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Abstract: Deep learning algorithms have become the first choice as an approach to medical image
analysis, face recognition, and emotion recognition. In this survey, several deep-learning-based
approaches applied to breast cancer, cervical cancer, brain tumor, colon and lung cancers are studied
and reviewed. Deep learning has been applied in almost all of the imaging modalities used for cervical
and breast cancers and MRIs for the brain tumor. The result of the review process indicated that deep
learning methods have achieved state-of-the-art in tumor detection, segmentation, feature extraction
and classification. As presented in this paper, the deep learning approaches were used in three
different modes that include training from scratch, transfer learning through freezing some layers
of the deep learning network and modifying the architecture to reduce the number of parameters
existing in the network. Moreover, the application of deep learning to imaging devices for the
detection of various cancer cases has been studied by researchers affiliated to academic and medical
institutes in economically developed countries; while, the study has not had much attention in Africa
despite the dramatic soar of cancer risks in the continent.

Keywords: deep learning; medical image analysis; breast cancer; brain tumor; cervical cancer;
colon cancer; lung cancer

1. Introduction

Over the last decades, three different approaches have been practiced to deal with medical images.
The first is creating awareness among the community for a regular check-up and it was not be practiced
among communities. The second approach is using medical imaging technologies for screening and
it is witnessed over the last decades. However, the benefits of medical imaging technology depend
on the experience of the image interpreting experts or radiologists. Then, applying a computer-aided
detection (CAD) approach using machine learning techniques has brought a promising result along
with the imaging technologies. Machine learning techniques have evolved rapidly in recent years to
solve complex problems.

The architecture of deep convolutional neural networks (DCNNs) is composed of convolutional
layers, pooling layers and fully connected layers to perform feature extraction (see Figure 1),
features down sampling (see Figure 2) and classification, respectively during the process
of optimization [1].
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In convolutional layers, local features such as colors, end-points, corners and oriented-edges
are collected in the shallow layers. These local features in the shallow layers are integrated into
larger structural features like circles, ellipses, specific shapes or patterns when the layer goes deeper.
Afterwards, these features of structures or patterns constitute the high-level semantic representations
that describe feature abstraction for each category. In pooling layers, feature down sampling is
performed either using average pooling or max-pooling layers to reduce the dimensionality of the
features extracted using convolutional layers [2]. On the other hand, in fully connected layers, it takes
the extracted features from the convolutional layers as inputs and works as a classifier, well known
as multilayer perceptron (MLP). These fully connected layers encode the spatial correspondences of
those semantic features and convey the co-occurrence properties between patterns or objects.

There have been many survey papers produced on the application of deep learning on medical
image analysis and few among many produced in 2017 are considered in this survey paper. Suzuki [3]
in his survey paper claimed that machine learning in deep learning form has emerged in computer
vision and paved the way for many researchers to work on medical image analysis using deep learning
approach. The popularity of deep learning started after the AlexNet model won the competition in 2012.
Suzuki has produced an interesting survey paper that aimed to address four major points: the machine
learning techniques used in the computer vision field, changes observed in machine learning after the
introduction of deep learning, available machine learning models in deep learning and the impact
of deep learning for medical image analysis. As claimed by Litjens et al. [4], convolutional neural
network-based deep learning has become a method for medical image analysis. In their survey paper,
they considered papers that were related to medical image analysis, specifically for image classification,
object detection, segmentation, registration and other tasks. In addition, the areas of application
of deep learning were neuro, retinal, pulmonary, digital pathology, breast, cardiac, abdominal and
musculoskeletal.

Dinggang Shen et al. [5] claimed that deep learning has helped many researchers in the area of
computer vision to identify, classify and quantify patterns in medical images. They specifically argued
that deep learning is useful in exploiting hierarchical features from data itself than feature engineering
using handcrafting using human effort. Suzuki [6] in his survey paper overviewed the area of deep
learning and its application in medical imaging analysis to assess what was changed before and after
the introduction of deep learning in machine learning, identifying the reasons that make deep learning
powerful and their applications to medical image analysis.

Figure 1. Example of convolution operation from [7].



J. Imaging 2020, 6, 121 3 of 40

Figure 2. Example of down sampling operation using max-pooling and average-pooling.

In this survey paper, we briefly describe the breast cancer, cervical cancer, brain tumor,
colon cancer and lung cancer along with their respective screening methods. Finally, we reviewed
the application of deep learning for each cancer type in terms of deep learning application types
like feature extraction, detection, segmentation, prediction and classification. The motivation behind
selecting the cancer type for the survey was based on the cancer statistics reported in 2018 by the World
Health Organization as presented in Table 1.

Table 1. World Health Organization 2018 statistical report through the global cancer observatory.

Cancer Type New Cases (%) Death Rate (%)

Breast Cancer 11.6 6.6

Colon Cancer 10.2 9.2

Brain Tumor 3.5 2.8

Cervical Cancer 3.2 2.5

Stomach Cancer 5.7 8.2

Liver Cancer 4.7 8.2

Lung Cancer 11.6 18.4

2. Methods

Published papers from 2016 to 2020 were considered and reviewed to (1) assess the application
of deep learning for breast cancer, (2) assess the application of deep learning for cervical cancer,
(3) assess the application of deep learning for a brain tumor and (4) assess the application of deep
learning for colon cancer. We first defined a search criterion for the selected search databases.
Our general search criteria for this survey paper are ((“colon” OR “colorectal”) AND (“cancer”
OR “polyp”) AND (“deep learning”) AND (“Image”) AND (“detection” OR “classification” OR
“segmentation” OR “Localization”)) OR ((“breast”) AND (“cancer” OR “mass”) AND (“deep learning”)
AND (“Image”) AND (“detection” OR “classification” OR “segmentation” OR “Localization”)) OR
((“Brain”) AND (“Tumor”) AND (“deep learning”)AND (“MRI”) AND (“detection” OR “classification”
OR “segmentation” OR “Localization”)) OR (“Cervix” OR “Cervical”) AND (“Deep Learning”) AND
(“Classification” OR “segmentation”). The searches were carried out from four databases: (1) PubMed,
(2) Science Direct, (3) IEEE Xplore Digital Library and (4) Google Scholar. The search framework of
the survey paper is presented in Figure 3 and the major performance metrics used to evaluate deep
learning approach applied to the selected medical images are presented in Section 2.1.
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Figure 3. Search criteria framework used for IEEEexplore, PubMed, Google Scholar and Science Direct
engines to select papers for review.

2.1. Segmentation and Classification Performance Metrics

Most of the performance metrics encountered in the review include area under curve (AUC),
sensitivity (Sn), specificity (Sp), accuracy (Acc), precision (P), recall (R), positive predictive values
(PPV), Matthews correlation coefficient (MCC), geometric mean (G-Mean), which are usually successful
in describing the classification performance [8,9]. Performance measures including Dice similarity
coefficient (DSC) or Zijdenbos similarity index (ZSI) or F1-score, Hausdorff distance (H) and
intersection over union (IoU) are the most effective metrics for measuring system’s segmentation
performance [10]. Here, the true positives for the segmentation are the correctly labeled pixel while it
is correctly labeled class for classification case.

3. Deep Learning in Tumor Detection, Segmentation and Classification

Region-based segmentation technique was in use in medical image analysis until the deep learning
approach evolved in the field of computer vision [8]. However, Lee et al. [7] in their survey paper
indicated that the existence of deep learning in the research community has become a reason to use
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object recognition in an image. In addition to object detection, deep learning has been applied for
feature extraction, abnormality detection, cancer/tumor segmentation and classification [11].

3.1. Breast Cancer

Breast cancer occurs when there is uncontrolled growth of cells in the breast [12]. It is the most
widely diagnosed type of cancer in women and the first prevalent cancer type in Ethiopia [11,13].
There are four types of breast cancer manifestation that include: mass, calcification, architectural
distortion and bilateral asymmetry [11].

3.1.1. Screening Methods

As presented in Debelee et al. [11], breast cancer image analysis and breast abnormality detection
start with breast cancer screening. Breast cancer screening methods include screen film mammography
(SFM), digital mammography (DM), ultrasound (US), magnetic resonance imaging (MRI), digital breast
tomosynthesis (DBT) and combinations of the screening methods.

3.1.2. Datasets

There are many datasets prepared for medical image analysis based on the different imaging
modalities. The most common and available dataset for the breast cancer is of mammography and
histopathology datasets. Some of the most common datasets are discussed in Table 2.

Table 2. Image datasets for breast cancer image analysis.

Dataset Size #Classes/Targets Format Type Author/Repository, Year

MIAS 322 2 pgm Mammography Suckling, J. et al. [14]

DDSM 55,890 npy Mammography Scuccimarra [15]
InBreast 410 XML Mammography Moreira et al. [16]

Breast Cancer Wisconsin 568 3 csv Mammography Dua, D. and Graff, C. [17]

BreakHis 7909 2 png Histology Bukun [18]

BACH/ICIAR2018 400 4 tiff Histology G.Aresta [19]

3.1.3. Deep Learning for Detection of Breast Cancer Through Diagnostic Medical Imaging Techniques

Li Shen et al. [2] proposed a deep learning-based breast cancer detection algorithm using
end-to-end training approach using mammographic images from the Digital Database for Screening
Mammography (DDSM) and INbreast databases. The deep learning architectures used in their paper
were ResNet-50 and VGGNet-16. The proposed approach was evaluated in terms of AUC at single
model and four-model (ResNet-ResNet, ResNet-VGGNet, VGGNet-VGGNet and VGGNet-ResNet)
averaging level. For the DDSM dataset, the best single model achieved a per-image AUC of 0.88,
and four-model averaging improved the AUC to 0.91 with sensitivity of 86.1% and specificity of
80.1%. For INbreast database, the best single model achieved per-image AUC of 0.95, and four-model
averaging achieved a better AUC value of 0.98 with sensitivity of 86.7% and specificity of 96.1%.

Wu et al. [20] proposed a DCNN architecture based on four columns of ResNet-22 to classify breast
cancer screening exams using mammography. There was a total of 200,000 exams which incorporated
over 1,000,000 images to train and evaluate the proposed DCNN model. The performance of their
network achieved an AUC of 0.895 in predicting whether there is a cancer in the breast, when tested
on the screening population and the result was compared to 14 radiologists reading results.

Alzubaidi et al. [21] transfer learning approach on their proposed 74 layer CNN. Their model
was pre-trained on one same domain image dataset (erythrocytesIDB dataset, which has images of
peripheral blood smears samples taken from patients with Sickle Cell Disease). They divided the
original microscopy image into 12 patches and used majority voting for the classification, where the
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most frequent patch label is chosen to be the image label. The model achieved a patch level accuracy
of 90.5% and image-level accuracy of 97.4%. The majority voting they employed seemed not a correct
way since if the cells are the majority of normals and if it still has cancerous cells, the system might
classify them as normal, which is not good.

Zhu et al. [22] proposed two deep learning approach to predict the occurrence of invasive cancer
on MRI images. The first approach was based on transfer learning using GoogleNet pre-trained model
to predict the presence of invasive cancer. As a second approach, the authors extracted features from
the natural images and used SVM to predict the invasive disease. The best classification result gained
in terms of AUC was 0.53 for transfer learning approach and 0.70 for extracted features.

Li et al. [23] explored the abilities of digital breast tomosynthesis (DBT) and full-field digital
mammography (FFDM) in mass classification using deep neural networks equipped with or without
transfer learning. They also explored an eligible combination strategy of DBT and FFDM in
enhancing classification performance. They applied a 16-layer VGG network (VGG-16) and 11-layer
deep convolutional neural network (DCNN) for the 2D images and extend the 11-layer DCNN to
accommodate the extra dimension in 3D DBT images. The best performer from these methods,
a 2D-DCNN which was trained by combining the DBT and FFDM, achieved the highest performance
with average AUC, accuracy, sensitivity and specificity of 0.95, 92.13%, 83% and 93.84%, respectively
on three class classification (benign, malignant, normal).

Zeiser et al. [24] explored the application of the U-Net model with different depths with or without
data augmentation for the segmentation of masses on mammograms. The U-Net model trained with
depth of 5 and with data augmentation was the best performer with sensitivity of 92.32%, specificity
of 80.47%, accuracy of 85.95%, Dice index of 79.39% and AUC of 86.40% on the DDSM dataset.

