different training and testing data, which avoids
over fitting and gives better generalization ability. On the other hand, for LOOCV, each observation
was held out with training based on the remaining samples.

Two evaluation metrics were used. The first evaluation metric was the overall classification
accuracy (CA), which was defined as the percentage of correctly classified MC clusters. The receiver
operating characteristic (ROC) curve analysis was used as the second evaluation metric, plotting
the true positive rate (TPR) against the false positive rate (FPR), which illustrated a whole range of
possible operating characteristics for the classifier model. The ROC analysis was used to assess the
predictive ability of the ensemble learner by using the area under the ROC curve denoted by Az (also
know as the AUC) [55] (see Figure 11). Az is equivalent to the Wilcoxon signed-ranks test, which is
a non-parametric alternative to the paired t-test [56]. All classification and evaluation aspects were
implemented using the Weka [57] data mining suite.

Table 4. Classification accuracy using LOOCV and 10-fold CV applying all 51 and the 2 most salient
features from digital mammogram, and 4 most salient features from the digitized mammogram using
ensemble learning. The images were segmented following the clinical grounding of cluster distribution.

Database Feature LOOCV 10-FCV

Name Number CA Az (AUC) CA Az (AUC)

OMI-DB 51 86.49% 0.85 87.11 ± 1.38% 0.86 ± 0.01
(286) 4 85.71% 0.84 83.55 ± 2.57% 0.82 ± 0.03

2 91.12% 0.91 89.80 ± 1.98% 0.89 ± 0.02

DDSM 51 73.98% 0.73 76.28 ± 1.25% 0.75 ± 1.01
(280) 4 80.66% 0.80 81.67 ± 1.65% 0.81 ± 0.01

2 88.48% 0.88 85.24 ± 2.52% 0.82 ± 0.08

MIAS 51 82.35% 0.79 95.29 ± 4.41% 0.94 ± 0.05
(24) 4 100.00% 1.00 100.00 ± 0.00% 1.00 ± 0.00

2 100.00% 1.00 100.00 ± 0.00% 1.00 ± 0.00

When using 10-FCV, in Table 4, the ensemble learner performed better using only two important
feature,s which were extracted and selected from the digital database (OMI-DB), showing an accuracy
equal to 89.80 ± 1.98%. The feature selection was performed using the proposed method described in
Section 5. The two most important features were related to the MC cluster area and size of individual
MC. Increase in accuracy was also noticed while using the same two important features to classify
MC cluster for the digitized mammograms (85.24 ± 2.52% for DDSM, and 100.00 ± 0.00% for MIAS)
compared to Table 3. When considering only the selected two important features, it was found that
the classification accuracy achieved is lower for the digitized database (DDSM) than the accuracy
achieved for the digital database (OMI-DB). A possible reason for such decrease in accuracy for the
digitized mammograms is due to the decreased image quality compared to the digital mammograms,
which affected the accuracy of the MC segmentation [58]. As the digital mammograms were higher
quality, more accurate segmentation was obtained which potentially influenced appropriate feature
extraction and classification results [59]. The accuracy was also high for the same selected features
when using the LOOCV scheme: 91.12% for OMI-DB, 88.48% for DDSM, and 100% for MIAS. Such
limitations of digitized mammograms were more pronounced when using four important features,
extracted and selected from the digitized database (DDSM) using method explained in Section 5, and
showed decreased accuracy when compared with the two selected features from the digital database
(OMI-DB) (Table 4).
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(a) (b)

Figure 11. ROC curves for a stack generalization classifier for the OMI-DB digital database:
(a) 2 features after feature selection (AUC = 0.97); and (b) 51 features (AUC = 0.96).

