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Abstract: We developed a method to transform stereoscopic two-dimensional (2D) images into
holograms via unsupervised morphing deformations between left (L) and right (R) input images.
By using robust DeepFlow and light-field rendering algorithms, we established correlations between a
2D scene and its three-dimensional (3D) display on a Looking Glass HoloPlay monitor. The possibility
of applying this method, together with a lookup table for multi-view glasses-free 3D streaming with
a stereo webcam, was also analyzed.
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1. Introduction

Digital technologies to engage with three-dimensional (3D) objects and environments have been a
burgeoning and popular subject in recent years. The possibility of having a 3D vision display is highly
beneficial in a range of diverse innovative scientific, engineering, and entertainment applications,
including medicine, astro stereo photography, robotic vision, intelligent transportation systems, and
video games, among others [1]. For example, it has been recently shown that the advantages of 3D
stereoscopic visualization over a conventional two-dimensional (2D) planar screen can shorten the
dissection time of specialized surgery [2]. Although many advances have been achieved already, a key
limitation for these technologies is the fact that, in some cases, it can produce contagious yawning [3].
It is also necessary to wear special goggles or headsets, causing motion sickness and limiting user time.
Notwithstanding such constraints, such applications can still give science a new dimension allowing
researchers to view and share 3D data [4]. The final goal, however, would be to obtain and visualize
similar results without wearing any device.

Motivated by the study of Ryan Baumann on animating stereograms with optical flow
morphing [5], in this paper, we made a first attempt to reconstruct reality in similar simple terms by
means of multi-views. We developed a method to combine observations of 2D stereoscopic images
with 3D interpretations of reality. We applied the unsupervised torch-warp optical flow algorithm [5,6]
to animate stereo pairs and retrieve distinct 2D views from morphing deformations between left (L)
and right (R) images.

Since all these sequential frames put together can give an acceptable illusion of depth and parallax
in the horizontal direction [5], we placed them in a single standard Quilt collage [7]. We then converted
the Quilt into a Native light-field image using open source SURFsara visualization python scripts [8].
This Quilt provides a good visualization of virtual 3D imagery of stereograms by a direct display of
the light-field output images on the new class of standalone Looking Glass 3D monitors [9]. Multiple
viewers can see the scene inside stereoscopic images without the need for glasses and from different
angles. We discuss on the possibility of applying this method for producing multi-view 3D streaming
with a stereo webcam and the adoption of a pixel-and device-based Lookup Table (LUT).
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Our work is, in fact, a development work, implementing a tool using some initial established
technologies, extended to Linux Ubuntu O.S and incorporating a new LUT. When the Quilt
representation is created, we map each of those pixels in the destination multi-view image.

2. Materials and Methods

We used low-cost ELP-960P2CAM (V90 and LC1100) USB stereo webcams with no distortion dual
lens and M12 mount synchronization to obtain the principal 2D stereoscopic images [10]. According to
specifications, the two camera video—with low power consumption, 90 degree lens, standard electronic
rolling shutter, and 1/3′′ CMOS OV9750 sensor for high quality image—can reach high frame rates
in MJPEG compression format of 2560(H) × 960(V)p@60fps with a sensitivity 3.7V/lux-sec@550 nm.
Its small size of 80 × 16.5 mm is useful for embedded applications. It supports Linux OS USB video
class UVC with adjustable parameters, such as brightness, contrast, saturation, hue, sharpness, color
balance, and exposure.

For the multiple angles visualization of the morphing of stereograms into hologram image files,
generated in full color with the present algorithm, we used the glasses-free standard Looking Glass
8.9′′ (also known as HoloPlay) as an HDMI external monitor [10]. This HoloPlay device combines
light-field and volumetric technologies within a single new type of display, which allows the display
of a hologram of simultaneous 32 (or more) different views at 60 fps formed via a 8 × 4 (or 9×5) Quilt
input. The technology used in this class of monitor is described in the U.S. Patent application number
2017-0078655: “Printed Plane 3D Volumetric Display”.

Besides the standard 64 bit Windows 10, the viewing under O.S. Linux Ubuntu 19.04 was also
possible using a Notebook Aspire E 15, Inter Core i5, 64 bit, 8 GIB RAM, 1366 × 768p resolution with
graphics card Nvidia GeoForce 820 M output 2560 × 1600p. The small Raspberry Pi 3 single-board
computer device Model B+ 1.4 GHz 64-bit quad-core processor with extra power supply was also able
to display our stereograms morphed into a multi-view 3D display.

