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Abstract: This paper proposes a performance model for estimating the user time needed to transcribe
small collections of handwritten documents using a keyword spotting system (KWS) that provides a
number of possible transcriptions for each word image. The model assumes that only information
obtained from a small training set is available, and establishes the constraints on the performance
measures to achieve a reduction of the time for transcribing the content with respect to the time
required by human experts. The model is complemented with a procedure for computing the
parameters of the model and eventually estimating the improvement of the time to achieve a complete
and error-free transcription of the documents.

Keywords: historical document processing; keyword spotting; performance evaluation models

1. Introduction

Digital libraries have evolved from a way to store and preserve documents to an integrated platform
of information processing and web applications for allowing preservation, creation, and manipulation of
information and knowledge. This has required the development of specialized software tools for processing
the document digital images in order to extract their textual content in a computer-readable format.

A large amount of this cultural heritage is available in the form of small collections of handwritten
documents, typically containing less than 1000 pages written by a few different writers, stored in local
museums and churches archives, notary documents, and business contracts and accounts, and access
to their content is of paramount importance for depicting the evolution of the cultural, social, political,
and economic circumstances of life in a specific region.

Those collections are of particular interest for historians, but, as they became available in their
digital form on the website of the above-mentioned institutions and organizations, the general public
has also become interested in accessing their content, searching for family ancestors or events whose
knowledge was reported orally and vaguely. Therefore, making their content accessible has become
a more and more pressing demand, and so librarians and public administrators have turned their
attention towards computer-assisted transcription, as it promises to be faster and cheaper than
human methods.

In the case of historical handwritten documents’ transcription, the enabling technologies are
handwriting recognition and keyword spotting. The goal of handwriting recognition is to correctly
classify a word image into a labeled class, or else obtain its transcription. As they have to deal with the
huge handwriting variability encountered in different collections produced by many writers, they rely
on complex tools, such as hidden Markov models, conditional random fields, and artificial neural
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networks, and often resort to hybrid approaches by combining different tools [1]. To achieve high
accuracy, however, they need huge training sets, usually in the thousands of pages, and have been
successfully adopted for large collections, often exploiting crowdsourcing for labelling the training sets
in order to make the overall cost acceptable [2].

Keyword spotting (KWS), also known as recognition-free retrieval, has drawn the attention of the
research community, in that they circumvent the drawbacks of explicit recognition [3,4]. Keyword spotting
was initially proposed in the speech recognition community [5], but later on it was adopted for printed
document [6], handwritten music scores [7], and technical drawings as well [8]. It is essentially a matching
process between the images of a training set, whose transcription is also known, and the images of the
document to be transcribed.

Keyword spotting techniques can be grouped depending on whether the keyword is a string of
characters (Query-by-String) [9–15] or a word image (Query-by-Example) [16–22] and whether the region
of the document image to label is made by a preliminary segmentation step (segmentation-based) [23–26]
or the whole page image (segmentation-free) [27–29]. For the purpose of historical document transcription,
however, the most relevant discrimination is between lexicon-based and lexicon-free approaches.
The former relies on the presence of a predefined keyword list, fixed during the training [9,12,23,30–34],
while the latter does not rely on such a list [35–40], or can find new keywords, as has been recently
proposed [41,42].

Considering that, regardless of the technology adopted for implementing the system, user
intervention is mandatory to validate and/or to correct the system output to achieve a complete
and error-free transcription of the document content, we are interested in establishing the minimum
requirements on the performance of the KWS so as to make using the system advantageous to reduce
the user time to achieve the complete transcription of the document. In other words, we would like to
answer the following questions: Is the KWS system good enough so that the user time required to
validate its output in order to achieve the complete and correct transcription of the document content
is smaller than the user time required for the manual transcription? In the affirmative, can we estimate
how much is the user time reduced?