The stacked generalization approach [45] was applied to create an additional classifier, described
in Section 4. The outputs of the nine different learning algorithms were collated to model a new
dataset. The Naive Bayes classifier [44] was used as the meta-classifier to provide the final classification
results [60]. The meta learner was used instead of averaging to combine the predictions of the base
classifiers, which provided classification accuracy of 95.75% for the digital (OMI-DB) database, and
classification accuracy of 95.17% for digitized database (DDSM) when applying only two important
features that were extracted and selected from the digital database (OMI-DB) whilst using LOOCV
scheme. With the same selected features, similar classification accuracy was obtained for OMI-DB
(95.75 ± 0.57%), and DDSM (94.90 ± 0.72%) databases using 10-fold CV. As the precision for the
digital (OMI-DB) and digitized (DDSM) databases are very similar; we performed an unpaired t-test,
where p < 0.05 was obtained, indicating significant differences in the classification results using the
digital and digitized databases. This demonstrates that our proposed classification approach works
well, providing high classification accuracy for the digital databases (OMI-DB) over the digitized
one (DDSM).

Comparing Tables 4 and 5 signifies that the ensemble learner performs poorly, providing a
decrease in the classification accuracy in all considered cases. This strongly supports the statement that
the digital mammograms were higher quality, and more accurate segmentation was obtained which
potentially regulate appropriate feature extraction and classification results [59]. It is worth noting that,
even though 100% classification accuracy was obtained for the MIAS dataset, the number of sample in
MIAS is very small (24 women, 12 benign and 12 malignant) to draw a significant conclusion in terms
of classifying MC cluster, as it has smaller variability then the larger database like DDSM.

The results presented in Tables 3–5 are based on the images segmented maintaining the clinical
grounding of the distribution of the MC cluster, which indicates that an area of 1 cm2 contains no
fewer than three MCs [34]. Since the spatial resolution of mammography was 40–100 µm per pixel [15]
which enabled the detection of MC clusters at an early stage —the feature extraction and selection
method presented in Section 5 was employed on the segmented images from the digital and digitized
databases that treated a 100 × 100 pixel block equivalent to a 1 cm2 area. This was done to investigate
if such size selection had an impact on the MC cluster classification. The 100 × 100 pixel block is 50%
of the block size (200 × 200) that was maintained to segment the digitized database (DDSM and MIAS)
and 70% of the block size (143 × 143) that was maintained to segment the digital database (OMI-DB).
In Table 6, both 51 features and the selected 4 most important features extracted from the digitized
mammogram (DDSM) were used for MC cluster classification using LOOCV and 10-fold CV scheme.
Here, the images were segmented, using the approach mentioned in Section 2.2.2, without following
the clinical grounding of cluster distribution by selecting the block size 100 × 100 to investigate if it
had any effects on the MC cluster classification.
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Table 5. Classification accuracy using LOOCV and 10-fold CV applying all 51 and the 2 most salient
features from digital mammogram, and 4 most salient features from the digitized mammogram
using stacked generalization. The images were segmented following the clinical grounding of cluster
distribution. Naive Bayes was used as the meta-classifier.

Database Feature LOOCV 10-FCV

Name Number CA Az (AUC) CA Az (AUC)

OMI-DB 51 91.89% 0.97 89.85 ± 1.69% 0.96 ± 0.00
(286) 4 92.66% 0.98 92.70 ± 0.63% 0.97 ± 0.01

2 95.75% 0.97 95.75 ± 0.57% 0.97 ± 0.01

DDSM 51 89.96% 0.95 89.74 ± 1.35% 0.95 ± 0.01
(280) 4 92.19% 0.96 93.12 ± 0.58% 0.96 ± 0.02

2 95.17% 0.98 94.91 ± 0.72% 0.97 ± 0.01

MIAS 51 100% 1.00 97.06 ± 2.94% 0.99 ± 0.00
(24) 4 100% 1.00 100.00 ± 0.00% 1.00 ± 0.00

2 100% 1.00 100.00 ± 0.00% 1.00 ± 0.00

Table 6. Classification accuracy using LOOCV and 10-fold CV applying all 51 and the 4 most salient
features from digitized mammogram using stacked generalization. The images were segmented
without following the clinical grounding of cluster distribution. Naive Bayes was used as the
meta-classifier.