Shen et al. [2] applied an ensemble of four best performing deep learning models which were
designed based on Resnet50 and VGG16 as patch classifiers and Resnet and VGG blocks as top layer for
breast cancer classification. The ensemble of these classifiers achieved the best AUC of 0.91 (sensitivity:
86.1%, specificity: 80.1%) on the detection of benign and malignant masses and classifications on the
DDSM dataset.

Zhang et al. [25] used U-net architecture for the segmentation and extraction of fat tissue,
fibroglandular tissue (FGT) inside the breast, and all nonbreast tissues outside the breast in breast MRI.
They achieved mean DSC of 0.95 for breast and 0.91 for FGT; and mean accuracy of 0.98 for breast and
0.97 for FGT.

Zhou et al. [26] applied 3D deep convolutional neural network (CNN) based on 3D DenseNet [27]
architecture with 37 layers for diagnosing breast cancer and localizing the lesions at dynamic contrast
enhanced (DCE) MRI data in a weakly supervised manner. The proposed algorithm performance for
breast cancer diagnosis showed 83.7% accuracy, 90.8% sensitivity, 69.3% specificity, 0.859 AUC and
0.501 Dice distance.

Summary of the performance of the above reviewed work can be summarized in Table 3.

3.1.4. Deep Learning for Breast Histopathology Image Analysis

Breast histopathology helps to confirm the presence of cancerous sales detected by other imaging
modalities. Since histology slides may contain millions of cells and identifying the cancerous sales
from the slides is time consuming and tedious job. Hence there are many varieties of research done in
this area.
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Table 3. Summary of scientific papers on detection of breast cancer using diagnostic medical
imaging techniques.

Author and Citation Dataset AUC Sn (%) Sp (%) Acc (%) Target

Siemens and Hologic 0.933 - - - Detection

Wu et al. [20] Personal 0.895 - - - Classification/Prediction

Shen et al. [2] DDSM 0.88 - - - Detection
(Single-Model) INbreast 0.95 - - - Detection

Shen et al. [2] DDSM 0.91 86.1 80.1 - Detection
(Four-Models Average) INbreast 0.98 86.7 96.1 - Detection

Zhu et al. [22] (Transfer learning) - 0.53 - - - Prediction

Zhu et al. [22] (SVM) - 0.7 - - - Prediction

Li et al. [23] - 0.95 83 93.84 92.13 Classification

Zeiser et al. [24] DDSM 0.86 92.32 80.47 85.95 Segmentation

Zhang et al. [28] - - - - 97.5 Detection

Zhou et al. [26] - 0.86 90.8 69.3 83.7 Classification

Sheikh et al. [29] proposed a multi-scale input and multi-feature CNN network for the
classification of histopathological images. They concatenate four scales (1 ×, 0.5 ×, 0.33 × and 0.25 ×)
of the original normalized image to accommodate the scale variant property of the cells and used it
as an input to the CNN network. They trained their proposed model on ICIAR2018 and BreakHits
datasets. The model achieved a satisfactory max accuracy of 0.83 for the ICIAR2018 dataset and 0.98 for
the BreakHis dataset for binary classification. For the multiclass classification, the proposed model’s
accuracy was rather unsatisfactory reaching as low as 60% for the ICIAR2018 dataset.

Li et al. [30] modified the Densenet-121 architecture by removing the pooling layers of
the 4th Dense-block and feeding the extracted feature maps from each Dense-block to the
squeeze-and-excitation (SENet) module for breast histopathology images. The used SENet for receiving
more channel-wise information. After concatenating each SENet output, they used a fully-connected
layer for the classification purpose. They used a pre-trained Densenet model for their architecture
using the transfer-learning approach. Using the publicly available BreakHis dataset, their algorithm
achieved an average accuracy of 88% over different magnification levels for binary classification.

Yan et al. [31] used the transfer-learning approach by using Google’s Inception-V3 model
as patch-wise feature extraction and image-wise long short-term memory (LSTM) for classifying
breast histopathological images into four classes, namely normal, benign, in situ and invasive.
They fine-tuned the Inception-V3 model. Their proposed model achieved an average accuracy of 91%
on the ICIAR2018 dataset.

Sharma et al. [32] studied the use of pre-trained deep learning networks as feature extractor
from breast cancer histopathology images. They used transfer learning on the pre-existing networks
(VGG16, VGG19 and ResNet50) for using them as feature extractor. The extracted features were then
classified using SVM classifier. The VGG16 network with linear SVM achieved the highest accuracy
(93.97% for 40 ×, 92.92% for 100 ×, 91.23% for 200 × and 91.79% for 400 × magnifications).

Vang et al. [33] proposed ensemble classifier and reinforcement backed deep learning approach
using inception-V3 for multiclass (normal, benign, in situ and invasive) classification. The ensemble
fusion approach for image level prediction involved majority voting, gradient boosting machine (GBM)
and logistic regression. Their approach performed low in terms of sensitivity for the two classes
(benign and normal). The sensitivity of the normal and benign predicted classes was improved by
adding a dual path network (DPN) to use it as feature extractor. However, the extracted features were
further sent to the next layer of ensemble prediction fusion using GBM, logistic regression and support
vector machine (SVM) to refine predictions. This approach was evaluated in terms of accuracy and
scored an accuracy of 87.5%.
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Alzubaidi et al. [21] transfer learning approach onto their proposed 74 layer CNN.
They pre-trained their model on one same domain image dataset (erythrocytesIDB dataset, which has
images of peripheral blood smears samples taken from patients with Sickle Cell Disease). They divided
the original microscopy image into 12 patches and used majority voting for the classification, where the
most frequent patch label is chosen to be the image label. The model training was don on the ICIAR
2018 dataset. The model achieved patch level accuracy of 90.5% and image level accuracy of 97.4%.
The majority voting they employed seemed not a correct way since if the cells are majority of normal
and if it still has cancerous cells the system might classify them as normal, which is not good.

The summary of papers explored in classification of breast histological slides can be summarized
in Table 4. From the literature reviews the algorithm proposed by Yan et al. [31] seems the best method
for histopathological breast cancer detection.

Table 4. Summary of scientific papers on classification of breast cancer using histopathological images.

Author and Citation Dataset Acc Sn (%) Sp (%)

Siemens and Hologic 0.933 - -

Vang et al. [33] ICIAR2018 87.5 - -
(H & E)

Sharma and Mehra [32] BreakHis 93.97 - -

Sheikh et al. [29] ICIAR2018 83 - -
and BreakHis 98

Li et al. [30] ICIAR2018 88 - -

Yan et al. [31] ICIAR2018 91 - -

Alzubaidi et al. [21] ICIAR 2018 97.4 -

3.1.5. Summary

As presented in Tables 5 and 6, the deep learning architecture involved in the recently published,
from 2016 to 2020, breast cancer we considered in this survey paper were ResNet, VGGNet, AlexNet,
Inception V3, U-Net and DenseNet.

Table 5. Summary of breast cancer scientific papers in terms of convolutional neurla network (CNN)
architecture and type of environment used in the selected papers.

Authors Network Pre-Training Transfer Learning Environment

Wu et al. [20] ResNet-22 Yes No TensorFlow

Shen et al. [2] ResNet-50, VGGNet-16 Yes Yes -

Vang et al. [33] Inception V3 Yes No TensorFlow

Zhu et al. [22] GoogleNet Yes Yes Caffe

Li et al. [23] VGGNet-16 Yes Yes -

Sharma and Mehra [32] VGGNet-16, VGGNet-19, ResNet50 Yes Yes Keras, TensorFlow

Zeiser et al. [24] U-net No No -

Zhang et al. [28] U-net No No TensorFlow

Zhou et al. [26] 3D DensNet No No -

Sheikh et al. [29] MSI-MFNet No No Keras

Li et al. [30] IDSNet Yes Yes Tensorflow

Yan et al. [31] Inception-V3 Yes Yes Tensorflow

Alzubaidi et al. [21] ResNet Yes Yes -



J. Imaging 2020, 6, 121 9 of 40

Table 6. Summary of breast cancer scientific papers in terms of publication year, name of
journal/conference for the selected papers and its impact factor with year of impact factor.

Authors Publication Year Journal/Conf. Impact Factor Year of Impact Factor

Wu et al. [20] 2020 ITMI 6.85 2020

Shen et al. [2] 2019 Scientific Reports 3.998 2019

Vang et al. [33] 2018 CBM 5.4 2019

Zhu et al. [22] 2019 CBM 3.434 2020

Li et al. [23] 2019 European Radiology 4.101 2019

Sharma and Mehra [32] 2020 Journal of Digital Imaging 2.99 2018

Zeiser et al. [24] 2020 Journal of Digital Imaging 2.99 2018

Zhang et al. [28] 2018 Academic Radiology 2.50 2020

Dembrower et al. [34] 2020 Radiology 7.608 2018

Zhou et al. [26] 2019 Journal of Magnetic Resonance Imaging 2.112 2018

Sheikh et al. [29] 2020 MDPI, Cancers 6.126 2019

Li et al. [30] 2020 Plos One 2.74 2019

Yan et al. [31] 2020 Elsevier, Methods 3.812 2019

Alzubaidi et al. [21] 2020 MDPI, electronics 2.412 2019

As indicated in Table 7, the result of almost all papers in this survey paper were not compared
with the domain specialists and performance of the traditional machine learning algorithms.

Table 7. Summary of breast cancer scientific papers in terms of comparison to specialists and/or
traditional techniques.

Author and Citation Comparison to Specialists Comparison to Traditional Technique (Yes/No)

Hagos et al. [35] No No

Wu et al. [20] Yes No

Shen et al. [2] No No

Vang et al. [33] No No

Zhu et al. [22] No No

Li et al. [23] No No

Sharma and Mehra [32] No Yes

Zeiser et al. [24] No Yes

Zhang et al. [28] No No

Zhou et al. [26] Yes Yes

Sheikh et al. [29] No Yes

Li et al. [30] No Yes

Yan et al. [31] No Yes

Alzubaidi et al. [21] No yes

3.2. Cervical Cancer

Cervical cancer is one of the most common cancers among women worldwide, especially in
developing nations, and it has a relatively high incidence and mortality rates [36]. Cervical cancer
usually develops slowly over time. When cervical cancer begins in the cervix, cervical cells go through
changes called dysplasia, in which cells that are not normal begin to appear in the cervical tissue. In its
later stage, cancer cells start to multiply and proliferate more deeply into the cervix and to surrounding
areas. Fortunately, cervical cancer is mostly preventable with active screening and detection techniques.
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For example, preventive screening and early detection can decrease the morbidity of cervical cancer by
about 70% in the United States [37].

3.2.1. Screening Methods

Nowadays, there are a few frequently-used cervical cancer screening techniques, such as high-risk
human papillomavirus (HPV) testing, Pap smear cytology testing, colposcopy and visual inspection of
the cervix with acetic acid (VIA), each of which has its advantages and disadvantages.

• Bimanual pelvic examination. This is a visual and physical inspection by the physician.
It consists of both visual inspections using a device called a speculum and physical inspection by
using fingers. This test is not enough on its own and the Pap test is usually performed next.

• Cervical cytopathology Papanicolaou Smear (Pap smear) or liquid-based cytology is a process
of gently scraping cervical cells and inspection of those cells under a microscope. It can also be
analyzed digitally using computers.

• HPV typing test. Cervical cancer usually occurs from persistent infection of the cervix with some
carcinogenic types of human papillomavirus (HPV) such as HPV16 and HPV18 [38]. It is usually
performed along with a Pap test or after Pap test results show abnormal changes to the cervix.
The occurrence of HPV does not confirm cancer.

• Colposcopy. Colposcopy is a visual inspection of the cervix using a special instrument called a
colposcope. The device magnifies the cervix area under inspection like a microscope. It can be
used for pregnant women.

Other types of tests were also used for cervical cancer screening such as X-ray, CT scan,
MRI and PET scan but they are more expensive and used to detect advanced stages of cancer.