In our previous work, we have addressed this problem considering the case of a KWS system that
provides as output only the best matching keyword. We have derived the conditions under which
the use of the system is profitable and introduced a procedure for estimating both the performance
improvements and the accuracy of the estimate with respect to the actual improvement [43]. In this
paper, we present a model to deal with the most general case of a KWS whose output for each word
image is a ranked list of its possible transcriptions.

Regarding the rest of the paper, in Section 2, we summarize the framework for developing
our performance model and then derive the expressions of the model for both lexicon-based and
lexicon-free KWS. Then, in Section 3, we show how the model can be used for estimating the user time
reduction in both cases. Eventually, we conclude by discussing the paramount importance of the size
and composition of the training set and suggest a way to build it so as to perform a quick and cheap
preliminary evaluation of the possible advantage of using the system, and outline our future efforts for
establishing whether the model can provide the bounds for the actual reduction of the user time.

2. The Model

In order to answer the previous question, we assume the following:

• We are using a segmentation-based KWS system. This requires that the collection of documents
we want to transcribe has been segmented to extract nDC images, each containing one word;

• The KWS system provides, for each word images, an output list containing a ranked list of k
possible transcriptions;

• nTS images of the data collection have been manually transcribed and used as training set (TS),
so that the number of samples that compose the data set (DS) to transcribe for completing the task
is nDS = nDC −nTS. In the case in which a Query-by-Example KWS system is used, the transcriptions
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are needed so that they can be automatically associated to the images retrieved by the system,
while in case of a Query-by-String KWS system, the transcriptions are needed to train the system
during the supervised learning step they envisage. In the following, we will denote with TTS the
time needed to choose the images of TS and to enter their transcriptions;

• The query list, i.e., the complete list of keywords to spot, is not available, as is customary in
KWS performance evaluation literature, but rather, the only available information is obtained by
transcribing the training set. Denoting with NDC and NTS the number of keywords, i.e., the number
of entries in the vocabulary associated to DS and TS, respectively, this means that NTS is known,
because of the manual transcription of the samples in the training set, while NDC is not known.

We can now express the time for manually transcribing the whole data collection as the sum of
the time for transcribing the word images of TS and the time for transcribing the word images of DS:

Tman = TTS + TDS (1)

When using a KWS for transcribing the document content, the time Tu spent by the user for
achieving the complete transcription can be expressed as follows:

Tu = TTS + Tout + Tmiss + Toov (2)

where TTS is the same as the above; Tout is the time to validate or correct the system outputs; Tmiss is
the time for manually transcribing the missed words; and Toov is the time for manually transcribing
the word images that are instances of out-of-vocabulary (OOV) keywords, i.e., keywords that are not
included in the query list. Thus, the use of the KWS is profitable when

Tu < Tman (3)

which can be expressed as
Tout + Tmiss + Toov < TDS (4)

The measures used in literature to evaluate the performance of an information retrieval system
that provides as output k alternatives are the recall@k and the precision@k:

recall@k = Rk =
#Retrieved Relevant Images at k

#Relevant Images
(5)

precision@k = Pk #Retrieved Relevant Images at k
#Retrieved Images

(6)

Let us now denote the following:

• rk
i and pk

i are the recall@k and precision@k of the KWS for the i-th keyword computed on DS;

• ni
DS is the number of word images of the i-th keyword in DS;

• nc
i is the number of correct samples, i.e., the number of word images of DS that are instances of

the i-th keyword and whose output list includes that keyword;
• nw

i is the number of wrong samples, i.e., the number of word images of DS that are not instances
of the i-th keyword, but whose output list includes that keyword;

• nm
i is the number of missed samples, i.e., the number of word images in DS that are instances of

the i-th keyword, but whose output list does not include that keyword;
• nOOV

i is the number of out-of-vocabulary samples, i.e., the number of word images of DS that are
instances of the NDS = NDC − NTS unknown entries of the keywords list of the data set.
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We can estimate for each keyword how the system outputs will be distributed among correct,
wrong, and missed words as function of its performance:

nc
i = rk

i × nDS
i (7)

nw
i = (

1
pk

i

− 1) × rk
i × nDS

i (8)

nm
i =

(
1− rk

i

)
× nDS

i (9)