Database Feature LOOCV 10-FCV

Name Number CA Az (AUC) CA Az (AUC)

OMI-DB 51 93.66% 0.97 91.38 ± 0.86% 0.97 ± 0.01
(286) 4 95.77% 0.98 94.94 ± 0.90% 0.98 ± 0.01

DDSM 51 90.68% 0.96 89.38 ± 0.44% 0.94 ± 0.01
(280) 4 93.91% 0.97 93.98 ± 0.87% 0.96 ± 0.02

MIAS 51 100% 1.00 99.58 ± 1.25% 1.00 ± 0.00
(24) 4 100% 1.00 100.00 ± 0.00% 1.00 ± 0.00

The selected four most important features provided higher classification accuracy while applying
LOOCV and 10-fold CV scheme for the OMI-DB database (95.77% for LOOCV, and 94.94 ± 0.90% for
10-fold CV), the DDSM databases (93.91% for LOOCV, and 93.98 ± 0.87% for 10-fold CV), and the
MIAS database (100% for LOOCV, and 100.00 ± 0.00% for 10-fold CV). Observing that the MIAS
provided 100% classification accuracy with the four most important features, it had a very limited
number of samples to draw significant conclusions. The increase in accuracy for the OMI-DB database
with the four most important features over the 51 features derived from the digitized database (DDSM)
warrant that the selected features from the digitized database (DDSM) have influence in classifying
MC clusters in the digital mammograms (OMI-DB). This also demonstrated that the feature selection
approach proposed in Section 5 is robust.

It is noteworthy that, whilst using 10-fold CV, the classification accuracy 94.94 ± 0.90% for the
OMI-DB database using the four most important features in Table 6, and the classification accuracy
95.75 ± 0.57% for the same database using the two most important features in Table 5 appears to
be similar. The same applied when comparing the classification accuracy for the DDSM database.
With 10-fold CV and the four most important features (Table 6), the DDSM database achieved
93.98 ± 0.87% classification accuracy, since with the two most important features and 10- fold CV, in
Table 5, the DDSM database obtained an accuracy of 94.90 ± 0.72%. The precision was calculated
using an unpaired t-test for the aforementioned circumstances and p > 0.05 was obtained in all cases.
This exhibits that similar classification accuracy can be achieved for classifying MC cluster using
more number of features (four most important features) when the feature extraction and selection is
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performed on digitized database, whereas less features (two most important features) can be used
to obtain similar classification accuracy (around 95%) when the feature extraction and selection is
performed on digital database, and the MC are segmented complying with the clinical groundings
concerning the cluster distribution.

7. Discussion

The proposed method for MC cluster classification was compared with other relevant
publications (see Table 7). Akram et al. [12] proposed a tree-based representations for MC clusters,
where scale-invariant topological features of MC were extracted showing 91% accuracy for cluster
classification. Although high accuracy was achieved, the performance for MC cluster classification
on digital mammogram was not reported in this study. In another study by Akram et al. [14], 96%
classification accuracy was achieved using digitized mammograms with an improved Fisher Linear
Discriminant Analysis (LDA) approach combined with a Support Vector Machine (SVM) variant.

The properties of MC clusters were presented by mereotopological barcodes by Strange et al. [58],
where the discrete mereotopological relations between the individual MCs over a range of scales
were presented in the form of a mereotopological barcode. The classification accuracy on digitized
mammograms reported by Strange et al. [58] was 95% and 80% for the MIAS and DDSM
datasets, respectively.

Chen et al. [15] used multi-scale graph topological features and classified MC clusters using
k-nearest-neighbors-based classifiers. Their approach obtained 96% accuracy for digital mammograms.
Though the accuracy for digital mammogram was high, the number of cases in the digital mammogram
database was very low (25 cases), which provided less variability of MC distribution in the sample
cases. It is also noteworthy that the digital images were manually annotated in Chen et al. [15], where
delicate lines around small microcalcifications were outlined by an expert radiologist. Such delicate
annotation with no false positives might result in higher classification accuracy. Chen et al. [15] also
achieved high accuracy, around 95%, for a digitized database (MIAS) whilst again considering only
a very small number of cases providing limited variation of MC clusters. Conversely, while using a
large image database (DDSM), the classification accuracy reduced to 86% for a LOOCV approach and
85.20 ± 0.05% for 10-fold CV. It is worth mentioning that only topological features were taken in to
account to classify MC clusters, rather than concentrating on the morphological and statistical features
of the MC clusters.
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Table 7. A qualitative comparison of our results with respect to related work.