Cervical cytology (Pap test) is the most common test used to look for early changes in cells that can
lead to cervical cancer [39]. It has been widely used for the screening of cervical cancer in developed
countries and is effective in reducing the number of deaths. It is still unavailable for population-wide
screening in the developing countries. This is because screening using cervical cytology is difficult,
tedious, time-consuming, expensive and subjected to errors because each slide contains around three
million cells with large shape and appearance variation between cells, the poor contrast of cytoplasm
boundaries and the overlap between cells [40]. In developed countries like the United Kingdom,
cervical cancer screening is performed every 3 years for women aged 25 to 49 years and every 5 years
aged 50 to 64 years [41]. Over the past few decades, many types of research were performed in
developing a computer-assisted cervical cancer screening method. Most of these researches tried to
automatically identify the various stages of cancer or abnormality types by classifying cells on the
Pap-smear slides. Most of these classifications consist of cell or nuclei segmentation, feature extraction
and classification steps [42].

3.2.2. Datasets for Cervical Cancer

Most of the research regarding the detection and segmentation of cervical cancer used the
Herlev dataset. The pap-smear benchmark database provides data for comparing classification
methods. The data consists of 917 images of pap-smear cells, classified carefully by cyto-technicians
and doctors [43]. The dataset is distributed unevenly into seven classes, namely superficial squamous,
squamous intermediate, columnar, moderate dysplasia, moderate dysplasia, severe dysplasia and
carcinoma in situ. Each image in the Herlev dataset contains only a single cell. Each slide contains many
cells and cells might also overlap. Hussien [44] prepared a more realistic dataset for the classification
of cervical cells. Summary of the publicly available datasets for classification and segmentation of
cervical cells and cervix is given in Table 8.
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Table 8. Image datasets for cervical cancer.

Dataset Size #Classes/Targets Format Type Author, Year

Herlev 917 187 Bit Map(BMP) Histology Dr J. Jantzen [43]

DANS-KNAW 963 4 jpg Histology Hussien [44]

CRIC 400 6 png and csv Histology M.T. Rezende et al. [45]

Zenodo 962 4 jpg Histology Franco et al. [46]

ALTS 938 2 jpg Colposcopy Alts Group [47]

MobileODT 1448 3 jpg Colposcopy MobileODT [48]

3.2.3. Deep Learning for Segmentation of Cervical Cells

Traditional cytological criteria for classifying cervical cell abnormalities are based on the changes
in the nucleus to cytoplasm ratio, nuclear size, irregularity of nuclear shape and membrane. In normal
cells, the cytoplasm appears much larger than the nucleus with the regular shaped nuclei. Therefore
numerous works are focusing on the segmentation of cell or cell components (nuclei, cytoplasm) [41].
Deep learning has been applied for the segmentation of cervical cell nuclei and the whole cell itself.
The successful segmentation of each cervical cell from the slides gives a better performance for
cancerous cells. Nuclei detection is only maybe helpful and is easier than segmentation of the whole
cell and may be enough for the detection of cancer or help for the segmentation of the whole cell.

Song et al. [49] tried to improve cervical cell segmentation by using learning-based segmentation
when overlapping cells are encountered. They include high-level shape information to guide the
segmentation algorithm which is done by the convolutional neural network algorithm. They evaluated
their algorithm in nuclei detection and cervical cell segmentation. By using the datasets ISBI 2015
challenge dataset, and SZU dataset they achieved a Dice similarity coefficient (DSC) of 0.95 and
0.89, respectively.

Zhao et al. [50] proposed an algorithm called Progressive Growing of U-net + (PGU-net +) for
Automated Cervical Nuclei Segmentation, which tried to modify the original U-net algorithm [51],
which augmented the limited medical dataset for use of deep learning. They claimed these
augmentations mix the information of different scales that affect each other; hence, it limits the
segmentation accuracy of the model. they proposed a progressive growing U-net (PGU-net +) model,
which extracts image features at each scale independently and passing residual information with the
next scale. They achieved a segmentation accuracy of 0.925 on the Herlev dataset, with precision
0.901 ± 0.13, recall 0.968 ± 0.04 and ZSI of 0.925 ± 0.09.

Sompawong et al. [52] applied a pre-trained Mask R-CNN for cervical cancer nuclei detection,
segmentation and classification into normal and abnormal ones. They used liquid-based histological
slides obtained from Thammasat University (TU) Hospital and obtained mean average precision
(mAP) of 57.8%, the accuracy of 91.7%, the sensitivity of 91.7% and specificity of 91.7% per image.
They used DeepPap as a benchmark to evaluate their algorithm. Since DeepPap used the Herlev
dataset (containing images of single cells) for training and testing. It needs to be modified and retrained
on the TU dataset. They showed the proposed algorithm performs better than the modified DeepPap
on the TU dataset. They did not evaluate the Mask R-CNN algorithm on the Herlev dataset.

Liu et al. [53] proposed a cervical nucleus segmentation method in which pixel-level prior
information was utilized to provide the supervisory information for the training of a mask regional
convolutional neural network (Mask R-CNN). They added a local fully-connected conditional random
field (LFCCRF) to refine the segmentation. Using the Herlev Pap smear dataset, the proposed method
achieved 0.96 in both precision and recall and 0.95 in the Zijdenbos similarity index.

Liang et al. [42] used a comparison based detection which combines the decision of two CNN
architectures. First reference, samples were obtained by using the ResNet50 with Feature Pyramid
Network (FPN) architecture from each cell image from the dataset. At the same time features from the
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whole slide image, which contains many cells, were extracted through ResNet50 with FPN and region
proposal network (RPN). They replaced the original parameter classifier from their baseline network,
Faster R-CNN with FPN with their comparison classifier. Their proposed algorithm can detect 11
different cell types from the whole slide. The performance of the proposed algorithm achieved mean
average precision (mAP) of 26.3% and average recall (AR) of 35.7%. They argue these performance
measurements do not reflect how good the algorithm was since the proposed algorithm groups
multiple neighboring cells with the same category into one result.

Kurnianingsih et al. [54] used deep learning methods to segment cervical cells and classify them.
For the segmentation purpose, transfer learning was applied on Mask R-CNN weights trained using
the COCO dataset. The pre-trained model was trained to segment cervical cell area consisting of both
nuclei and cytoplasm. In the segmentation phase, when Mask R-CNN is applied to the whole cell,
it outperforms the previous segmentation method in precision (0.92 ± 0.06), recall (0.91 ± 0.05) and ZSI
(0.91 ± 0.04).

Deep learning-based segmentation into nuclei segmentation and cell segmentation can be
summarized (see Tables 9 and 10).

Table 9. Summary of selected papers on nuclei segmentation.

Authors Method Dataset Acc P R F1 Sp Sn ZSI

Zhao et al. [50] Progressive Growing Herlev 0.925 0.901 0.968 0.925
of U-net+(PGU-net+)

Liu et al. [53] Mask-RCNN with LFCCRF Herlev 0.96 0.96 0.95

Sompawong et al. [52] Mask-RCNN TU 89.8% 94.3% 72.5%

Table 10. Summary of selected papers on cervical cell segmentation.

Authors Method Dataset Acc P R ZSI DSC

Kurnianingsih et al. [54] Mask R-CNN Herlev 0.92 0.91 0.91

Song et al. [49] CNN with Shape information Herlev 0.92

Liang et al. [42] comparison based Faster R-CNN local 26.3 35.7

3.2.4. Deep Learning for Cervical Cell Classification

Zhang et al. [55] tried to directly classify cervical cells—without prior segmentation—based
on deep features, using convolutional neural networks (ConvNets). In their algorithm (DeepPap),
a pre-trained ConvNets was trained on a cervical cell dataset consisting of adaptively re-sampled
image patches coarsely centered on the nuclei. Then they applied aggregation to average the prediction
scores of a similar set of image patches. The proposed algorithm achieved classification accuracy
(98.3%), area under the curve (AUC) (0.99) values and specificity (98.3%) on the Herlev dataset.

Hyeon et al. [56] proposed a CNN-based pre-trained model, VGGNet-16 for feature extraction,
and use different classifiers namely: logistic regression, random forests, AdaBoost and SVM for
classification of the pap-test images into normal and abnormal. From these classifiers, the highest
scoring one is the SVM classifier with an F1-score of 0.7817 on a dataset collected locally.

LIN et al. [57] applied the transfer learning approach to fine-tune different CNN models (AlexNet,
GoogLeNet, ResNet and DenseNet) which were pre-trained on ImageNet dataset [58]. The pre-trained
models were fine-tuned on the Herlev cervical dataset with additional cytoplasm and nucleus
morphological masks. They achieved classification accuracies of 94.5%, 71.3% and 64.5%, for two-class
(abnormal versus normal), four-class (normal, low-grade squamous intraepithelial lesion (LSIL),
high-grade squamous intraepithelial lesion (HSIL) and carcinoma-in-situ (CIS) [59]) and seven-class
(”World Health Organization classification system”) classification tasks, respectively.

Chen et al. [60] tried to combine features extracted from different types of tests. They proposed
a Faster R-CNN, which is based on Faster R-CNN for fusing acetic and iodine images of the cervix.
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They fuse non-image features extracted from the cervix transformation zone type, pap test, HPV test
and age after they non-linearly compression of the fused image features to 29D by using one
fully connected (FC) layer. They did not mention which classifier they used for normal–abnormal
classification but achieved an accuracy of 87.4% (88.6% sensitivity and 86.1% specificity) on a locally
collected dataset.

Kurnianingsih et al. [54] trained a compact VGG network based on their Mask R-CNN based
segmentation algorithm. For the classification, a compact VGG Net classifier yields a sensitivity
score of more than 96% with a low standard deviation (± 2.8%) for the binary classification problem
and yields a higher result of more than 95% with low standard deviation (maximum 4.2%) for the
7-class problem.

Performance comparison of different pre-trained deep learning models on Pap smear classification
was done by Promworn et al. [61]. They compared the performance of CNN models namely resnet101,
densenet161, AlexNet, vgg19_bn and squeeznet1_1, which are the top five models based on accuracy
in ImageNet. The models are retrained on the Herlev dataset. Based on accuracy, densenet161 was the
best performer on both binary classification (94.38%) and multiclass classification (68.54). Based on
sensitivity, AlexNet and resnet have achieved 100% on binary classification. Whereas densenet161 was
the best performer on multiclass classification with 68.18%. Again, based on specificity, densenet161
was superior with values 82.61% for binary and 69.57% for multiclass classification.

Yutao Ma et al. [62] developed a CADx system by using a convolutional neural network (CNN) for
feature extraction and support vector machines (SVM) for classifying the optical coherence microscopy
(OCM) images into five classes namely normal, ectropion, low-grade and high-grade squamous
intraepithelial lesions (LSIL and HSIL) and cancer. They also used HPV test results for the classification
in conjunction with features extracted from the OCM images by the CNN. An 88.3 ± 4.9% classification
accuracy was achieved for all five classes. In the binary classification task (low-risk (normal, ectropion
and LSIL) vs. high-risk (HSIL and cancer)), the CADx method achieved an area under the curve (AUC)
value of 0.959 with 86.7 ± 11.4% sensitivity and 93.5 ± 3.8% specificity.

Ahmed et al. [63] proposed transfer learning-based approaches for the classification of cervical
cells. They explored six different methods for the classification of cervical cells by combining three
pre-trained models as features, shallow CNN, which consisted of only two convolutional layers
and two max-pooling layers, VGG-16 Net and CaffeNet as a feature extraction technique and two
classifiers, extreme learning machine (ELM) and auto encoder (AE) for the classification purpose.
They used the Herlev dataset for training and testing their system. The best performer from these
combinations is the CaffeNet+ELM which achieved a binary classification accuracy of 99.7 and 97.2 for
the 7 class classification.

Dong et al. [64] used artificially extracted features such as color, texture and morphology along
with the Inception-V3 model for the classification of cervical cells. They used features extracted
manually since the features extracted from the CNN architecture since the knowledge of cervical cells
is lacking there. Nine artificial features were combined with features extracted from the Inception-V3
architecture joined on the fully connected layer and used the Softmax function for the classification.
They keep the aspect ratio of the cells when resizing for the Inception-V3 network will harm the
morphological features. The proposed algorithm achieved an overall accuracy of 98.2%, the sensitivity
of 99.4% and specificity of 96.73% for normal abnormal classification on the Herlev dataset.

Martinez-Mias et al. [65] tried to improve and make it realistic the cervical classification from
PAP smears using a cell merger approach. They used CNN for PAP smear image classification,
and optimize and integrate the cell fusion approach since most PAP smear slides contain overlapping
cells. They used a local PAP smear dataset collected from ten patients and labeled using biopsy results.
Hence, it was used as a gold standard. They trained the CaffeNet model using data prepared using
a cell merger to reflect the reality of the PAP smear examination. For classifying the cervical cells
into four classes the CaffeNet with the cell merger dataset achieved an average accuracy of just 55.6%
with the performance as low as just 16.7% for LSIL class. For the normal/abnormal classification,
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their proposed algorithm achieved an accuracy, sensitivity and specificity of 88.8%, 0.92 and 0.83,
respectively. This performance is satisfactory considering the classification was done on overlapping
cell regions.