The procedure adopted to get a stereogram is as follows: We first position the principal object in the
scene, at least 1.6 m distant apart from the two lenses of the ELP stereo webcam. This distance enables
us to avoid image distortions due to well-known technical limitations of stereoscopic webcams [11].
The dual lenses are aligned parallel toward the horizon, avoiding to tilt the ELP’s device and limiting
the depth view due to the reduction of near convergence.

The most outstanding feature of the compact ELP synchronized stereo webcam we used is that
the two cameras’ video frames are synchronous. This unique feature enables simulation of the manner
in which human eyes observe “simultaneously” one scene from two different viewpoints [10]. This is
ideal for binocular stereo vision development, like the one studied in this work. By one single shot, we
retrieve a single image in high definition (HD) resolution, containing L and R views, and without the
need for any extra, complex prior calibration of the stereo webcams as in the case of most compact
industrial camera devices, producing and displaying two L and R images independently.

We take with the ELP a stereoscopic test picture using the ffmpeg command and cut the resulting
single HD image of max. resolution of 1280 × 960p in two equal parts to generate the L and R images.
We then resize each view to set initially the widths to 512 p and then crop their heights to 256 p
(anywhere along its vertical axis starting from the same upper corner in both images). This image
manipulation is carried out before the morphing rendering to speed up the computation using smaller
images and avoid the case of an "out-of-memory (RAM) condition before sgemm" in the deep convolution
matching [6] when trying to match the full HD images.

Our method for 3D multi-view then follows closely the algorithm of Baumann for animating
stereograms [5]. We automatically apply optical flow deformations based on DeepFlow (which outputs
.flo files) to our pairs of L–R images in order to morph between them. This alignment of the two
(dissimilar) images, followed by a gradual fade out from one image to the other, can give an acceptable
illusion of depth and (parallax) motion to the viewer (see examples in [5]). The optical flow, or vector
field, describing movement between our stereoscopic images is shown in Figure 1.
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Figure 1. Left (L) and right (R) views (that will form 0–31 frames by morphing) of a stereoscopic image.
The morphed displacements vectors of the optical flow data are also shown.

In particular, this continuous interpolation by optical flow-based image warp enabled us to control
the gradually cross-dissolving between pairs of stereo images. By fading out from one L image to
the other R, we can then split a whole scene into a given number of middle component frames, as
illustrated in Figure 1. In fact, optical flow computation is a key component in many computer vision
systems designed for tasks, such as action detection or activity recognition, overcoming problems that
arise in realistic videos, such as: motion discontinuities, occlusions, illumination changes, and ability
to deal with (large) displacements.

We first generate .flow data for 32 different views (frames numbered 0–31 in the figure) starting
from L to R images in an entirely unsupervised manner. This choice for the morphing process is done
based on the nature of the Looking Glass HoloPlay [7].

Next, the 32 different (.png) views from the morphing data are then converted to PNG24 to form
the needed Quilt. We place the set of 32 view images (512 × 256p) in a single standard 4 × 8 Quilt
image (2048 × 2048p), as in Figure 2, using make_quilt.py by SURFsara scripts [8]. The views start from
the bottom left as the leftmost view (L-image) to the top right being the furthest right (R-image).

Figure 2. Central part of a 8 × 4 Quilt generated by morphing starting from the stereo images in
Figure 1 via the torch-warp algorithm described in [5].
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Finally, we generate a Native image targeted to a specific HoloPlay device using the quilt2native.py
script in [8], as shown in the example of Figure 3. We get the display calibration values (in the form of a
standard data interchange file .json) from a Looking Glass Display using: get_calibration_from_eeprom.py
from [8]. The multi-view 3D rendering of our morphed stereogram of Figure 3 can then be displayed
on a HoloPlay device as appears in Figure 4. This output can also be seen in the video at: https:
//www.youtube.com/watch?v=6FAhmI-vtLQ.

Figure 3. Native light-field image output of the Quilt in Figure 2 based on the per-device HoloPlay
calibration .json values.

In order to produce beautiful holograms, as in Figure 4, Looking Glass provides 32 (or 45 or
more) discrete views or frames of a 3D scene, displaying these views over a ≈50◦-wide view cone.
This light-field arrangement tricks our visual perception into seeing 3D objects by parallax (i.e., moving
the head around the scene, and by stereo vision (i.e., presenting different perspectives to each eye).