Denoting with tv
i the time required to validate a correct sample of the i-th keyword, with tw

i the
time required to provide the correct transcription for a wrong sample of the i-th keyword, with tm

i the
time required to provide the transcription of a missed sample of the i-th keyword, and with tM

i the time
required to manually transcribe a word image, we can write the expression for each of the four terms
in Equation (4) as follows:

Tout =

NTS∑
i=1

[(
tv
i × nc

i

)
+

(
tw
i × nw

i

)]
=

NTS∑
i=1

(tv
i × rk

i

)
+

tw
i × (

1
pk

i

− 1) × rk
i

× nDS
i

 (10)

Tmiss =

NTS∑
i=1

(
tm
i × nm

i

)
=

NTS∑
i=1

(
tm
i ×

(
1− rk

i

)
× nDS

i

)
(11)

Toov =

NDS∑
i=NTS+1

tM
i × nDS

i (12)

TDS =

NTS∑
i=1

tM
i × nDS

i +

NDS∑
i=NTS+1

tM
i × nDS

i (13)

Thus, Tout and Tmiss depend on the system performance as well as on the type of output it provides,
as will be shown in the following subsections. On the contrary, Toov depends only on the size and
composition of the training set; for a given number of training samples, the larger NTS, the smaller the
difference NDS − NTS, and thus the smaller Toov.

Equations (10)–(12) point out that the effects of the system performance on the user time, however,
are modulated by the times to validate, correct, and transcribe the correct, wrong, and missed samples
that depend on the user interface of the system. Thus, given the system performance in terms of rk

i
and pk

i and the time tM
i , Equation (4) allows to establish the maximum values of tv

i , tw
i , and tm

i that
satisfy the condition for a profitable use of the system to achieve the complete transcription of the data
set. Conversely, given the characteristics of the user interface in terms of tv

i , tw
i , and tm

i , the equation
allows to calculate the minimum values of rk

i and pk
i that must be exhibited by the KWS system to be

profitable in assisting the transcription. In the following subsections, we will derive such conditions
for lexicon-based and lexicon-free KWS systems.

2.1. Lexicon-Based Systems

In this case, as the KWS system is not able to find OOV words, the use of the system is
profitable when

Tout + Tmiss < TDS − Toov (14)

which can be written in terms of the KWS system performance as

NTS∑
i=1

tv
i × rk

i + tw
i × rk

i × (
1
pk

i

− 1) + tm
i ×

(
1− rk

i

)× nDS
i

 < NTS∑
i=1

tM
i × nDS

i (15)
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In the case of a perfect KWS system, i.e., a system for whom rk
i = pk

i = 1 ∀i, the inequality
above becomes

NTS∑
i=1

tv
i × nDS

i <
NTS∑
i=1

tM
i × nDS

i (16)

which certainly holds if tv
i < tM

i ∀i. In the case of a real system, both rk
i and pk

i are smaller than 1 and
the first and last term of the sum on the left side of the inequality (15) show an opposite trend; that is,
the former becomes larger, while the latter becomes smaller as rk

i increases. The second term has a
more complex behavior, but because 1

pk
i
> 1, and considering that, in any information retrieval system,

recall and precision are such that if pk
i increases rk

i does not (and usually decreases), it becomes smaller
as pk

i increases.

2.2. Lexicon-Free Systems

Let us now consider the case when the KWS system is able to spot word images whose transcription
is not in the query list. To estimate to which extent the system is able to spot OOV words, we assume
that a test set (TSS) containing nTSS ≈ nTS samples of the data collection is provided to the KWS
system trained on TS as the data set to be transcribed.