Method Databases Cases Features Classifier Results

Akram et al. [12] DDSM 288
Tree-based
modeling

tree-structure
height CA = 91%

Akram et al. [14] DDSM 288 Scalable-LDA SVM CA = 96%

Strange et al. [58] DDSM 150 Cluster barcodes
CA = 95%,
Az = 0.82

Strange et al. [58] MIAS 20 Cluster barcodes
CA = 80%,
Az = 0.80

Chen et al. [15]
MIAS I
(Manual

Annotation)
20 Topology

kNN/FNN/
FRNN/VQNN

CA = 95%,
Az = 0.96

Chen et al. [15] Digital 25 Topology kNN/FNN
CA = 96%,
Az = 0.96

Chen et al. [15]
DDSM

(LOOCV) 300 Topology kNN
CA = 86.0%,

Az = 0.90

Chen et al. [15]
DDSM

(10-fold CV) 300 Topology kNN
CA = 85.2 ± 57%,
Az = 0.91 ± 0.05

Alam et al. [11]
MIAS

(LOOCV) 24
Morphology,

Texture
& Cluster

Ensemble
classifier

CA = 100%,
Az = 1

Alam et al. [11]
MIAS

(10-fold CV) 24
Morphology,

Texture
& Cluster

Ensemble
classifier

CA = 100 ± 0.00%,
Az = 1.00 ± 0.00

Alam et al. [11]
DDSM

(LOOCV) 280
Morphology,

Texture
& Cluster

Ensemble
classifier

CA = 91.39%,
Az = 0.91

Alam et al. [11]
DDSM

(10-fold CV) 280
Morphology,

Texture
& Cluster

Ensemble
classifier

CA = 90.02 ± 1.42%,
Az = 0.89 ± 0.02

Ours
OMI-DB

(10-fold CV) 286
Morphology,

Texture
& Cluster

Ensemble
classifier

(Extended)

CA = 90.97 ± 0.83%,
Az = 0.91 ± 0.01

Ours
OMI-DB

(10-fold CV) 286
Morphology,

Texture
& Cluster

Stack
generalization

(meta-classifier:
Naive Bayes)

CA = 89.84 ± 1.69%,
Az = 0.96 ± 0.00

Ours
OMI-DB

(10-fold CV) 286

Morphology,
Texture

& Cluster
(selected features)

Stack
generalization

(meta-classifier:
Naive Bayes)

CA = 95.75 ± 0.57%,
Az = 0.97 ± 0.01

Ours
OMI-DB

(10-fold CV) 286

Morphology,
Texture

& Cluster
(selected features)

Stack
generalization

(meta-classifier:
Adapting Boosting )