Figure 4. Multi-view hologram output from morphed stereoscopic images. See more in the video demo
at: https://www.youtube.com/watch?v=6FAhmI-vtLQ.

3. Discussion

Each Looking Glass holds its own calibration data for correct rendering and, inside its render
volume, different depths have different optical properties [7]. The depth where things look sharpest is
at the so-called Zero-Parallax Plane in the middle of the display (in our case, around frame 16). Objects
in this plane show up in the same pixel-space position for all multi-views. Objects in the scene that
are nearer or further than this plane undergo parallax. The Looking Glass HoloPlay provides a novel
glasses-free way to preview 3D objects and scenes, as in Figure 4.

https://www.youtube.com/watch?v=6FAhmI-vtLQ
https://www.youtube.com/watch?v=6FAhmI-vtLQ
https://www.youtube.com/watch?v=6FAhmI-vtLQ
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A generic expression for the relation between the pixels of a slanted lenticular 3D-LCDand the
multiple perspective views was first derived by Cees van Berkel [12]. Each sub-pixel on the 3D-LCD is
mapped to a certain view number and color value (i.e., in the light-field domain). If i and j denote the
panel coordinates for each sub-pixel, then

Ni,j = Ntot(i− io f f − 3j tan(α))mod(Px)/P , (1)

where N denotes the view number of a certain viewpoint, α the slanted angle between the lenticular
lens and the LCD panel, and Px is the lenticular pitch.

We created multi-view images via Equation (1) starting from a stereoscopic scene as illustrated
in the flow diagram of in Figure 5. We put together ideas from optical flow techniques, morphing
deformations, and light-field 3D rendering under Linux Ubuntu O.S. 2D morphing yield reasonable
and better 3D visual results when it works correctly along the horizontal direction, as required by the
optical elements adopted by the Looking Glass HoloPlay [7]. Upscaling multiple views (e.g., upscaling
from the Quilt to the Native Looking Glass image) requires lots of CPU resources and increases system
complexity [13–15]; however, with the generation of a device-dependent LUT table whose steps are
described in Figure 6, this time can be considerably reduced. When the Quilt representation is created,
we map each of those pixels in the destination Native image.

Fading from misaligned L to R images can cause the other intermediate parts of the whole scene
to blur and get distorted. The limits of the morphing process in stereo animation, as compared with the
use of depth map, is that morphing cannot provide complete information on distant regions. It mainly
extrapolates the parallax encoded in the images by combining information from nearby pixels only.
It is essentially a purely local method [16].

Figure 5. Flow diagram of the proposed algorithm starting from a stereoscopic image. A multi-view
representation of a three-dimensional (3D) scene is obtained without using complex and expensive
acquisitions via multiple cameras. LUT = Lookup Table.
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However, the application of 2D morphing to create the (32 or 45) required 2D views for the
Looking Glass Quilt poses minimum geometric constraints on the reconstructed 3D scene via the
alternate light-field projections. Morphing between the two images taken simultaneously with the ELP
stereo webcam produces a nice illusion of 3D throughout the multi-views of a scene.

Optical flow techniques are relatively sensitive to the presence of occlusions, illumination
changes, and out-of-plane movements. These factors lead to noise and to obtain translation motion
discontinuities between the neighborhoods of two consecutive images. The key processing steps in
the flow field [5,6] include the matching by polynomial interpolation to approximate pixel intensities
in the neighborhood, warping and optimization without an explicit regularization. We have found
that to generate .flow data for 32 views, optical flow techniques can lead to a reasonable accuracy to
reconstruct 3D reality from stereoscopic images. The CPU time for creating these sets of view frames,
and especially the final Looking Glass Native image, can take few seconds. This process still needs to
be optimized.

As mentioned, in order to map the Quilt into the final Native image for a display on the
holographic Looking Glass HoloPlay, it is necessary to apply the complex algorithm of Equation (1) that
depends on input parameters of the physical structure of this device. Every HoloPlay monitor, in fact,
possesses unique calibration parameters (such as pitch, slope, dpi) set in the phase of manufacturing.
By making use of this calibration, and applying light-field geometric transformations, one then
gets the multi-view image reproduced in the Looking Glass HoloPlay. This mapping procedure
requires considerable calculation power, since the final Native image is at a resolution of 2560 × 1600p
with three color channels—such that, once the pixel to be mapped is fixed, the map value for each
color channel implies separated calculations. In essence, this procedure, as such, would become
computationally expensive and difficult to apply in applications for a real-time video in 3D.