We can divide the OOV found by the KWS system in TTS into two parts. These include the correct
OOV, composed of the OOV words that have an empty output list, and the wrong OOV, made up
of the OOV words that have a non-empty output list. Under the same assumptions of the previous
subsection, and denoting with nOOVC

i and nOOVw

i , respectively, the number of correct OOV and wrong
OOV word images that are instances of the NOOV keywords, we can estimate Toov as follows:

Toov =

NOOV∑
i=NTS+1

(
tM
i × nOOVc

i + tMw
i × nOOVw

i

)
(17)

It is worth noting that tMw
i > tM

i because, in the case of wrong OOV, the user needs to read the
output list to search for the transcription, and only afterwards will start transcribing the word. On the
contrary, the time for transcribing the correct OOV is just the time for its transcription, because the
output list is empty.

At this point, the user after interacting with the system has spent the time:

Tu = Tout + Tmiss + Toov (18)

where the times appearing on the right side are estimated using the Equations (15) and (17), respectively,
and have a query list of NTTS = NTS + NOOV keywords. Thus, to achieve the transcription of the
remaining samples of the data set, the user will spend the time T′out for processing the output of the
system and the time T′miss for transcribing the missed words when spotting the NTTS keywords, plus the
time T′oov for transcribing the OOV word, i.e., the word images that are instances of the NDS −NTTS
keywords. We can express these times as follows:

T′out =

NTTS∑
i=NTS+1

 tv
i + tw

i × (
1
pk

i

− 1)

× rki
i × nDS

i (19)

T′miss =

NTTS∑
i=NTS+1

(
tm
i ×

(
1− rk

i

)
× nDS

i

)
(20)

T′oov =

NDS∑
i=NTTS+1

(
tM
i × nOOVc

i + tMw
i × nOOVw

i

)
(21)
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and thus
T′u = T′out + T′miss + T′oov (22)

To estimate T′oov, we need the value of NDS as well as those of nOOVc

i and nOOVw

i . We can estimate
them by assuming that the coverage of the query list computed on TTS with respect to the actual one,
i.e., the ratio NTTS

NDS
is the same as the coverage of the query list computed on TS with respect to the one

of TTS, i.e., the NTS
NTTS

ratio, and thus NDS =
N2

TTS
NTS

. Similarly, we estimate nOOVc

i and nOOVw

i by assuming
that the distribution of the OOV words between correct and wrong in DS is the same as it was in TTS.

Under these assumptions, we can split the time TDS for the manual transcription of DS into the
time for transcribing the word images that are instances of the NTS keywords obtained from the manual
transcription of TS, the time for transcribing the word images that are instances of the NTTS keywords
obtained from the data in TTS, and the time for the transcription of the remaining OOV words:

TDS =

NTS∑
i=1

tM
i × nDS

i +

NTTS∑
i=NTS+1

tM
i × nDS

i +

NDS∑
i=NTTS+1

tM
i × nDS

i (23)

We can now establish the condition for the profitable use of a lexicon-free KWS as follows:

Tu + T′u < TDS (24)

This expression shows that using the KWS system may be profitable with respect to the manual
transcription if inequality (24) holds for the word images that are instances of the keywords of the
query list to such an extent to compensate for the extra time due to the transcription of the wrong OOV
words spotted by the system, i.e., when the following occurs:NTTS∑

i=1

tM
i × nDS

i −

NTSS∑
i=1

[ ] × nDS
i

 < Toov + T′oov (25)

where the expression between the square bracket is the same as in (15).

3. The Model at Work

To show how to use the model in practice, let us define the gain G achievable while using the
keyword spotting system as in [43]:

G = 1−
Tuser

Tman
(26)

where Tuser = Tu in the case of a lexicon-based KWS or Tuser = Tu + T′u in the case of a lexicon-free
one, and Tman is defined as in the previous section.

The parameters of the models described in the previous section can be computed or estimated by
performing the following steps:

3.1. Transcription of the Training Data

This step requires to transcribe manually the word images of the training set and recording the
time to achieve a complete and correct transcription. After the training set is manually transcribed and
the time spent by the user is recorded, we know the values of nTS

i , NTS, and tM
i for each keyword.