CA = 96.72 ± 0.46%,
Az = 0.98 ± 0.00

In our previous study [11], we acquire high classification accuracy (100%) for the MIAS database
(24 cases) using LOOCV and 10-fold CV with an ensemble classifier. For DDSM, the accuracy was 91%
(for LOOCV) and 90.02 ± 1.42% (for 10-fold CV). The images used in Alam et al. [11] did not maintain
the clinical grounding while segmenting the MC cluster using block processing approach. In addition,
the experiment was not evaluated on digital mammograms. Promising results were achieved by our
developed approach using the images from the digital and digitized databases (OMI-DB, DDSM, and
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MIAS) . For brevity, we only show the results for the OMI-DB database in Table 7. The comparison of
MC classification accuracy for the OMI-DB database with respect to the DDSM and MIAS databases is
represented in Tables 3–6 in Section 6. Whilst using an ensemble classifier for the OMI-DB database,
87.11 ± 1.38% classification accuracy was achieved (see Table 4). For the DDSM database, the accuracy
achieved was 76.28 ± 1.25% for 10-fold CV, which was lower than for the OMI-DB database. The
stack generalization approach, described in Section 4, was applied, which provided 89.85 ± 1.69%
accuracy without feature selection, and 95.75 ± 0.57% accuracy with feature selection for the OMI-DB
database (see Table 5). To perform quantitative evaluation for the stack generalization classifier, the
receiver operating characteristic (ROC) curves for 2 features (Table 5) and 51 features are represented in
Figure 11. Using ROC analysis, we achieved an area under the ROC of Az = 0.97 when using 2 features,
whereas for 51 features the value of Az was 0.96. Az is equivalent to the Wilcoxon signed-ranks test
and a statistical measure, which is a non-parametric alternative to the paired t-test [61,62]. Additional
details on feature selection are described in Section 5. A detailed discussion of the results can be found
in Section 6.

In addition, Tables 5 and 6 in Section 6 reveal that the stack generalization scheme outperformed
the ensemble learning approach to classify MC clusters for both the digital and digitized mammograms
using LOOCV and 10-fold CV approaches.

Apart from the classifiers that are described in Section 4, additional classification
algorithms ([63–65]) were added to construct an extended ensemble learner which provided better
classification accuracy 90.97 ± 0.83% for the OMI-DB database (See Table 7) compared to the accuracy
(87.11 ± 1.38%) obtained by the ensemble learner initially used in Table 4 using 10-fold CV.

In Table 7, 95.95 ± 0.57% accuracy was achieved with stack generalization with meta-classifier as
Naive Bayes [44]. This accuracy was increased to 96.72 ± 0.46% when using Adaptive boosting [66] as
meta-classifier. The Adaptive boosting improved the performance accuracy as it produced a combined
classifier whose variance is lower than the variances produced by the weak base learner [67].

It should be noted that most studies in Table 7 used smaller datasets, hence Table 7 represents a
qualitative comparison. Table 7 shows how different classifiers classify MC clusters using different
types of features. The methods were tested with different settings and data splitting. It is also important
to note that the segmented images used in other classification approaches were based on the method
proposed by Oliver et al. [38], whereas our proposed classification approach was based on the images
segmented using the method proposed by Alam et al. [11], which is why the number of images
from the same database in different experiments varied since the under-segmented images generated
from the method proposed by Alam et al. [11] were discarded in our experiments. One significant
drawback of the developed method was that it performed badly for cases where the MC clusters
have no well-defined structure or very few MC were segmented in the cluster region. An extreme
situation occurred when only a single MC was identified from the cluster by the segmentation
approach explained in Section 2: this influenced the failure to discriminate malignant from benign
based on individual MCs morphological feature and texture patterns. However, the experimental
results demonstrated the robustness and effectiveness of the developed method when combined with
automatic MC detection and feature selection.

8. Conclusions

We present a method for discriminating malignant and benign clusters in digital and digitized
mammograms. Images from digital and digitized databases were first segmented using a wavelet based
method incorporating bi-cubic interpolation and a series of morphological operations were carried
out in order to facilitate the feature extraction and classification task from MC segmented images. A
combination of morphological, texture, and distribution features from individual MC components and
the whole MC clusters were extracted from mammograms. The most important features were selected
and used to classify the MC cluster as benign or malignant. The clinical relevance of the selected
features is discussed. ROC curve analysis was used to describe the cluster classification results. The
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feature extraction and selection were individually done using the digitized and digital mammograms,
and afterwards those features were used to classify clusters in the digital database. The proposed
method was evaluated using three different databases: OMI-DB, DDSM, and MIAS. Two different
classifiers—ensemble learner and stack generalization—were applied to evaluate the classification
result. The best classification accuracy (96.72 ± 0.46%) for the digital database was achieved by using
a stack generalization classification with 10-fold CV obtaining an Az value equal to 0.98 ± 0.00.
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