Xiang et al. [66] used YOLOv3 as a cell detector and Inception-V3-based classifier for cervical
cell classification into ten classes that could be present on the slide namely, normal cells (NORMAL),
atypical squamous cells-undetermined significance (ASC-US), atypical squamous cells-cannot exclude
HSIL(ASC-H), low-grade squamous intraepithelial lesion (LSIL), high-grade squamous intraepithelial
lesion (HSIL), atypical glandular cells (AGC), adenocarcinoma (ADE), vaginalis trichomoniasis (VAG),
monilia (MON) and dysbacteriosis (DYS). The model achieves 97.5% sensitivity (Sens) and 67.8%
specificity (Spec) on cervical cell image-level screening.

The cervical cell classification algorithms can be categorized into two categories, binary and
multiclass. In the binary classification cervical cells are classified into normal and abnormal cells
(see Table 11). Multiclass classification describing the severity of the cancer including the normal ones
(see Table 12).

Table 11. Summary of selected papers on cervical cell binary classification.

Authors Method Dataset Acc(%) Sn(%) Sp(%) AUC F1 P R

Zhang et al. [55] DeepPap Herlev 98.3 - 98.3 0.99 - - -

Hyeon et al. [56] VGG16 SVM local - - - 0.78 0.78 0.78

Lin et al. [57] GoogleNet5C Herlev 94.5 - - - - - -

Chen et al. [60] Mask R-CNN 7 class local- 87.4 88.6 86.1 - - - -

Kurnianingsih et al. [54] Mask R-CNN Herlev 98.1 96.7 98.6 96.5 - - -

Promworn et al. [61] densenet161 Herlev 94.38 100 - - - - -

Yutao Ma et al. [62] CNN and SVM OCM image - 86.7 93.5 0.96 - - -

Ahmed et al. [63] CaffNet+ELM Herlev 99.5 - - - - - -

Dong et al. [64] Inception-V3 Herlev 98.23 99.4 96.7 - - - -

Martinez-Mias et al. [65] CaffeNet Local 88.8 92 83 - - - -

Table 12. Summary of selected papers on cervical cell multiclass classification.

Authors Method Dataset Acc Sn Sp Others

regressor 7 classes

Yutao Ma et al. [62] CNN and SVM 5 classes OCM image 88.3

Lin et al. [57] GoogleNet5C 4 classes Herlev Dataset 71.3

Lin et al. [57] GoogleNet5C seven classes Herlev Dataset 64.5

Kurnianingsih et al. [54] Mask R-CNN 7 class Herlev 95.9 96.2 99.3

Promworn et al. [61] densenet161 7 classes Herlev dataset 68.54 68.18 69.57

Ahmed et al. [63] CaffNet+ELM Herlev 91.2 - - -

Martinez-Mias et al. [65] CaffeNet Local 55.6 - - -

Xiang et al. [66] YOLOv3+InceptionV3 local 89.3 97.5 67.8 -

3.2.5. Deep Learning for Cervix Classification

Colposcopic images are also used for cervical cancer detection using deep learning methods.
A colposcopy helps to observe the cervix at up to ×10 magnification [67]. Cervical intraepithelial
lesions are easily recognized when treated with acetic acid solutions using colposcopy.

Cervix type classification from smartphone camera was tried in [68] using capsule networks which
achieves an accuracy of 94%. A more advanced approach called CervixNet [69] which is designed
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based on a novel hierarchical convolutional mixture of experts (HCME) method achieved an accuracy
of 96.77%.

M. Arora et al. [70] used the transfer learning approach from a pre-trained CNN, Inception V3
model [71] by modifying the output layer. The output layer was replaced by a pooling layer and a
fully connected layer for the classification of the cervix based on its image. A cervical image dataset
from Kaggle was used here, which has three types of cervix based on the location of the transformation
layer. The type of cervix will help the physician whether further tests are needed or not. They obtained
an average accuracy of just 54.54%.

Guo et al. [72] explored the application of two versions of regions with convolutional neural
networks (R-CNN), Mask R-CNN and MaskX R-CNN, on three different dataset for cervix classification
for automatic segmentation of cervix region. Mask R-CNN is effective on datasets with annotations
having the exact boundaries. The MaskX R-CNN can also trained the bounding box annotation.
The highest performance was achieved using Mask R-CNN with Dice and IoU of 0.947 and 0.901,
respectively. MaskX R-CNN also achieved a very good performance with Dice and IoU of 0.92 and
0.86 respectively. These colposcopy images suffer from presense of many distractors such as pubic
hair, intra-uterine devices (IUDs), the speculum and even parts of human hand. The main problem in
cervix classification from cervix photos is the presence of out of focus images [73].

Guo et al. [74] used an ensemble of three deep learning architectures, RetinaNet, Deep SVDD
and a customized CNN for the detection of cervix on smarthphone captured images. They achieved
an average accuracy and F1-score of 91.6% and 0.890, respectively.

3.2.6. Summary

Screening through a Pap test for cervical cancer can take days for the final analysis to complete
since the pathologist needs to go through millions of cells. A deep learning-based system can detect
those cells in minutes if it is accurate enough to be trusted. One of the main challenges of deep
learning methods is the presence of other types of cells and other materials present in the image and
the overlapping between two adjacent cervical cells. To solve these problems, a large and carefully
annotated dataset needs to be built for the algorithms to learn. Building this many datasets for medical
images is very difficult. The most commonly used dataset for cervical cancer screening is the Herlev
dataset as shown in Table 10.

Deep learning has been applied for cervical cancer screening in many of its screening methods.
Most of the successful deep learning-based cervical cancer detection methods were based on a dataset
using pap smear histology images. Colposcopic images are also taking more attention since they are
easy to take and not invasive. Their accuracies on the detection of cervical cancers is not as good as
that of the histology images. Cervical cancer detection using the deep learning methods based on the
colposcopic images are becoming common since a large dataset can be collected and annotated easily.
Colposcopic screening could be applied for mass screening purposes with the aid of deep learning,
since taking samples are easy. As we can see from Tables 9–12, the Herlev dataset is the most used
dataset for cervical cell classification and segmentation works. Most of the coloscopic datasets used for
cervix classifications are locally collected. We can also see that the deep learning methods for nuclei
segmentation are more accurate than that of cell segmentations since cell boundaries might overlap
between adjacent cells. For the classification case, binary classifiers are more accurate than that of
multiclass classifiers which can detect the type of abnormalities in the cells.

From Tables 11–13, we can see those deep learning methods with pre-trained networks and
those with transfer learning mechanisms are more accurate than networks trained from scratch with
TensorFlow the widely used software.

Most of the reviewed papers on the application of deep learning on cervical cancer screening
were published in 2019 with an average impact factor of 3.4 (see Table 14). And, as shown in Table 15,
only one of the papers compares the algorithm performance with that of the specialist.
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Table 13. Summary of cervical cancer scientific papers in terms of CNN architecture, and type of
environment used in the selected papers.

Author and Citation Network Pre-Training Transfer Learning Environment

Zhao et al. [50] U-Net No No -

Liu Y. et al. [53] Mask-RCNN Yes No Tensorflow

Sompawong et al. [52] Mask-RCNN Yes Yes -

Kurnianingsih et al. [54] Mask-RCNN and VGGNet Yes Yes -

Song et al. [49] CNN-Custom No No -

Lianget al. [42] ResNet50 Yes Yes Tensorflow

Zhang et al. [55] ConvNet Yes Yes Caffe

Hyeon et al. [56] CNN Yes Yes -

Yutao Ma et al. [62] VGG-16 Yes Yes Tensorflow

Lin et al. [57] GoogLeNet Yes Yes Caffe

Promworn et al. [61] DenseNet161 No No PytTorch

Wimpy and Suyanto [68] Capsule Network Yes No Tensorflow

Gorantla et al. [69] ResNet101 yes Yes -

Arora et al. [70] CNN-Custom No No -

Ahmed et al. [63] CaffeNet yes yes Caffe

Martinez-Mias et al. [65] CaffeNet yes yes Caffe

Table 14. Summary of cervical cancer scientific papers in terms of article publication year, name of the
journal for the selected papers and its impact factor with year of impact factor.

Author and Citation Publication Year Journal/Conference Impact Factor Impact Assigned Year

Zhao et al. [50] 2019 MMMI 2019 - -

Liu Y. et al. [53] 2018 IEEE Access 4.098 2018

Sompawong et al. [52] 2019 Conference ACEMBS 0.54 2019

Kurnianingsih et al. [54] 2019 IEEE Access 4.098 2018

Song et al. [49] 2016 Conference ISBI 1.51 2019

Liang et al. [42] 2019 Neurocomputing 3.317 2016

Zhang et al. [55] 2017 JBHI 5.223 2020

Hyeon etal. [56] 2017 Conference ICMDM - -

Yutao Ma et al. [62] 2019 IEEE Transaction on Biomedical Engineering 4.78 2019

Lin et al. [57] 2019 IEEE Access 4.098 2018

Promworn et al. [61] 2019 Conference ICNEMS 0.312 2019

Wimpy and S. Suyanto [68] 2019 Conference ISRITI - -

Gorantla et al. [69] 2019 BIBE 0.392 2012

Arora et al. [70] 2018 Conference ICSCCC 0.91 2019

Ahmed et al. [63] 2019 Future Generation computer systems 6.125 2019

Dong et al. [64] 2020 ASCJ 5.5 2020

Martinez-Mias et al. [65] 2020 ESWA 5.45 2020
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Table 15. Summary of cervical cancer scientific papers in terms of comparison to specialists and/or
traditional techniques.

Author and Citation Comparison to Specialists Comparison to Traditional Technique (Yes/No)

Zhao et al. [50] No Yes

Liu Y. et al. [53] No Yes

Sompawong et al. [52] No Yes

Kurnianingsih et al. [54] No Yes

Song et al. [49] No Yes

Lianget al. [42] No Yes

Zhang et al. [55] Yes No

Hyeon et al. [56] No No

Yutao Ma et al. [62] Yes No

Lin et al. [57] No Yes

Promworn et al. [61] No Yes

Wimpy and S. Suyanto [68] No Yes

Gorantla et al. [69] No Yes

Arora et al. [70] No No

Ahmed et al. [63] No Yes

Dong et al. [64] No Yes

Martinez-Mias et al. [65] No No

3.3. Brain Tumor

Brain tumor is a group of abnormal cells around or inside the brain due to the uncontrolled
division of cells with a serious effect of deterring the normal functionality of the brain activity and
destroying the healthy cells[75].

Brain tumor is classified into benign or low-grade (grade I and II) and malignant or high-grade
(grade III and IV). Benign is a non-cancerous tumor that does not exhibit any progression and cannot
spread to other parts of the body; it started in the brain with a very low growth rate. On the other
hand, a malignant tumor is cancerous with an attribute of growing rapidly and spreading to other
parts of the body. Malignant tumors can further be categorized as primary and secondary. Primary
malignant tumor originates in the brain itself; whereas, the secondary type begins from somewhere
else in the body and spreads to the brain. Cancerous cells that spread to the brain commonly originate
from the lung, kidney, breast, skin and colon. A metastatic brain tumor is another expression for this
type of brain tumor. Glioblastoma multiform (GBM) is the most common type of primary brain tumor
that grows fast from glial cells. An intense clinical treatment plan is required for high-grade gliomas
(HGG) as they have a higher spreading rate than the low-grade gliomas (LCG) [76]. It is evidenced that
patients with GBMs decease in less than a year. Early detection helps a therapeutic plan of patients
and improves the overall survival rate [77]. The most prevalent brain cancer is high-grade glioma with
85% of new cases of malignant primary tumor diagnosed every year [78].

3.3.1. Screening Methods

Magnetic resonance imaging is the most common brain tumor diagnosis and has a great role in
treatment planning strategies [79]. These images have an important contribution towards an automatic
medical image analysis field as they provide quite a lot of information about the brain structure and
abnormalities [80].