Figure 6. Basic steps of our LUT algorithm.



J. Imaging 2020, 6, 1 7 of 9

Since the mapping matrix depends on the geometric position of each pixel, and on the
calibration parameters of the display, we constructed a LUT to replace run-time computation and save
processing time.

This LUT is created only once at the beginning of the mapping process: Quilt→ HoloPlay image,
and then used for all the images that need to be visualized. We create the array as follows: First, we
allocate three matrices for the three color channels RGB of size 256 × 1600p × 2. Each matrix provides
the X coordinate of the Quilt from which we take the corresponding value and the Y coordinate.
This explains the multiplication of the resolution 2560 × 1600p by 2. To avoid unnecessary waste of
resources and consume the least possible amount of RAM memory, each element of the matrices is
made of type uint16_t (the uint8_t type would allow to address maximum values of 255). Secondly,
all the positions of the pixels 2560 × 1600p are scrolled, and we calculate the mapping value for each
pixel on the Quilt image. Next, once the mapping value has been calculated, the value is stored in the
three different allocated matrices.

Finally, once the map filling procedure has been completed, we save the three matrices in binary
format. Then, at each successive time step, it is possible to reload the matrices (without the need of
recalculating them) and apply the mapping automatically to all the necessary images. This procedure
allows significant speeding up of the mapping procedure—the rendering operation of the final Native
image is essentially achieved by accessing the elements of the three matrices to map the Quilt pixels on
the final Native image for a dynamic display on the HoloPlay.

We implemented a new C-library MORPHOLO (see http://www.morpholo.it) that includes the
LUT to quantify by bench-marking the timing to convert the Quilt into the Native image between
the direct, classic method of Equation (1)—or, similarly to those of the SURFsara scripts [8]. Our first
preliminary test for the statistics of the single files inside the C-library indicates that the total conversion
time as is illustrated next.

Figure 7. Computational timing of the MORPHOLO mapping procedure from the stereoscopic image
to the Native output image on Linux Ubuntu O.S. for different number of multi-views.

The estimate of the total processing time employed for the generation of MORPHOLO holograms
starting from a set of small-resolution stereoscopic images is shown in Figure 7. As quantified in
these curves, total processing time steps below 0.1 s, in between 10-to-35 different views, can be
obtained with the use of the present LUT. This implies that in 1 second, we can generate ten or more

http://www.morpholo.it
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different Native frames, opening a gateway to achieve 3D real-time video streaming with DeepFlow
and Disparity map morphing algorithm.

This means that the implementation of LUT allows reduction in the computing time of about
50%. One could even reduce the computation time by a factor of 4, by allocating the four threads
of a Raspberry Pi 3 with four processors to the Quilt image of Figure 2 divided in four parts (with
successive eight views each). These possibilities open the path for producing multi-view 3D streaming
in real-time with a simpler and faster algorithm and shooting stereo images.

4. Conclusions

We have proposed a rapid conversion approach that allows to transform stereoscopic images into
holograms via the automatic implementation of a LUT and unsupervised morphing deformations
between the L and R stereo images. The key idea here is just to start from the pair of structured
stereoscopic 2D images with no additional information about any in-between view to create the
holograms. Under this method, we establish correlations between 2D image observations and their 3D
display on a Looking Glass HoloPlay monitor.

In order to reduce the evaluation of the Equation (1) for every pixel, we have implemented a LUT,
which maps each pixel of the native image to the right pixel in the Quilt representation. Our new
LUT approach highly reduces the computational cost of the mapping procedure. This LUT can be
created before starting the complete algorithm, and it can be applied for every new created Quilt (while
avoiding the whole Equation (1) evaluation). Therefore, our contribution here to the state-of-the-art
includes the LUT generation, an actual evaluation metrics of systematic tests via the use of our original
LUT for the Quilt and Native for future live 3D video streaming, and the use a generic algorithm
capable to get images from a stereo camera. The diagram of the algorithm to produce multi-view as
fast as possible and reasonably is synthetized and illustrated in Figures 5–7.

Future work could include the potential application of this method in the field of live 3D streaming
using cost effective hardware and no headsets. In principle, it would be also possible to interact with
such real-time holograms displayed in the HoloPlay screen with a Leap Motion controller [7].

Ultimately, the different set of techniques discussed in this work still needs to be optimized and
further experimented when combined all together. Work along these lines is under development.
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