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Abstract: In digital neutron imaging, the neutron scintillator screen is a limiting factor of spatial
resolution and neutron capture efficiency and must be improved to enhance the capabilities of digital
neutron imaging systems. Commonly used neutron scintillators are based on 6LiF and gadolinium
oxysulfide neutron converters. This work explores boron-based neutron scintillators because 10B has a
neutron absorption cross-section four times greater than 6Li, less energetic daughter products than Gd
and 6Li, and lower γ-ray sensitivity than Gd. These factors all suggest that, although borated neutron
scintillators may not produce as much light as 6Li-based screens, they may offer improved neutron
statistics and spatial resolution. This work conducts a parametric study to determine the effects of
various boron neutron converters, scintillator and converter particle sizes, converter-to-scintillator
mix ratio, substrate materials, and sensor construction on image quality. The best performing
boron-based scintillator screens demonstrated an improvement in neutron detection efficiency when
compared with a common 6LiF/ZnS scintillator, with a 125% increase in thermal neutron detection
efficiency and 67% increase in epithermal neutron detection efficiency. The spatial resolution of
high-resolution borated scintillators was measured, and the neutron tomography of a test object
was successfully performed using some of the boron-based screens that exhibited the highest spatial
resolution. For ome applications, boron-based scintillators can be utilized to increase the performance
of a digital neutron imaging system by reducing acquisition times and improving neutron statistics.

Keywords: neutron imaging; neutron radiography; digital imaging; neutron scintillator;
scintillator screen; boron scintillator; scintillator characterization; scintillator detection efficiency;
epithermal neutron imaging; neutron sensor

1. Introduction

1.1. Background

Neutron imaging is a nondestructive examination technique that measures neutron transmission
to examine a sample’s internal structure. This technique has been used in a variety of studies, including
those of nuclear fuels and materials [1–6], cultural heritage objects [7–9], fuel cells [10–14], turbine
blades [15–17], and many others. Digital neutron imaging techniques are now an essential capability
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for any state-of-the-art neutron imaging facility [18]. The most common digital neutron imaging system
consists of a digital camera optically coupled to a neutron-sensitive scintillator screen.

A critical component of digital neutron imaging systems is the neutron scintillator, because the
scintillator dictates the neutron capture efficiency and is a limiting factor in spatial resolution. Common
scintillator screens for thermal and cold neutron imaging utilize either a 6Li(n,α)3H reaction due to its
large neutron absorption cross-section and relatively large reaction energy, or a Gd(n,γ + ICe−) reaction
because of gadolinium’s high neutron absorption cross-section [19–23]. Although these scintillator
screens are the state of the art in the digital neutron imaging community, the continual improvement of
neutron scintillators are necessary to meet the ever-higher user demands for increased spatial resolution
to examine smaller samples and increased detection efficiency to decrease measurement time.

Boron-based screens offer a promising alternative to existing 6Li- and Gd-based neutron scintillator
screens for a number of reasons. First, the thermal neutron cross-section of 10B (3840 b) is approximately
four times greater than that of 6Li (980 b), as shown in Figure 1, which should increase the neutron
detection efficiency for a comparable 6Li-based screen. Second, the daughter products created by
neutron absorption of 10B have less total energy (2.31 MeV or 2.79 MeV) than those of 6Li (4.78 MeV)
and Gd (7.937 MeV or 8.536 MeV), and the lower energy from a 10B(n,α)7Li reaction is distributed on
heavier daughter products compared to a 6Li(n,α)3H reaction. The lower energy and larger size of
the daughter products reduces the range the daughter products will travel, a fundamental limiting
factor of a screen’s spatial resolution, potentially enabling borated scintillator screens to exhibit higher
spatial resolution compared to the screens created with 6Li or Gd. Additionally, 10B has a lower
γ-ray sensitivity than gadolinium due to its lower atomic number. Scintillator screens with a boron
converter can theoretically be made much thinner than current 6Li- and Gd-based screens, while
exhibiting superior neutron detection efficiency to 6Li scintillator screens, improved γ-ray insensitivity
over Gd scintillator screens, and improved spatial resolution. The combination of 10B’s improved
neutron detection efficiency, spatial resolution, and γ-ray insensitivity could potentially provide a
high-performance neutron scintillator.
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Figure 1. Microscopic absorption cross-section of 10B and 6Li from the Evaluated Nuclear Data File
(ENDF/B-VIII) cross-section libraries.