3.2. Training of the System and Feasibility Check

After training of the system, it is possible to obtain for each keyword the values rk
i and pk

i computed
on TS and to check whether or not condition (15) holds. If this is not the case, and considering that the
values rk

i and pk
i on DS are very likely to be smaller than those computed on TS, the performance of the

KWS system may not good enough for profitable use of the assisted transcription instead of the manual
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one. At this point, it is possible to consider enlarging the training set or, if possible, to reconfigure the
KWS system with a larger value of k and to repeat the check. The first approach requires more user
time, while the second depends on the architecture of the KWS.

3.3. Keyword Spotting on the Test Set

Once the KWS system has been trained and has passed the feasibility check, it is used to spot the
words of TTS. After validating the system outputs, we achieve the transcription of the test set; obtain
the values of tv

i , tw
i , and tm

i ; and can compute the values of rk
i and pk

i . In the case of a lexicon-free system,
we can also obtain the values for NTTS, nOOVc

i , and nOOVw

i and compute the values of tM
i , tMw

i , rk
i , and pk

i
for the NTTS keywords.

3.3.1. Estimating the User Time: Lexicon-Based System

The application of the model described in the previous section requires the values of its parameters
as well as the values of nDS

i obtained from the data set, which are unknown. Considering that TS, TTS,
and DS have been extracted from the data collection we want to transcribe, it is reasonable to assume
the following:

1. the distribution of the values of rk
i and pk

i computed on TTS and DS is similar;

2. the distribution of the length of the keywords is similar on each set, and because tM
i depends

mostly on the number of characters rather than on the actual character of the keyword, it is
independent of the actual keyword;

3. the values of the model parameters are normally distributed;
4. all the samples of the data set are instances of the keywords obtained from the training set, i.e.,

that NTS = NDS.

According to these assumptions, we use for e the mean value computed on TS, while for tv
i , tw

i , tm
i , rk

i ,
and pk

i , we use the mean values computed on TTS, so that the time for processing the system outputs
can be written as follows:(

tv
× rk + tw

× rk
×

(
1
pk
− 1

)
+ tm

×

(
1− rk

))
× nDS (27)

where all the parameters assume the respective mean values, and use this equation for estimating Tu.

3.3.2. Estimating the User Time: Lexicon-Free System

In this case, we follow the same line of thought as before for estimating T′out and T′miss on TTS,
while the value of NDS as well as those of nOOVc

i and nOOVw

i can be estimated as in Section 2.2.
Under these assumptions, we can estimate T′out, T′miss and T′oov as follows:

T′out =

[ (
tv + tw

× (
1
pk
− 1)

)]
× rk

× nDS (28)

T′miss =
(
tm
×

(
1− rk

)
× nDS

)
(29)

T′oov = tM
× noovc

+ tMw
× noovw

(30)

where the values of the parameters are as in the previous case and use them to compute T′u.

3.4. Computing the Gain

Under the same assumptions as before, we can estimate Tman as follows:

Tman = tM
× (nTS + nDS) (31)
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and eventually derive the estimated value of G, which represents the reduction of the user time
achieved using the KWS system with respect to the manual transcription.

4. Model Validation

To evaluate if and to which extent the assumptions we made in Section 3.4 allow to obtain a
reliable estimate of the actual value of G, we have performed a set of experiments for comparing the
estimated value of G with the actual one.

The experiments involved three experts who transcribed the pages of DS. The pages were
manually transcribed by alternating transcription sessions of 20 min with resting sessions of 10 min,
as is customary for avoiding fatigue effects. The transcription sessions were carried out by two
experts and, during the resting session, another expert checked for inconsistency between the two
transcriptions, so to achieve an error-free transcription. The experts were paleographers with more
than 10 years of experience and with basic skills in computer technology, mostly word processing,
spell-checking, and annotation tools. Before the transcription, all the experts were trained on the use of
the Graphical User interface (GUI) of the tool. There were three training sessions. In the first session,
which lasted 60 min, they were introduced to the main features of the GUI for both transcription
and validation, while during the two remaining sessions, they were allowed to practice the GUI for
transcription and validation, respectively, until they felt comfortable with it. It took less than 30 min
for the experts to become familiar with the transcription mode of operation, while it took a little longer,
namely minutes, to master the GUI for validation.