This is the reason why MRI images have a great impact on the automatic medical image analysis
field. There are various steps taken in the course of brain tumor treatment. The first step is determining
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if the tumor does exist in the brain or not. Then, the infected region in the brain tissues must be
extracted from an MRI image in a process called segmentation [81]. Segmentation is not an easy task
as MRI images may not help human readers easily discern regions of concern for various technical
reasons. However, segmentation is a very important task in properly conducting the diagnosis,
treatment and appraisal of treatment outcomes. A great number of automatic segmentation methods
with varying degrees of accuracy have been developed as applications of the computational science
for utilization of imaging devices advance.

There are different modalities of the MRI including T1-weighted (T1), T2-weighted contrast-enhanced
(T1c), T2-weighted (T2) and T2-weighted fluid attenuated inversion recovery (FLAIR) for segmenting
the brain tumor [82]. Moreover, features of the MRI like textures, local histograms and structure tensor
eigenvalues have been used in brain tumor segmentation [83]. Deep learning-based methods have
become state-of-the-art as they score superior performance in image analysis fields [84].

3.3.2. Datasets

Most of the researchers have applied publicly available brain tumor image datasets to test their
methods. Summary of publicly available datasets for brain tumor segmentation and classification is
summarized in Table 16.

Table 16. Image datasets for brain tumor (N—normal, AB—abnormal).

Dataset Size #Classes Format/Targets Type Author, Year

LBPA40 288 2 html MRI Shattuck et al. [85]

BRATS 2015 43,708 2 .mha MRI Menze et al. [86]

BRATS2013 1799 2 .mha MRI Menze et al. [86]

RIDER_NEURO_MRI 29 2 .tcia MRI Barboriak et al. [87]

SUH 49 2 - MRI Fabelo et al. [88]

HMS 66 2 .gif MRI Keith A. Johnson

FBT 3064 2 .mat MRI C. Jun [89]

NHTM 3064 2 .png MRI C. Jun [89]

GCE 150 2 .png MRI Jun Cheng [90]

3.3.3. Deep Learning in Brain Tumor Segmentation

Alkassar et al. [91] proposed transfer learning and fully convolution network (FCN) to achieve
robust tumor segmentation using VGG-16 networks. The proposed method achieved a global accuracy
of 0.97785 and a 0.89 Dice score in terms of whole tumor segmentation on MRI images from the
BRATS2015 dataset.

Amiri et al. [92] proposed a simple and reliable brain segmentation method in MRI images
through recursively and deeply transferring a learned random forest (RF) to guide an SVM classifier
for segmenting tumor lesions while capturing the complex characteristics of brain tumor appearance.
They tested this method on 20 patients with high-grade gliomas from the Brain Tumor Image
Segmentation Challenge (BRATS) dataset. Their method outperforms both SVM and RF with a
high statistical significance using paired t-test; i.e., a mean Dice index of 72% compared to SVM (59%)
and RF (63%).

Chahal et al. [93] proposed a novel approach using deep learning which utilizes both global and
local brain image datasets for precise segmentation. Their proposed deep learning model combines
two-pathway and cascade architectures to analyze and implement brain segmentation. The results are
evaluated over Input Cascade and the outcomes showed better performance—that is, a metrics of Dice
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score for high grade and low-grade image with values 0.943 and 0.950, respectively—than existing
MFC cascade.

Ding et al. [94] proposed deep residual dilate network with middle supervision (RDM-Net)
which combines the residual network with dilated convolution. By evaluating their framework
on the BRATS 2015 challenge, their framework proved to achieve better performance than other
state-of-the-art methods incomplete tumor (Dice score of 0.86) and core tumor segmentation (Dice
score of 0.78). However, the Dice score for enhancing tumors only achieves 0.63 which is not as good
as the other counterpart methods. The reason for this could be the focus on the 2D slices segmentation
by the proposed framework which pays less attention to the context information within slices by
comparing with 3D segmentation. The loss of context information may lead to worse performance on
the enhancing tumor segmentation.

Mallick et al. [95] have used a deep wavelet autoencoder (DWA) for an image compression
technique which blends the basic feature reduction property of autoencoder along with image
decomposition property of wavelet transform for further classification task by using DNN.
The performance of the DWA-DNN classifier was compared with other existing classifiers like
autoencoder-DNN or DNN and the proposed method surpasses them all with an overall accuracy of
96% where that of AE-DNN is 93% and DNN is 91%.

Ramirez et al. [96] proposed a new variational model for saliency detection in images and
its application to brain tumor segmentation. The model works by incorporating a saliency term
to a classical total variation-based restoration functional and hence discriminates what is relevant
(salient) from the background. They have, therefore, introduced a deep learning framework for using
available knowledge from a specific application to optimize the parameters of the energy functional.
The proposed framework achieved a Dice score of 0.857, precision 0.845 and recall 0.882.

Sajid et al. [97] proposed a deep learning-based method that uses different modalities of MRI for
the segmentation of brain tumors. The proposed hybrid convolutional neural network architecture
uses a patch-based approach and deals with the over-fitting problems by utilizing dropout regularize
alongside batch normalization, whereas the data imbalance problem is dealt with by using a two-phase
training procedure. The proposed method contains a preprocessing step, in which images are
normalized and bias field corrected, a feed-forward pass through a CNN and a post-processing
step as a means of removing remnant false positives in the skull portion. The proposed method is
validated on the BRATS 2013 dataset, where it achieves scores of 0.86, 0.86 and 0.91 in terms of Dice
score, sensitivity and specificity for whole tumor region, improving results compared to existing
state-of-the-art techniques.

Wang et al. [98] proposed an automatic method named residual and pyramid pool network
(WRN-PPNet) to segment brain tumor by first obtaining 2D slices from 3D MRI brain tumor images
and then normalizing the 2D slices and putting them in the model. The model will output the tumor
segmentation results. The experimental results show that the proposed method is simple and robust
compared to the other state-of-the-art methods with an average Dice, sensitivity and PPV values on
randomly selected datasets 0.94, 0.92 and 0.97, respectively.

Zhao et al. [99] proposed a new method for brain segmentation which is an integration of
fully convolutional neural networks (FCNNs) and conditional random fields (CRFs) in a unified
framework. The result helps to obtain segmentation results with the appearance and spatial consistency.
The following steps are taken to for training the deep learning model using 2D image patches and
image slices: (1) training FCNNs using image patches; (2) training CRFs as recurrent neural networks
(CTF-RNN) using image slices with parameters of FCNNs fixed; and (3) fine-tuning the FCNNs and
the CRF-RNN using image slices. In the model, 3 segmentation models are particularly trained using
2D image patches and slices obtained in axial, coronal, and sagittal views respectively are combined
to segment brain tumors using a voting-based fusion strategy. The method used BRTS 2013, BRATS
2015 and BRATS 2016 with an experimental result of a competitive score. The method achieved a
promising performance on the BRATS 2013 and BRATS 2015 testing dataset. The method could also
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achieve competitive performance with only 3 imaging modalities (FLAIR, T1c and T2) rather than
4(FLAIR, T1, T1c and T2). In BRATS 2016, the method ranked first on its multi-temporal evaluation.

Kuzina et al. [100] proposed a knowledge transfer method between diseases via the generative
Bayesian prior network to mitigate the common challenge of obtaining large image datasets for
automatic segmentation. They have applied deep weight prior; hence the name UNet-DWP for their
method, to incorporate information about the structure of previously learned convolutional filters
during the training of a new model. A comparison between a pre-trained approach and random
initialization to this approach proves that this method yields the best results in terms of the Dice
similarity coefficient metric on a small subset of the BRATS2018 dataset. The performance of the model
was rated by taking subsets containing 5, 10, 15 or 20 randomly selected images from the dataset and
comparing them with the fixed test sample size of 50 images. They have also used a blend of binary
cross-entropy and Dice losses to train U-Net in the non-Bayesian setting. The results indicate that the
model outperforms both pre-trained and randomly initialized U-Nets for all the training sizes.

Zeineldin et al. [101] proposed a new generic deep learning architecture named DeepSeg to
address the challenge of distinguishing tumor boundaries from healthy cells in the brain tumor
diagnosis. This method helps to wholly automate detection and segmentation of the brain lesion
using FLAIR MRI data. The developed system is a decoupling framework interacting encoding and
decoding relationship where the encoder part performs spatial information using a convolutional
neural network and the decoder provides the full-resolution probability map from the resulting
semantic map. The study has employed different CNN models such as residual neural network
(ResNet), dense convolutional network (DenseNet) and NASNet using modified U-Net architecture.
The proposed architecture has been tested on MRI datasets of brain tumor segmentation (BRATS2019)
challenge which includes s336 cases as training data and 125 cases for validation data yielding Dice
and Hausdorff distance scored of about 0.81 to 0.84 and 9.8 to 19.7, respectively. The proposed DeepSeg
is open source and freely available at https://github.com/razeineldin/DeepSeg/.

Fabelo et al. [102] suggested a deep learning-based hyperspectral image (HSI) processing modality
to be used as a reliable support in real-time neurosurgical procedure for carrying out accurate resection
of the tumor without affecting much of the normal brain tissue. The study employed a number of deep
learning techniques for the detection of brain tumors using HSI. The HS image database was obtained
during the course of operation and the system employed a highly sophisticated and specialized visible
and near-infrared (VNIR) push broom camera. Classification methods with 2D-CNN and pixel-wise
classification with 1D-DNN have been found to yield a very good result. Despite the challenge in
obtaining sufficient number of training samples and the anomalies incurred due to brain movement
during scanning, the overall average accuracy for the proposed method was 80%. The method has also
achieved a very high specificity for both binary and multiclass classification schemes with values of
100% and 90%, respectively.

The summary of researches on deep learning methods for brain tumor segmentation is presented
in Table 17.

3.3.4. Deep Learning in Brain Tumor Classification

Like in the segmentation, deep learning-based methods have performed fairly well in image
classification of brain tumors. Yet, variation in the shape, size, location and contrast of tumor tissue
cells is the major factor that impacts the accurate classification of brain tumors from MRI images [103].

Deep learning techniques involving different enhancement methods are used to classify different
types of brain tumors—glioma, meningioma and pituitary. The classification is further categorized
into axial, coronal and sagittal planes that are used by various algorithms to minimize the error rate of
neural networks in identifying the brain tumor [104].

Mohsen et al. [80] employed a DNN classifier where a 7-fold cross-validation technique was
applied for building and training the DNN of 7-hidden layers structure for classifying a dataset of brain
MRIs into four classes, i.e., normal, glioblastoma, sarcoma and metastatic bronchogenic carcinoma.

https://github.com/razeineldin/DeepSeg/
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They have combined the classifier with the discrete wavelet transform (DWT)—a powerful feature
extraction tool—and principal components analysis (PCA). They achieved a classification rate of
96.97%, recall 0.97, precision 0.97, F-measure 0.97 and AUC (ROC) 0.984.

Table 17. Summary of selected papers on brain tumor segmentation.

Authors Method Learning Dataset Acc. P R F Sp Sn Dice PPV

Alkassar et al. [91] DNN+FCN+VGG-16 BRATS2015 0.98 0.89

Amiri et al. [92] RF-SVM BRATS 0.72

Chahal et al. [93] CNN BRATS2013 0.96 0.93 0.95

Ding et al. [94] RDM-Net BRATS2015 0.86

Mallick et al. [95] DWA-DNN RIDER_NEURO_MRI 0.93 0.93 0.92 0.94
Ramirez et al. [96] CNN+TVS Flair-MRI Brats2015 0.84 0.88 0.86

Sajid et al.[97] hybrid CNN BRATS 2013 0.91 0.86 0.86

Wang et al. [98] WRN-PPNet BRATS2015 0.92 0.94 0.97

Zhao et al. [99] FCNNs and CRF-RNN BRATS 2013–16 0.82 0.84 0.89

Kuzina et al. [100] UNet-DWP BRATS2018 0.76

Zeineldin et al. [101] DeepSeg BRATS 2019 0.81–0.84

Fabelo et al. [102] HSI+2D-CNN SUH 80 80–100

Alqudah et al. [105] used a convolutional neural network (CNN) for classifying a dataset of 3064
T1 weighted contrast-enhanced brain MR images for grading the brain tumors into three classes called
glioma, meningioma and pituitary. The research has used T1-weighted contrast-enhanced brain MR
images for classifying brain tumor grades. They have used a free online available dataset at [90] which
contains images having the above-mentioned attributes. A total of 18 layers in the proposed CNN
architecture would enable the classifier to rate the brain tumor effectively. In their work they proved
that the proposed CNN classifier is a powerful tool with an accuracy of 98.93% and sensitivity 98.18%
for cropped lesions; for the uncropped lesions, they have obtained an accuracy of 99% and 98.52%
sensitivity; for segmented lesion images, the result is 97.62 accuracy and 97.40% sensitivity.