Boron-based neutron scintillators for neutron imaging applications were conceived as early
as the 1950s [24,25] and their superior neutron detection efficiency has been documented [26].
Glass scintillators [27,28], scintillators with a mixture of neutron absorbing materials [29,30], and plastic
scintillators [31–34] have all utilized boron for neutron detection in different contexts. Despite their
usefulness in other applications, previous studies have generally concluded that boron-based
scintillator screens’ poor light output prevented them from becoming a viable scintillator for neutron
imaging [35–37]. However, Nakamura et al.’s work [38] suggests smaller boron particles may increase
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light output performance. More recent efforts by other colleagues in the neutron imaging field have
recently explored using 10B/CsI:Tl scintillator screens for neutron imaging [39].

The working hypothesis of this study is that the low probability of 10B’s daughter products to escape
from the boron-containing particle and arrive as a scintillating particle is the likely cause of the low
light output observed in previous investigations of boron-based neutron scintillator screens. This work
aims to use smaller boron converter particles to enhance light output. The goal of this investigation is
to benefit the broader neutron imaging community by exploring boron-based scintillator screens that
may deliver improved neutron detection efficiency, light output, and potentially spatial resolution.

1.2. Theory of Boron-Based Scintillator Screens

The range of daughter products created when a neutron interacts with a neutron converter is one
of the limiting factors of a scintillator screen’s spatial resolution. When a thermal neutron (0.025 eV) is
absorbed by 10B, a 10B(n,α)7Li reaction occurs with a 94% branching ratio of producing a 7Li particle
in an excited state (Equation (1)) and a 6% branching ratio of producing a 7Li in the ground state
(Equation (2)), with an average reaction energy of 2.34 MeV. The daughter products of 10B have less
energy than those created by thermal neutron interactions with 6Li (Equation (3)) and Gd (Equations (4)
and (5)), causing them to deposit energy more locally to the interaction site and improve the theoretical
spatial resolution limit. Additionally, 10B’s daughter products are more massive and deposit their
energy over a shorter range than those of 6Li:

10
5 B + 1

0n → 7
3Li∗(0.84 MeV) + 4

2α(1.47 MeV) (1)

10
5 B + 1

0n → 7
3Li(1.01 MeV) + 4

2α(1.78 MeV) (2)

6
3Li + 1

0n → 3
1H(2.73 MeV) + 4

2α(2.05 MeV) (3)

157
64 Gd + 1

0n → 158
64 Gd∗ → 158

64 Gd + γ rays + ICe−; Q = 7.937 MeV (4)

155
64 Gd + 1

0n → 156
64 Gd∗ → 156

64 Gd + γ rays + ICe−; Q = 8.536 MeV (5)

Natural gadolinium, which consists of seven stable isotopes, has a total thermal neutron
cross-section of 48,800 barns. Two isotopes that have high thermal neutron capture cross-sections and
a relatively high natural abundance are 155Gd (60,900 b, 14.8% abundance) and 157Gd (254,000 b, 15.7%
abundance) [40]. As shown in Equations (4) and (5), gadolinium neutron absorption reactions produce
prompt γ-rays and internal conversion electrons (ICe−), which also produce secondary characteristic
X-rays and Auger electrons, including Coster–Kronig electrons. The γ-rays represent 99% of the
Q-value energy [41], but the emitted electrons deposit their energy more locally than photons. Thus,
the response of a gadolinium oxysulfide scintillator (e.g., GOS, Gd2O2S, informally known as Gadox) to
thermal neutron capture is a combination of the effects of emitted photons and electrons. Different GOS
scintillators (such as GOS:Tb, GOS:Pr, GOS:Eu) have different properties, such as peak light emission,
photons/MeV, and decay time. These properties can be matched to the specific application requirements
to maximize performance. Thermal neutron capture by 157Gd, for example, releases an average of
3.288 photons including prompt and secondary γ-rays and X-rays with energies ranging from 10s of
eV up to several MeV and a mean energy of 2.394 MeV [42,43]. This same reaction also releases ICe−

with energies ranging from 29 keV to 6.9 MeV, with the most intense discrete ICe− emissions of 29 and
71 keV [40,43,44]. The range of a 71 keV ICe− in gadolinium is approximately 20 µm [45]. Goorley and
Nikjoo have compiled a more complete table of gadolinium spectral photon emissions [43].

Less energetic daughter products help improve spatial resolution because they have a shorter range
in the surrounding material. The probability that the daughter products will escape the boron converter
particles and reach the scintillator particles decreases with increasing converter particle size. When the
converter particles themselves prevent daughter products from reaching the scintillator material
and producing photons, the light output of the scintillator screen is reduced despite any apparent
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improvement in the detection efficiency from using 10B compared to 6Li. Thus, the converter particle
size could explain the poor light output reported by previous studies on borated scintillator screens.