The experiments were performed on 50 pages of the Bentham dataset [44], which is a publicly available
dataset largely used for assessing the performance of KWS system in international competitions [45,46].
We used 5 pages of the data collection as TS, 5 pages as TTS, and the remaining 40 pages as DS. Table 1
reports the composition of each set.

Table 1. The composition of the dataset used in the experimental work. DC, data collection; TS, training
set; TTS, test set; DS, data set.

nDC nTS NTS nTTS NTTS nDS

10,733 1089 354 942 391 8702

During each session, we used the user interface to record the expert activity and to eventually
compute the value of tM

i . From the recorded data, we computed the mean µ and the standard deviation
σ of these values across the entire data set, obtaining µ = 5.81 s and σ = 1.237 ms for the first expert,
and µ = 5.65 s and σ = 1.251 ms for the second one. The average value µ = 5.73 was then selected as
the actual value to be used for estimating the user time. On the 10 pages, there were only 12 words
for which the two experts provided different transcriptions. Having assessed the performance of the
two experts, each one transcribed half of the 40 pages of DS and the sum of the time they spent for
transcribing the pages of DS and the shortest time for transcribing TS and TTS was assumed as the
time Tman for the manual transcription of DS. Their values are reported in Table 2.

Table 2. Times to manually transcribe the training set, the test set, the dataset, and the whole collection.
The times are in milliseconds.

TTS TTTS TDS Tman

6240 5472 52,459 61,534

4.1. The Validation Tool

To assess the performance of the KWS system in assisting the transcription, we have designed a
validation tool to process the system output. (The validation tool can be obtained free of charge by
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contacting the corresponding author). As we already mentioned, the values of the times tv
i , tw

i , tm
i ,

and tMw
i depend on the user interface of the validation tool. In our case, the user interface appears as

in Figure 1, once a page of the collection has been opened for validation.
The upper part of the interface shows the current text line of the document, with each word being

enclosed within its bounding box, as provided by the segmentation step. In the centre of the interface,
the main box shows the current word, i.e., that is being validated and immediately below the box for
its manual transcription. The rightmost box shows the output list, and finally, the lowest part of the
interface contains a text area to show the transcription of the whole page, line by line, and is updated
as the transcription proceeds.
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In the case of a wrong sample, the correct transcription is not present in the output list, as shown
in Figure 3, but the word is an instance of a keyword included in the query list. In this case, the user
needs to enter its transcription. To speed up this activity, the interface offers an auto-completion mode;
that is, as the first characters are typed by the user, the system updates the output list by showing all
the entries of the query list that match with the characters typed so far. Once the correct transcription
appears on the interface, as shown in Figure 4, the user can validate it by clicking on it, as in the
previous case.J. Imaging 2020, 6, x FOR PEER REVIEW 10 of 16 
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In the case of a missed word, its output list is empty, and thus the user needs to type its transcription
manually. As in the previous case, as the user starts typing the characters of the word transcription,
the auto-completion mode shows in the output list all the entries of the query list that match the string
of characters the user has typed so far, and once the correct one appears, the user can proceed by just
clicking on it.

Finally, if the current word is an OOV word, the system can either show an empty or a non-empty
output list, depending on whether the OOV is a correct or a wrong one. In both cases, the user must
type in the entire transcription, but in the case of a wrong OOV, he will first scan the output list,
searching for the transcription, and only afterwards will start to transcribe, as shown in Figure 5.