Ucuzal et al. [106] developed a deep learning free web-based software that can be utilized in
the detection and diagnosis of the three types of brain tumors (glioma/meningioma/pituitary) on
T1-weighted magnetic resonance imaging. In the research, 3064 T1-weighted MR image scans for the
three types of brain tumors have been used. Out of which, 2599 instances were used in the training
phase; whereas, the remaining 465 were used in the testing phase. A python programming language
library called Auto Keras was used in image pre-processing (image rotation, changing width and
length, truncating images, rescaling, etc). Furthermore, a Bayesian optimization technique was used to
tune the hyperparameters of the model. With this, they have verified that all the calculated performance
metrics—i.e., accuracy, precision, sensitivity, specificity, F1-score, MCC, G-Mean of the experimental
results are higher than 98% for classifying the types of brain tumors on the testing dataset obtained
from Nanfang Hospital and Tianjin Medical University General Hospital which is an open-source
dataset downloaded from [107]. This data set consists of 3064 T1-weighted contrast-enhanced MR
images from 233 patients: 708 meningiomas, 1426 glioma and 930 pituitary tumors. The developed
web-based software can be publicly available at [108].

Selvy et al. [109] developed a model that makes use of an image processing technique and artificial
neural network for successful detection of the brain tumor. To enhance the contrast of the original
image in its analysis and manipulation, they have used histogram equalization (HE) technique where
gray level co-occurrence matrix (GLCM) would be used on the feature extraction. A probabilistic
neural network (PNN) classifier is applied to the obtained feature to accurately determine tumor
location in brain MRI images. The PNN classifier has produced an accuracy of 90.9%, specificity of
100% and sensitivity 85.75%.

Sultan et al. [110] proposed a deep learning (DL) model to classify different brain tumor types.
The model which bases a convolutional neural network has employed two publicly available datasets
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acquired from Nanfang Hospital and General Hospital, Tianjing Medical University, China from 2005
to 2010. The two datasets entail 233 and 73 patients with a total of 3064 and 516 images on T1-weighted
contrast-enhanced images, respectively. The overall accuracy of the proposed network is 96.13% for
the first and 98.7% for the second dataset. The result inferred that the model has the ability to perform
brain tumor multi-classification. The network training and performance computations are finally
presented. The system parameters used to train the neural network structure are Intel i7-7700HQ CPU
(2.8 GHz), NVIDIA GTX 1060 (6 GB) GPU, 16GB RAM, Matlab 2018b and Python 3. The network is
constructed from 16 layers where the input layer holds the pre-processed images passing through
the convolution layers and their activation functions (3 convolution, 3 ReLU, normalization and
3 max-pooling layers). Additionally, two dropout layers are used to prevent overfitting followed by a
fully connected layer and a softmax layer to predict the output and finally a classification layer that
produces the predicted class. Although the dataset is relatively not big (due to the variety of imaging
views), data augmentation helped well to show better results and hence, overcome this problem.

Badža and Barjaktarovic [111] presented a new CNN architecture for Brain Tumor Image
Segmentation and classification for three tumor types. The study has employed an image database
that contains 3064 T1-weighted contrast-enhanced MRI images acquired from Nanfang Hospital and
General Hospital, Tianjin Medical University, China from 2005 to 2010. The input layer of the proposed
network was represented by MRI images of the database after being normalized to 256 × 256 pixels.
The network architecture having consisted of input, two main blocks, classification block and output
was employed to perform tumor classification. The blocks consist of the rectified linear unit (ReLU)
activation layer, the dropout layer and the max-pooling layer engaged in fine-tuning and resizing
the images. A CNN developed in Matlab R2018a (The MathWorks) was employed for the tumor
classification. The evaluation of the network was assessed using four approaches: combinations of
two 10-fold cross-validation methods and the two databases mentioned above. The generalization
capability of the network was tested with one of the 10-fold methods, subject-wise cross-validation,
and the improvement was tested by using an augmented image database. The best result for the
10-fold cross-validation method was obtained for the record-wise cross-validation for the augmented
data set, and, in that case, the accuracy was 96.56%. With good generalization capability and good
execution speed, the new developed CNN architecture could be used as an effective decision-support
tool for radiologists in medical diagnostics.

The summary of the papers reviewed is presented in Table 18.

Table 18. Summary of selected papers on brain tumor classification.

Authors Method Dataset Acc. P R F Sp Sn MCC G-Mean

Mohsen et al. [80] DWT-DNN Harvard 0.97 0.97 0.97

Alqudah et al. [105] CNN Online 98.40 98.19 99.19 98.18

Ucuzal et al. [106] CNN Multiclass NHTM 99.74 99.58 99.59 99.81 99.60 99.39 99.70

Selvy et al. [109] PNN GCE 90 100 85.75

Sultan et al. [110] CNN NHTM 96.13–98.7

Badža and Barjaktarovic [111] CNN NHTM 96.56

3.3.5. Summary

As shown in Table 19, papers from 2016,2018, 2019, and 2020 were reviewed here. Unlike other
cancer type papers, reviewed papers on brain tumors consist of a significant number of papers that
compared the performance of their model with that of the domain expert(see Table 20).

As indicated in Tables 17 and 18, Brain Tumor Image Segmentation Challenge (BRATS) of various
versions is the most widely used dataset among the researchers and appeared in ten out of the
seventeen papers reviewed.

From Table 21 it was found that a Tensor flow-based framework run by a high-speed core
processor or a GPU was widely used, seven out of seventeen, followed by PyTorch, two out of
seventeen, to implement the experiments and conducting the deep learning training. However, the rest
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of the papers have not explicitly indicated which software platform they have applied. On the other
hand, VGGNet is the most frequently applied network to achieve robust tumor segmentation 52.9% of
the papers have made a comparison with domain experts; on the other hand, 94.1% of the paper has
made a comparison with the traditional method.

Table 19. Summary of brain tumor scientific papers in terms of article publication year, name of journal
for the selected papers and its impact factor with year of impact factor.

Author and Citation Publication Year Journal Impact Factor Impact Assigned Year

Alkassar et al. [91] 2019 ICECCPCE19 Conference 0.627 2019

Amiri et al. [92] 2016 ATSIP 2016 Conference 0.17 2019

Chahal et al. [93] 2019 RDCAPE Conference - -

Ding et al. [94] 2019 IEEE Access 3.745 2019

Mallick et al. [95] 2019 IEEE Access 3.745 2019

Ramirez et al. [96] 2018 ISBI Conference 1.51 2019

Sajid et al.[97] 2019 Arabian Journal for Science and Engineering 0.33 2019

Wang et al. [98] 2019 IJCNN Conference 0.37 2019

Zhao et al. [99] 2018 Medical Image Analysis 3.88 2019

Kuzina et al. [100] 2019 Frontiers in Neuroscince 3.7 2020

Mohsen et al. [80] 2018 Future Computing and Informatics 3.88 2019

Alqudah et al. [105] 2019 IJATCSE 0.2 2019

Ucuzal et al. [106] 2019 ISMSIT 0.84 2019

Zeineldin et al. [101] 2020 IJCARS 1.961 2017

Fabelo et al. [102] 2019 MDPI 3.275 2019

Selvy et al. [109] 2019 IJSRCSEIT 1.638 2016

Sultan et al. [110] 2019 IEEE Access 3.745 2019

Badža and Barjaktarovic [111] 2020 MDPI 2.474 2019

Table 20. Summary of brain tumor scientific papers in terms of comparison to specialists and/or
traditional techniques.

Author and Citation Comparison to Specialists (Yes/No) Comparison to Traditional Technique (Yes/No)

Alkassar et al. [91] Yes Yes

Amiri et al. [92] No Yes

Chahal et al. [93] No Yes

Ding et al. [94] No Yes

Mallick et al. [95] No Yes

Ramirez et al. [96] Yes Yes

Sajid et al.[97] No Yes

Wang et al. [98] Yes Yes

Zhao et al. [99] Yes Yes

Kuzina et al. [100] No Yes

Mohsen et al. [80] No Yes

Alqudah et al. [105] No Yes

Ucuzal et al. [106] Yes No

Zeineldin et al. [101] Yes Yes

Fabelo et al. [102] Yes Yes

Selvy et al. [109] No No

Sultan et al. [110] Yes Yes

Badža and Barjaktarovic [111] No Yes
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Table 21. Summary of brain tumor scientific papers in terms of CNN architecture, and type of
environment used in the selected papers.

Author and Citation Network Pre-Training Transfer Learning Environment

Alkassar et al. [91] VGGNet-16 Yes Yes

Amiri et al. [92] RF+SVM Yes Yes

Chahal et al. [93] CNN Yes Yes

Ding et al. [94] RDM-Net Yes Yes

Mallick et al. [95] DWA-DNN Yes Yes Tensor flow

Ramirez et al. [96] CNN+TVS Yes Yes Tensor flow

Sajid et al.[97] hybrid CNN Yes Yes Tensor Flow

Wang et al. [98] WRN-PPNet Yes Yes Tensor flow

Zhao et al. [99] FCNNs and CRF-RNN Yes Yes Tensor flow

Kuzina et al. [100] UNet-DWP Yes Yes

Mohsen et al. [80] DWT-DNN Yes Yes

Alqudah et al. [105] VGGNet-19 Yes Yes

Ucuzal et al. [106] UNet-DWP Yes Yes Tensor flow and Keras

Zeineldin et al. [101] ResNet+DenseNet+NasNet Yes Yes Keras, Tensor Flow

Fabelo et al. [102] UNet Yes Yes Tensor Flow

Selvy et al. [109] GLCM+PNN Yes Yes

Sultan et al. [110] CNN Yes Yes Matlab 2018b and Python

Badža and Barjaktarovic [111] CNN Yes Yes Matlab 2018b

3.4. Colorectal Cancer (CRC)

Worldwide in 2018, more than 1,849,518 (which accounts for 10.2% of overall cancer cases) new
cases of colorectal cancer (CRC) are diagnosed and nearly 880,792 people died which is 9.2% of all
cancer-related deaths [112]. It is the third most common cancer worldwide and the second most
deadly [112]. Since colorectal cancer takes a long time before it becomes invasive, it is often curable
if found early. Hence, casual screening for colorectal cancer can substantially reduce its mortality.
Approximately 95% of all colorectal cancers are adenocarcinomas [113]. Colorectal adenocarcinomas
develop in the lining of the colon or rectum and are characterized by glandular formation.

3.4.1. Screening Methods

There are three common screening methods for colorectal cancer: fecal occult blood test (FOBt),
flexible sigmoidoscopy (FS) and total colonoscopy (TC) [114]. FOBt reveals traces of blood in stool
samples which is an early sign of colorectal cancer. FS involves visual inspection of the distal
bowel for polyps and cancers. TC visualizes the entire bowel and therefore is a more invasive
examination. The advancement of whole slide imaging (WSI) scanners has opened new opportunities
in automating pathology image analysis by digitizing the slides [115]. Histological examination
of the glands, most frequently with the hematoxylin & eosin (H & E) stain, is routine practice
for assessing the differentiation of cancer within colorectal adenocarcinoma [113]. Pathologists
use the degree of glandular formation as an important factor in deciding the grade of the tumor.
Accurate segmentation of structures of the glandular formations such as glands and nuclei have
crucial importance, because their morphological properties can assist the pathologist in screening the
malignancy [113].

3.4.2. Datasets

In Table 22, we present some of the publicly available and widely used datasets for colorectal
cancer detection and segmentation.
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Table 22. Publicly available datasets for colorectal cancer (CRC), UMCM—University Medical Center
Mannheim, CVC—computer vision center.