A Transmission of Ions in Matter (TRIM) simulation [46] calculated the ranges of the daughter
products from the neutron absorption reactions of interest in the boron and lithium-based scintillator
screens. TRIM does not account for isotopic information, so natural elemental abundances were used
in the calculation. The range of internal conversion electrons in GOS scintillator screens was calculated
using the Penetration and Energy Loss of Positrons and Electrons (PENELOPE) software (Version) [47].
Table 1 lists the daughter particles in the converter material, the converter material densities used for
the simulation, and the resulting daughter product ranges, which are also displayed in Figure 2.

Table 1. Simulated converter daughter product range in converter medium.

Converter Density (g/cm3) Daughter Product Range
7Li (1.01 MeV) α (1.78 MeV) 7Li (0.84 MeV) α (1.47 MeV)

B2O3 2.46 2.45 µm 4.84 µm 2.19 µm 3.97 µm
NaB5O8 2.06 2.98 µm 5.88 µm 2.66 µm 4.82 µm

BN 2.10 2.61 µm 5.21 µm 2.34 µm 4.24 µm
3H (2.73 MeV) α (2.05 MeV)

LiF 2.64 62.7 µm 6.04 µm

ICe− (29 keV) ICe− (71 keV)
157Gd2O2S:Tb 7.32 1.31 µm 5.46 µm
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Figure 2. Transmission of Ions in Matter (TRIM) simulated daughter product path length in various
converter materials. The 10B(n,α)7Li daughter products deposit their energy more locally than the
6Li(n,α)3H daughter products. This demonstrates that 10B-based scintillators offer an improved
theoretical spatial resolution limit compared to 6Li-based screens.
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These simulations show 6Li daughter products traveling through LiF, as well as 10B daughter
products traveling through a layer of B2O3, NaB5O8, or BN. The densities of NaB5O8 and Na10B5O8

were essential to analyzing the imaging results, but the density of anhydrous NaB5O8 was not available
in the literature. The density of its hydrous form, Na2O·5(B2O3)·10(H2O) (i.e., NaB5H10O13), is known
(with natB, 1.707 g/cm3 [48]; with 10B, 1.67 g/cm3). The density of Na10B5O8 was experimentally
measured to be approximately 2.02 g/cm3, fixing the density of natural NaB5O8 at 2.06 g/cm3.

The triton from 6Li(n,α)3H has a range of 62.7 µm, which can easily escape a ~10 µm diameter
converter particle to deposit most of its 2.78 MeV energy into the surrounding scintillator material.
However, the 10B daughters deposit their energy almost an order of magnitude closer to the event
origin than the 3H from 6Li. Thus, the majority of daughter products from a 10B(n,α)7Li reaction in
a 10 µm diameter particle would not escape the particle to interact with any surrounding material,
demonstrating the need for smaller boron particles to maximize the probability of conversion from
absorbed neutrons in the converter to photon production from surrounding scintillator material.

The neutrons transmitted through a sample carry attenuation information about the sample,
which are converted to photons by the scintillator, and read by a digital camera and sampled into
pixels to form an image. Thus, the neutron counting statistics dictate image quality as long as the
camera detects enough light to represent the number of neutrons absorbed in the scintillator screen.

Scintillators with a higher detection efficiency can offer shorter acquisition times and improved
image quality (e.g., signal-to-noise ratio, SNR). Scintillator screens containing one or more effective
converter materials detect neutrons by attenuating them through absorption, so screens that absorb
more neutrons demonstrate increased neutron detection efficiency. Neutron attenuation is described
by the Beer–Lambert law, shown in Equation (6), where φ0 is the initial neutron flux and φ(t) is the
neutron flux after attenuation through a material of thickness, t, and total attenuation macroscopic
cross-section, ΣTotal. The total attenuation cross-section (ΣTotal) is the sum of the scattering and
absorption cross-sections (Σs and Σa, respectively). For the strongly absorbing materials considered
here, Σa >> Σs, meaning the attenuation is driven by absorption and scattering effects are negligible,
and ΣTotal ≈ Σa. Thus, a screen’s detection efficiency is the neutron attenuation fraction, (t)/φ0:

φ(t) = φ0e−Σtotalt (6)

Calculated neutron detection efficiencies of various scintillator materials are listed in Table 2
and displayed in Figure 3. The attenuation curves for both thermal and cold neutrons show that
gadolinium-based scintillators have the highest neutron detection efficiency. However, they have a large
daughter product energy and are also sensitive to γ-rays. 10B-based scintillators have a significantly
higher attenuation than 6Li scintillators, so a thinner borated scintillator screen can maintain the same
detection efficiency as a thicker 6Li screen, further improving resolution by minimizing the potential
for photon diffusion within the screen. This suggests that 10B-based screens should exhibit higher
detection efficiency than 6Li-based screens, lower γ-ray sensitivity than gadolinium-based screens,
and improved spatial resolution compared to both gadolinium-based and 6Li-based screens.