During the validation sessions, the tool logs all the user action and the time the user spent on
each, so that it is possible to compute the number of correct, wrong, missed, OOV correct, and OOV
wrong words as well as the times for achieving their transcriptions.
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4.2. Experimental Results

In the experimental work, we used our KWS system, whose architecture and mode of operation
can be summarized as follows. Basically, it builds on two main blocks: the reference set (RS) and
the knowledge base (KB). RS is built by processing the word image of TS in such a way to recover
the trajectory [47], decomposing it in elementary parts, called strokes [48], and eventually labelling
each stroke with the character to which it belongs [49]. Thus, each word is represented by a string of
as many characters as the number of strokes extracted from the ink trace. Then, each word of DS is
decomposed in strokes as before, but the labelling of the stroke is obtained by matching each word
of DS with all the words of the RS: whenever a sequence of strokes whose shape is similar is found,
the labels of those strokes found in the words of RS are copied to the matching stroke of the word of
DS [50]. As a result, each word of DS is associated with a graph with as many nodes as its number of
strokes, and each node is labeled with a character if the corresponding stroke has matched one of the
strokes of RS. When a query is searched for, the KWS system searches within the graph of each word
of DS for a path whose nodes correspond to the characters of the query [51]. If such a path is found,
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the word is returned in response to the query. Because of the multiple labelling of the strokes, it can
happen that the same word image is returned in response to different queries, and also that a word
that is not an instance of any keywords is spotted, thus allowing the system to spot OOV words.

A preliminary experiment was aimed at evaluating if and to what extent the length of the output
list was affecting the time for validating the system outputs. The validation tool was configured as to
provide the top 5, 10, and 15 top interpretations for each word image. For each configuration, a different
expert performed the assisted transcription of a batch of five pages of DS. The total time for completing
the task was 2996.062 s, 2835.130 s, and 3314.240 s for k = 5, 10, and 15, respectively. These results show
that, as the length of the output increases, the time for searching the correct transcription in the list
counterbalances the improvement of the recall when the output list contains many interpretations.
This is in accordance with the observation that human beings can search at a glance within a list
of approximately five elements, but when the list becomes longer, the searching time grows almost
linearly with the number of elements in the list. These results suggest that, for our user interface,
the value 10 represents the best compromise, and thus we have used it in the remaining experiments.

In the second experiment, we performed the keyword spotting on TTS and, by recording the user
activities, we computed the mean and the standard deviation of the model parameters, as reported in
Table 3.

Table 3. The mean and the standard deviation of the model parameters estimated on TTS. The times
are in milliseconds. OOV, out-of-vocabulary.

tv tw tm tMw
rk pk noovc noovw

µ σ µ σ M σ µ σ

1024 359 3152 1045 2543 682 5903 2611 0.65 0.71 39 247

As our KWS is a lexicon-free one, to simulate a lexicon-based system, we disabled the interface
to show the output list when the words were OOV words (we know that because we have manually
transcribed DS) and do not update the query list. On the contrary, we enable the displaying of the
output list in the case of lexicon-free and add the unique words obtained by the transcription of the
OOV to the query list. So, by using the values in Table 3, we computed the summation on the left side of
the inequality (15), where nDS was replaced by nTTS. Then, by adding TTS and TOOV (using tM and tMw

for the lexicon-based and lexicon-free case, respectively), we compute Tuser and eventually G. We then
computed G using the actual user time recorded by the tool to complete the task, and then adding TTS,
we computed Tuser and the gain G. Table 4 reports the value of Tuser and G estimated using our model
and the actual one for both the lexicon-based and the lexicon-free configuration of the KWS system.

Table 4. Comparison between the values provided by our model and the actual ones on TTS. Times are
expressed in the format mm:s.

Values Lexicon-Based Lexicon-Free

On TTS Tuser G (%) Tuser G (%)

estimated 62:12 14.86 51:21 20.41
actual 64:48 13.52 61:30 15.62

As shown in Table 4, the model provides a reliable estimate of G in both cases, but the one in the case
of a lexicon-free system exhibits the largest difference between the estimated and the actual value of G.