Dataset Size #Classes/Targets Format Type Author, Year

CVC-EndoSceneStill 912 4 bmp Colonoscopy Vázquez et al. [116], 2017

CVC-ColonDB 300 4 bmp Colonoscopy J. Bernal et al. [117], 2012
CVC-ClinicDB 612 4 tiff Colonoscopy J. Bernal et al. [118], 2015
UMCM 500 8 mat histology Kather et al. [119], 2016

3.4.3. Deep Learning for Cell Detection and Classification on Histological Slides

Kainz et al. [120] applied deep learning methods to segment and classify colon glands into benign
and malignant types for GlaS@MICCAI2015 challenge. They first pre-processed the stained RGB by
taking the Red channel and ignoring the others. Then contrast enhancement was performed using
contrast limited adaptive histogram equalization (CLAHE) technique. Two CNN classifiers were
trained: Object-Net, Separator-Net. Object-Net is for the detection of benign and malignant glands
from their respective backgrounds. Separator-Net is for classifying gland-separating structures since
the Object-Net architecture segment two neighboring glands as one. These to classifiers are then
regularized using a figure-ground segmentation based on weighted total variation to produce the
final segmentation result. They have achieved 96% average accuracy on the two tests provided by
the challenge.

Sirinukunwattana et al. [121] proposed a spatially constrained convolutional neural network
(SC-CNN) that includes parameter estimation layer and spatially constrained layer for spatial
regression to predict the probability of a pixel being the center of a nucleus in hematoxylin
and eosin (H & E) stained histopathology images. For classifying the detected nuclei they
combine neighboring ensemble predictor (NEP) with a standard softmax CNN (s-CNN). For the
nuclei detection using SC-CNN, they achieved 0.77 precision, 0.82 recall, and 0.8 F1-score.
The NEP&s-CNN classifier achieved an F1-score of 0.784 and the overall nuclei detection and
classification (SC-CNN+NEP&s-CNN) achieved an F1-score of 0.69.

Graham et al. [113] used a fully convolutional neural network that counters the loss of information
caused by the max-pooling layer by introducing original down-sampled image into the residual unit
using the minimal information loss (MIL) units. They applied atrous spatial pyramid pooling for
multi-level aggregation and preserving the resolution. They achieved an F1-score of 0.92 for gland
segmentation using the GlaS challenge dataset.

Chamanzar et al. [122] develop a deep learning method that can detect and segment a single
cell using only point labeled dataset. They combined Voronoi transformation, Local pixel clustering
and Repel encoding methods with U net with Resnet encoder by feeding them to a multi-task scheduler
for training the system. They achieved an accuracy of 93% for cell segmentation and 94.1% for detection
of adenocarcinoma.

Sari et al. [123] proposed a novel approach for feature extraction, which defines the features by
considering only the salient subregions of the image. The salient subregions were detected by the
detection of nuclear and non-nuclear pixels using an algorithm presented in [124]. Then a deep belief
network of restricted Boltzmann machines (RBMs) re-characterizes these regions and extract features.
These features are clustered using the k-means clustering algorithm and SVM classifier for categorizing
those regions. They achieved an average precision, recall, and F1-score of 82.3%, 89.9% and 85.1,
respectively at the detection of colon adenocarcinoma.

Shapcott et al. [125] proposed a deep learning-based cell identification on histological images of
the colon with a systematic random sampling of the WSI slides. Their proposed system consists of
two CNNs in series in which the first one detects cells on the WSI slide while the second one classifies
those cells into epithelial, inflammatory, a fibroblast or ”other”. The training was performed on a local
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dataset and Evaluated using the ”The Cancer Genome Atlas (TCGA)” dataset. Using five patients’
slides, they achieved an average accuracy of 65% in the detection of cells and 76% in the classification.

Tang et al. [126] proposed Segnet based gland segmentation on the histology image of the colon.
Augmented MICCAI2015 challenge dataset was used to train the SegNet network which is a CNN with
encode-decoder architecture for pixel-wise segmentation. SegNet achieved an average Dice similarity
index of 0.872 and Hausdorff distance of 104.61.

Vuong et al. [127] proposed an algorithm based on DenseNet121 that can perform both
classification and regression tasks on WSI images, for improving the overall performance of the
system. They designed this multi-task deep learning model by adding two fully connected layers,
one for classification and one for regression, after the DenseNet121 network. The classifier classifies
the tissue image into four distinctive pathologies and the regressor considers these four pathological
categories as continuous values. They achieved 85.1% accuracy in classifying colon tissues into
four categories.

Sabol et al. [128] proposed a semantically explainable fuzzy classifier called cumulative fuzzy
class membership criterion (CFCMC) for classifying WSI of colorectal cancer tissue into eight
different tissue types. They compared many CNN architectures as feature extraction for the CFCMC
classifier with the Xception architecture performance being the best feature extractor for the CFCMC.
The explainability of the system is its ability to provide a degree of confidence for each of its predictions.
The proposed method achieved an accuracy of 92.78% for the classification of the different tissue
samples. The explainability was evaluated by pathologists based on its objectivity, level of details,
reliability and quality. Based on these measures, they confirmed that the explainability of the system is
better than the traditional CNN architectures.

3.4.4. Deep Learning for Classification of Polyps on Endoscopic Images

Colorectal polyps are abnormalities in the colon tissues that can develop into colorectal cancer.
The survival rate for patients is higher when the disease is detected at an early stage and polyps
can be removed before they develop into malignant tumors. These tests are usually performed
using endoscopic analysis of the colon. During this study, the endoscopist explores the colon cavity
looking for abnormal growths of tissue, polyps. However, polyp detection is a challenging problem
given its high variation in appearance, size, shape and in many cases its high similarity with the
surrounding tissue.

The application of CTs for the screening of colorectal cancer suffers from false positives due to
the similarity between polyps and colorectal tubes on the CT image. Approaches in [129] can help to
distinguish between colorectal tubes and polyps in CT scans of the colon area using a three dimensional
massive-training artificial neural network (3D-MTANN). The proposed model manages to reduce false
positives by 33% while keeping a sensitivity of 96%.

Ornela Bardhi et al. [130] used CNNs with auto-encoders for the automatic detection of colon
polyp. They used the SegNet architecture from the TensorFlow to build the model and train it from
scratch using three datasets: CVC-ColonDB, CVC-ClinicDB and ETIS-LaribPolypDB. They achieved a
maximum accuracy of 96.7% on the EITS dataset for the detection of colon polyps.

Bour et al. [131] trained different architectures: ResNet50, ResNet101, Xception, VGG19
and Inception V3 for classification of polyps. ResNet50 achieved the highest accuracy of 87.1 %
with precision 87.1%, recall 87.1%, F1-score 87.1% and specificity 93%.

Liu et al. [132] used a deep learning network, faster_rcnn_inception_resnet_v2 model for
localization and classification of endoscopic images of the colon. They achieved 90.645% mean
average precision and 0.5 for the intersection over union (IoU).

Ozawa et al. [133] used deep convolutional neural network (CNN) architecture called single
shot multibox detector (SSD) for the detection of colorectal polyps. All layers were fine-tuned using
stochastic gradient descent with a global learning rate of 0.0001. The trained SSD detected the
trained CNN detected 1246 colorectal polyps from a dataset collected at Tada Tomohiro Institute
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of Gastroenterology and Proctology with a sensitivity of 92% and a positive predictive value (PPV)
of 86%.

Nadimi et al. [134] used a modified version of ZF-net, a CNN architecture proposed by
Matthew D. Zeiler and Rob Fergus [135], as the basis for a Faster R-CNN to localize regions of images
containing colorectal polyps. They trained their architectures using a locally collected dataset labeled
as colorectal polyps (N = 4800) and normal mucosa (N = 6500). The proposed architecture achieved an
accuracy, sensitivity and specificity of 98.0%, 98.1% and 96.3%, respectively. The proposed approach
produces the bounding box annotation of the polyp.

3.4.5. Summary

The most common colorectal cancer screening methods use endoscopic images to find abnormal
colon tissues, polyps and locating cancerous cells or glands on WSI images. Hence most of the
application of deep learning for detecting colorectal cancer is either finding adenocarcinoma on WSI
or detection of polyps on colonoscopic images. Most of the research shows promising results in both
polyp detection and adenocarcinoma or glands detection as seen in Tables 23 and 24.

Table 23. Summary of selected papers on detection and classification for colorectal cancer
histological slides.

Authors Method Dataset Acc P R F1 DSC H

Kainz et al. [120] Separator-Net and Object-Net MICCAI2015 96 59 74 62 - -

Graham et al. [113] MILD-Net GlaS+ - - - 87 88 142

Chamanzar et al. [122] WSMTL local 93 - - 79.1 78.4 -

Sari et al. [123] DeepFeature local - 82.3 89.9 85.1 - -

Shapcott et al. [125] CNNs local and TCGA 65 - - - - -

Sirinukunwattana et al. [121] SC-CNN+NEP & s-CNN MICCAI2015 - - - - 69 -

Tang et al. [126] Segnet MICCAI2015 - - - - 87.2 104.61

Vuong et al. [127] Multitask DensNet121 local 85.1 - - - - -
Sabol et al. [128] CFSCMC UMCM 92.78 - - - - -

The main challenge for the analysis of colposcopic images is most of the dataset suffers from out
of focus problems. Detection of polyps from endoscopic images presents a big opportunity for deep
learning methods to shine since most of the physicians may miss smaller polyps. Still, challenges are
there due to low-quality samples and the operator might miss some areas.

Papers who used pre-trained models and applied transfer learning approaches discuss their
findings in detail and are from reputable journals (see Tables 25 and 26). From Table 27, only two of
the papers measure the performance of their proposed model against expert physicians.

Table 24. Summary of selected papers on colorectal cancer polyp detection.

Authors Method Dataset Acc P R F1 Sp Sn PPV

Ornela Bardhi et al. [130] SegNet EITs 96.7 - - - - - -

Bour et al. [131] Resnet50 local 87.1 87.1 87.1 87.1 93 - -

Liu et al. [132] faster_rcnn_inception_resnet_v2 local 90.6 - - - - - -

Ozawa et al. [133] SSD local - - - - - 92 86

Nadimi et al. [134] mZF-net+ResNet local 98 - - - 98.1 96 -
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Table 25. Summary of colorectal cancer in terms of article publication year, name of journal for the
selected papers and its impact factor with year impact factor has been assigned.

Author and Citation Publication Year Journal/Conference Impact Factor Impact Assigned Year

Kainz et al. [120] 2017 PeerJ 2.38 2019

Graham et al. [113] 2018 Medical Image Analysis 8.79 2018

Chamanzar et al. [122] 2020 ISBI conference 2.283 2019

Sari et al. [123] 2019 IEEE Transactions on Medical Imaging 9.71 2019

Shapcott et al. [125] 2019 Frontiers in bioengineering and biotechnology 3.644 2020

Sirinukunwattana et al. [121] 2016 IEEE transactions on medical imaging 9.71 2019

Tang et al. [126] 2018 Conference YAC 1.461 2019

Vuong et al. [127] 2020 Conference ICEIC 0.76 2019

Ornela Bardhi et al. [130] 2017 Conference ISSPIT 1.393 2019

Bour et al. [131] 2017 Conference ISSPIT 1.393 2019

Liu et al. [132] 2019 Conference ISNE 0.152 2019

Ozawa et al. [133] 2020 Therapeutic advances in gastroenterology 4.08 2020

Nadimi et al. [134] 2020 CEE 2.663 2020

Sabol et al. [128] 2020 YJBIN 3.526 2020

Table 26. Summary of colorectal cancer in terms of CNN architecture and type of environment used in
the selected papers.

Author and Citation Network Pre-Training Transfer Learning Environment

Kainz et al. [120] Object-Net and SeparatorNet—custom No No Matlab

Graham et al. [113] MILD-Net—custom No No Tensorflow

Chamanzar et al. [122] U-net and Resnet Yes Yes PyTorch

Sari et al. [123] DeepBelief Yes Yes -

Shapcott et al. [125] - No No Tensorflow

Sirinukunwattana et al. [121] - No No Matlab

Tang et al. [126] SegNet No No Caffe

Vuong et al. [127] DensNet121 No No PyTorch

Ornela Bardhi et al. [130] SegNet No No Tensorflow

Bour et al. [131] ResNet50 Yes Yes Tensorflow

Liu et al. [132] faster_rcnn_inception_resnet_v2 No No Tensorflow

Ozawa et al. [133] Single Shot MultiBox Detector (SSD) No No Caffe

Nadimi et al. [134] mZF-Net+ResNet Yes Yes Matlab 2018a

Sabol et al. [128] Xception+CFCMC Yes Yes -

Table 27. Summary of colorectal cancer papers in terms of comparison to specialists and/or traditional
techniques.