Table 2. Total macroscopic cross-section, mean free path, and the 20% absorption thickness of different
borated scintillator screens compared to 6LiF and GOS screens.

Scintillator Mixture

Σtotal Mean Free Path (µm) 20% Absorption
Thickness (µm)(cm−1)

Thermal Cold Thermal Cold Thermal Cold
6LiF:ZnS (1:2) 12.8 28.5 780 350 174 78

natBN:ZnS (1:1) 14.3 32.0 700 313 156 70
6LiF:ZnS (1:1) 17.8 39.7 562 252 125 56

Na10B5O8:ZnS (1:1) 41.5 92.4 241 108 54 24
10B2O3:ZnS (1:1) 52.9 118 189 85 42 19

10BN:ZnS (1:1) 69.6 156 144 64 32 14
Gd2O2S (Gadox) 799 1467 13 6.8 2.8 1.5
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scintillator materials.

2. Materials and Methods

This study was divided into two phases, beginning with the initial scoping measurements of a
narrow set of screen variations that informed the creation of a broader variety of screens for more
detailed measurements. The following sections describe the scintillator screens created as part of this
work along with the methods employed to characterize their performance.

2.1. Scintillator Screens

The purpose of this study was to conduct a combinatorial study of boron-based neutron
scintillators to determine if (1) borated scintillator screens could offer improved neutron imaging
capabilities compared to current widely-used screens and (2) which parameters produced the best
performing screens.

2.1.1. Scintillator Screen Compositions

A total of 25 different boron-based scintillator screens were evaluated as part of the initial scoping
studies, which are listed in Table 3. The results of this experiment allowed for a down-selection of
scintillator screen parameters that informed the second phase of borated scintillator screen design
and evaluation. All screens employed a ZnS:Cu scintillator and had an active area of 50 mm × 50 mm.
Four screens layered the scintillator and converter materials separately, while the rest had a mixture of
scintillator and converter material particles. These scoping studies included a larger variety of converter
materials, and only the top few performing converters were pursued further in subsequent testing.
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Table 3. Parameters of screens used in initial scoping studies.

Substrate Converter Material Atomic Ratio (B:ZnS) Thickness (µm)

Aluminum 10B-enriched boron powder layered 5050
Aluminum 10B-enriched boron powder layered 100,100
Aluminum 10B-enriched boron powder layered 200,100
Aluminum 10B-enriched boron powder layered 200,200
Aluminum 10B-enriched Boric Acid 2:1 200
Aluminum 10B-enriched Boric Acid 1:1 200
Aluminum 10B-enriched Boric Acid 1:2 200
Aluminum 10B-enr. Sodium Pentaborate 2:1 200
Aluminum 10B-enr. Sodium Pentaborate 1:1 200
Aluminum 10B-enr. Sodium Pentaborate 1:2 200
Aluminum Boron Oxide (B2O3) 2:1 200
Aluminum Boron Oxide (B2O3) 1:1 200
Aluminum Boron Oxide (B2O3) 1:2 200

1.9 mm FSM Boron Oxide (B2O3) 2:1 200
1.9 mm FSM Boron Oxide (B2O3) 1:1 200
1.9 mm FSM Boron Oxide (B2O3) 1:2 200
Aluminum Boron Nitride (BN) 2:1 200
Aluminum Boron Nitride (BN) 1:1 200
Aluminum Boron Nitride (BN) 1:2 200
Aluminum Wurtzite-Boron Nitride (w-BN) 2:1 200
Aluminum Wurtzite-Boron Nitride (w-BN) 1:1 200
Aluminum Wurtzite-Boron Nitride (w-BN) 1:2 200
Aluminum Anhydrous Sodium Tetraborate 2:1 200
Aluminum Anhydrous Sodium Tetraborate 1:1 200
Aluminum Anhydrous Sodium Tetraborate 1:2 200

The second phase of this work examined 50 different boron-based scintillator screens, which
are listed in Table 4. At least two of each screen variety were fabricated and tested to reduce any
anomalous effects from fabrication. Some additional screens were fabricated with a single thickness
for the acquisition of test images. This study utilized a total of 118 borated scintillator screens and
six different 6LiF screens. Except for a few cases that used a 1.8 mm-thick first-surface mirror (FSM),
all screens were mounted on 63 mm × 63 mm square aluminum substrates that were 1 mm thick.