In the last experiment, the expert who transcribed the first 20 pages of DS performed the validation
of the system output on the remaining 20 pages, while the second expert who transcribed the last
20 pages validated the system output on the first 20. This procedure was adopted to avoid the memory
effect that could have altered the time they spent if they had performed the validation on the same
pages they had already transcribed. Table 5 reports the results of the experiment. It shows that, as in
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the case of TTS, the estimated values are an upper bound for the actual ones, but it also shows that
the difference between the two remains almost the same, thus confirming that, from the estimates
provided by the model on TTS, it is possible to draw a reliable estimate of the actual value of G on the
entire data collection.

Table 5. Comparison between the values provided by our model and the actual ones on DS. Times are
expressed in the format hh:mm:ss.

Values Lexicon-Based Lexicon-Free

On DS Tuser G (%) Tuser G (%)

estimated 11:27:37 13.91 10:30:30 19.25
actual 11:31:02 12.30 11:10:14 15.23

5. Conclusions

We have addressed the problem of estimating the reduction of the user time for achieving a
complete and correct transcription of small collections of historical documents when a KWS system
capable of providing multiple possible transcriptions for each word image of the collection is used,
in comparison with the user time required by the manual transcription.

The model shows that the user time reduction depends on both the performance of the KWS
system and the user interface of the validation tool. In particular, it shows that, for a given precision
and recall, the actual reduction of the user time depends on the time to process the different types of
output (correct, wrong, missed, and OOV) with respect to the time for the manual transcription of the
corresponding word, in such a way that, the lower the ratio between the time for processing the output
and the time for its manual transcription, the higher the reduction of the user time. Conversely, given a
user interface to be used for validation, the KWS system must exhibit a minimum level of performance
to be advantageous in assisting the manual transcription. This interplay between the performance of
KWS system and the time-efficiency of the user interface should be carefully addressed when designing
a system implementing the human-in-the-loop approach to historical document processing.

In the case of a lexicon-based system, the model shows that the benefits due to the performance
of the KWS are restricted to the word images of the data set that are instances of the keywords of
the lexicon; that is, the larger the number of the keywords to spot, the larger the potential benefit.
This suggests adopting a multi-step procedure to build a training set containing as many keywords as
possible and to divide the data set in batches; in the first step, one batch is used for training the KWS,
and in each of the following steps, one of the remaining batches is processed. Then, its outputs are
validated, and when the user in response to a wrong output enters new keywords, they are added
to the keywords list and the next batch is processed. The model also shows that the advantages of
using the KWS system become larger as the precision increases—even though this may negatively
affect the recall—because correcting a wrong word takes longer than transcribing a missed one. Thus,
improving the recall at the expense of the precision should be avoided. We have implemented such an
approach and are currently performing experiments to evaluate its benefits on the performance of the
KWS system, as well as on the user reduction time.

In the case of lexicon-free systems, the model shows that, the larger the number of wrong OOV
spotted by the system, the larger the disadvantage of using the KWS system in comparison with both
lexicon-based KWS and manual transcription, but also that these advantages may be mitigated by the
updating the query list. While the mitigation mostly depends on the distribution of the samples of the
keyword in the test set and the data set, we speculate that, the higher the precision of the KWS system,
the lower the number of wrong OOV spotted, ensuring the profitability of lexicon-free KWS with
respect to both lexicon-based and manual transcription. Based on this observation, we are currently
working to evaluate to what extent this conjecture is valid, by using different KWS systems available in
the literature.
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At last, but not least, we consider that the values of the model parameters as described in
Section 3 are derived from the parameter values obtained from the training and the test sets, under the
“reasonable assumption” that, with all the sets being extracted from the data collection and processed
by the same system, they exhibit similar statistical behavior. The experimental results have shown
that using the mean values obtained on the training and test sets leads to an estimate of G that is an
upper bound for the actual one. We are currently working on performing similar experiments on
different data sets to verify if these results are confirmed and to evaluate how the difference between
the estimated values of G and the actual one varies depending on the data.
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