Author and Citation Comparison to Specialists Comparison to Traditional Technique (Yes/No)

Kainz et al. [120] No No

Graham et al. [113] No Yes

Chamanzar et al. [122] No Yes

Sari et al. [123] No No

Shapcott et al. [125] No No

Sirinukunwattana et al. [121] No Yes

Tang et al. [126] No Yes

Vuong et al. [127] No No

Ornela Bardhi et al. [130] No No

Bour et al. [131] Yes (Approval) No

Liu et al. [132] No Yes

Ozawa et al. [133] No No

Nadimi et al. [134] No No

Sabol et al. [128] Yes Yes
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3.5. Lung Cancer

Lung cancer is the deadliest cancer worldwide with the highest incidence rate [112]. The death
rate is so high because the majority of the cases are discovered at an advanced stage, where curative
treatment is no longer feasible. Hence, screening for early detection is significant enough for
decreasing mortality.

3.5.1. Screening Methods

The recommended screening test for lung cancer is low-dose computed tomography (LDCT),
which uses a low dose of X-ray radiation to get detailed images of the lungs. Physicians will
study different slices of the LDCT to determine the presence of an abnormal area called lung
nodule (or mass) [136]. Other approaches also exist like chest X-ray(the usual X-ray image),
sputum cytology (microscopic analysis of mucus from the lungs). According to a study performed
in [136], these approaches do not seem to decrease the mortality rate.

3.5.2. Datasets

In Table 28, some of the publicly available and widely used datasets for lung cancer detection and
segmentation are listed.

Table 28. Publicly available datasets for CRC, UMCM—University Medical Center Mannheim,
CVC—computer vision center.

Dataset Size #Classes/Targets Format Type Author, Year

UCI ML repository 32 3 CSV Hong and Yang [137], 1991

SPIE-AAPM-NCI 22489 2 dicom CT Armato et al. [138], 2015

Lung Nodule Malignancy 6690 2 hdf5 CT Scott Mader [139], 2017

LUNA2016 888 2 mhd.zip CT Consortium for Open Medical Image Computing [119], 2016

3.5.3. Deep Learning for Lung Nodules Detection

Before the introduction of convolution-based deep learning methods, Suzuki [140] uses massive
training artificial neural networks (MTANN) for the detection and decreasing false positives in lobules
detection using extracted subregions from LDCT images. MTANNs are designed based on the concepts
of artificial neural network filters, where MTANN will classify each subregion (kernel) independently.
Hence, the convolution process is external. They used Multiple MTANNs in parallel to distinguish
between nodules and non-nodules by training each MTANN with the same nodules but different types
of non-nodules. multi-MTANN was applied to differentiate between benign and malignant nodules
from LDCT images in [141].

Tajbakhsh and Suzuki [142] compared the performances of the two widely studied deep learning
models, CNNs and MTANNs, for the detection and classification of lung nodules. The proposed
MTANN-based architecture outperforms the best performing CNN (AlexNet in their experiment)
insensitivity and false-positive rates achieving 100% sensitivity and 2.7 false positives per patient.
In the classifications of the nodules into benign and malignant the MTANNs achieved an AUC of 0.88.

Gu et al. [143] proposed a novel CAD system for the detection of lung nodules using a 3D-CNN.
They implemented a multiscale approach for making the system more efficient at the detection of
various sizes of nodules. The proposed CAD system considers the preprocessing step, which is usually
essential in building a standalone CAD system. It has a volume segmentation step for generating
ROI cubes for the 3D-CNN to classify them. After the classification, DBSCAN was used to merge
neighboring regions into one since they might be different parts of the same nodule. Using the LUNA16
dataset, they found out that small scale cubes are efficient in the detection of smaller nodules (92%
sensitivity and four false positives per patient), but larger ones have lower sensitivity (88%), but with
an average of one false positive per patient.



J. Imaging 2020, 6, 121 30 of 40

Sahu et al. [144] proposed a multiple view sampling-based multi-section CNN model for nodule
classification and malignancy estimation from CT scans. Their proposed model is computationally
lighter than the widely used and relatively efficient 3D-CNNs. They used sample slices extracted
at different orientations, with spherical sampling performing the best, and a pre-trained MobileNet
network to build their system. On the classification task, the proposed model achieved a sensitivity of
96% and AUC of 98% on the LUNA2016 dataset. They measure the severity of malignancy by training
the logistic regression model to estimate the class probability of malignancy. It achieved an accuracy
of 93.79% on malignancy estimation. Since it is a lightweight model, the model can work on smaller
devices such as smart-phones, tablets, etc.

Ozdemir et al. [145] proposed an efficient end-to-end CAD system by coupling nodule detection
with malignancy ranking step. They called the nodule detection system as CADe (detection) whose
output is an input for malignancy ranking step, CADx (diagnosis) step in the complete CAD system.
Training and evaluation were performed on the LUNA16 and Kaggle Bowl datasets [146]. The proposed
model includes model uncertainty in its decision, making it relatively trustworthy in a real-world
application. The proposed CADe system achieved a sensitivity of 96.5%+ and 19.7 false positives per
patient without using false positive reduction techniques. The CADx system also achieves an AUC of
98%. The combination of the two systems was further tuned to build the full CAD system.

Bansal et al. [147] proposed Deep3DSCan for lung cancer segmentation and classification.
They used a deep 3D segmentation algorithm to extract a 3D volume of interest from CTs.
A combination of features extracted using a deep fine-tuned residual network and morphological
features were used to train the ResNet based model. Training and testing used the publicly available
LUNA16 dataset. The proposed architecture achieved an accuracy of 88% in segmentation and
classification tasks with an F1-score of 0.88.

3.5.4. Summary

Many of the papers discussed here studied the detection and classification of lung nodules from
the LDCT images. The end-to-end papers covered in these reviews ([142,145,147]) can help to build
an effective CAD system to assist the radiologist.Bansal et al. [147] seems to work better than the
other works reviewed here since its performance covers both the detection and classification tasks
(see Table 29). We must also consider MTANN-based papers since they deliver a satisfactory result
with smaller data sizes. Papers reviewed here can be summarized in Tables 30 and 31. Here we did
not consider to create a table for domain expert approval since none was participated in the papers
we reviewed.

Table 29. Summary of selected papers on lung cancer detection and classification.

Authors Method Dataset Acc FPR Sp Sn AUC

Tajbakhsh and Suzuki [142] MTANN, detection local - 2.7 - 100

Tajbakhsh and Suzuki [142] MTANN, classification local - - - - 0.88

Gu et al. [143] 3D-CNN, detection LUNA16 - 2.5 - 90

Sahu et al. [144] multi-section MobileNet LUNA16 93.8 - - 96 0.98

Ozdemir et al. [145] V-Net, classification LUNA16 - 19 - 96.5 0.98

Bansal et al. [147] ResNet LUNA16 88 - 89.7 87 0.88
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Table 30. Summary of lung cancer in terms of article publication year, name of journal for the selected
papers and its impact factor with the year impact factor has been assigned.

Author and Citation Publication Year Journal/Conference Impact Factor Impact Assigned Year

Tajbakhsh and Suzuki [142] 2017 Pattern Recognition 7.196 2019

Gu et al. [143] 2018 CBM 3.43 2019

Sahu et al. [144] 2019 IEEE-JBHI 5.180 2020

Ozdemir et al. [145] 2020 IEEE Transactions on Medical Imaging 9.71 2020

Bansal et al. [147] 2020 IET Image Processing 2.61 2020

Table 31. Summary of Colorectal cancer in terms of CNN architecture and type of environment used in
the selected papers.

Author and Citation Network Pre-Training Transfer Learning Environment

Tajbakhsh and Suzuki [142] MTANN - - Caffe

Gu et al. [143] 3D-CNN - - Keras

Sahu et al. [144] Mobile-Net Yes Yes Keras

Ozdemir et al. [145] Vnet - - -
Bansal et al. [147] Resnet - - Pythorch

3.5.5. Deep Learning for Other Cancer Detection and Segmentation

In this sub-section, we included the application of deep learning on skin, liver and stomach cancer
detection. Melanoma is skin cancer which is the deadliest cancer in its nature. In a normal diagnosis
distinguishing melanoma lesions from nonmelanoma, lesions are very challenging [148]. For such
difficulties, researchers have introduced an automatic skin cancer diagnosis system for detection and
segmentation. As a result of uneasy visual characteristics of skin lesion that include inhomogeneous
features and fuzzy boundaries. To overcome the challenges, Adegun and Viriri [148] proposed a deep
learning-based automatic melanoma lesion detection and segmentation algorithm. They evaluated
their approach in terms of Dice coefficient and accuracy 92% and 95% on ISIC 2017 dataset and accuracy
and Dice coefficient of 95% and 93% on PH2 datasets.

Another deadly cancer with high morbidity is liver cancer. There are no widely recommended
methods for early detection of liver cancer. For patients at higher risk, an imaging test such as CT, MRI,
ultrasound and angiography can be used to test for liver cancer. If the physician believes in the need,
a biopsy may be used to confirm the diagnosis. Hence, deep learning methods have been proposed in
assisting physicians in the diagnosis of liver cancers, including hepatocellular carcinoma (HCC), liver
metastasis, cysts, hemangioma and other masses [149]. A custom CNN for classifying HCC in liver
cancer from MRI images, which achieved 92% sensitivity (Sn), 98% specificity (Sp) and 92% accuracy
was proposed in [150]. In [151], VGGNet was used to develop a CAD system that identifies four
types of liver cancers, cysts, hemangiomas, HCC and metastatic liver cancer from ultrasound images.
The developed CAD system achieved an average accuracy of 88%. A hybridized fully convolutional
neural network (HFCNN) was applied in the detection of liver cancer from abdominal CT images
in [64]. HFCNN accurately segments 94.7% of the tumor volume.

Stomach (gastric) cancer is also another common cancer with the fourth-highest incidence rate
and the third-highest mortality rate in the world [112]. The most common screening methods for
stomach cancer are UGI series, serum pepsinogen (PG) testing, Hpylori serology and endoscopy [152].
Endoscopy is the most accurate of these methods, but it is highly invasive [152]. Some popular
deep learning architectures, the inception, ResNet and VGGNet that were pre-trained on ImageNet
were applied using transfer learning methods has been applied to identify benign ulcer and cancer
from gastrointestinal endoscopic color images in [153]. The ResNet model achieved the highest
performance with normal versus abnormal accuracies of 90% and ulcer versus cancer accuracy of 77%.
A pre-trained Inception-Resnet-v2 model was trained and compared with endoscopists in classifying
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classification of gastric neoplasms in [154]. The Inception-Resnet-v2 model performance was lower in
five-class (advanced gastric cancer, early gastric cancer, high-grade dysplasia, low-grade dysplasia
and no neoplasm) classification, i.e., 76.4% vs. 87.6%. The Inception-Resnet-v2 model performance is
comparable with endoscopist in the differentiation of gastric cancer and neoplasm (accuracy 76.0%
vs. 82.0%).

4. Conclusions

The paper review indicates that deep learning methods have achieved state-of-the-art breast
cancer, cervical cancer, brain tumor. colon cancer and lung cancer detection, feature extraction,
classification and segmentation. In this article, a good number of deep learning-based methods for
breast cancer, cervical cancer, brain tumor and colon cancer image analysis are studied. The developed
and implemented methods employed a CNN approach combined with other techniques to mitigate
the existing challenge arising from a large dataset demand for such systems to learn. Problems related
to noise and corrupted images have been properly addressed in some of the works as they suggest
utilizing normal images and limited dataset size in modes that encompass a combination of two or
more architectures to discern breast, cervical, brain and colon abnormalities.

The use of enhanced activation functions have also been recommended to improve the overall
performance of deep learning-based systems in medical image analysis. Moreover, many researchers
have added multiple layers in the CNN architecture to increase the performance of the system.
Some researchers worked on designing unique architectures for specific task properties instead of using
CNN as it is. Subsequently, most of the methods are proved to produce a successful performance in
terms of specificity, sensitivity and Dice score when tested on renowned datasets and BRATS challenges.
The lack of sufficient datasets can be considered a challenge for many of the deep learning-based
researches. All of the reviewed papers have not used different medical images other than MRI for
brain and in most cases mammograms for breast.
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