Additional substrate materials were also tested. The active area of scintillator and converter
material measured 50 mm × 50 mm and a ZnS:Cu scintillator was used for each screen. The ZnS:Cu
scintillator was chosen because cameras used in this study have a higher quantum efficiency in the
wavelengths emitted from ZnS:Cu than for ZnS:Ag. Screen performance was measured for sensors with
a varying converter material (10B2O3, natBN, and Na10B5O8), scintillator median particle size (11.5 and
4.7 µm), converter-to-scintillator (boron atom to ZnS molecule) mix ratio (2:1, 1:1, and 1:2), and sensor
substrate (FSM, matte black aluminum, polished aluminum, matte finish aluminum, broad-spectrum
white polymer-coated aluminum, and broad-spectrum white polymer sheet adhered to aluminum).
While the natBN and Na10B5O8 scintillator materials were obtained commercially, the 10B2O3 was
fabricated specifically for this project using a precursor of 10B-enriched boric acid (H3

10BO3) and basic
chemical and material processes.

Three separate types of scintillator screens were tested during this study. First, wedged screens
consisting of mixed converter and scintillator material were tested to determine the impact of scintillator
layer thickness on imaging performance. Second, screens with separate scintillator and converter
layers as wedges of each layer, referred to as double wedge scintillator screens, were fabricated with the
two wedges deposited in perpendicular directions so that a single double-wedged screen represents
the full range of thicknesses for both the converter and scintillator materials. Third, screens with a thin,
single-thickness scintillator layer were used to test some boron-based screens for neutron radiography.
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Table 4. Scintillator screen parameter combinations of second testing phase.

Particle
Size
(µm)

Phosphor
Maximum
Thickness

Converter
Material

Converter
Thickness

(µm)

Converter to
Scintillator

At. Ratio (B:ZnS)

Converter to
Scintillator

Weight Ratio

Substrate
Surface
Finish

Notes

11.5 300 10B metal 100 - - matte black double Wedge
4.7 300 10B metal 100 - - matte black double Wedge
11.5 300 10B4C 100 - - matte black double Wedge
4.7 300 10B4C 100 - - matte black double Wedge
11.5 300 10B2O3 - 2:1 1:2.5 matte black single wedge
11.5 300 10B2O3 - 1:1 1:4 matte black single wedge
11.5 300 10B2O3 - 1:2 1:7 matte black single wedge
4.7 300 10B2O3 - 2:1 1:2.5 matte black single wedge
4.7 300 10B2O3 - 1:1 1:4 matte black single wedge
4.7 300 10B2O3 - 1:2 1:7 matte black single wedge

11.5 300 Na10B5O8 - 2:1 1:2.3 matte black single wedge
11.5 300 Na10B5O8 - 1:1 1:3.5 matte black single wedge
11.5 300 Na10B5O8 - 1:2 1:6.1 matte black single wedge
4.7 300 Na10B5O8 - 2:1 1:2.3 matte black single wedge
4.7 300 Na10B5O8 - 1:1 1:3.5 matte black single wedge
4.7 300 Na10B5O8 - 1:2 1:6.1 matte black single wedge

11.5 300 natBN - 2:1 1:3.1 matte black single wedge
11.5 300 natBN - 1:1 1:5.1 matte black single wedge
11.5 300 natBN - 1:2 1:9.2 matte black single wedge
4.7 300 natBN - 2:1 1:3.1 matte black single wedge
4.7 300 natBN - 1:1 1:5.1 matte black single wedge
4.7 300 natBN - 1:2 1:9.2 matte black single wedge

11.5 300 10B2O3 - 2:1 1:2.5 polished single wedge
11.5 300 10B2O3 - 1:1 1:4 polished single wedge
11.5 300 10B2O3 - 1:2 1:7 polished single wedge
4.7 300 10B2O3 - 2:1 1:2.5 polished single wedge
4.7 300 10B2O3 - 1:1 1:4 polished single wedge
4.7 300 10B2O3 - 1:2 1:7 polished single wedge

11.5 300 Na10B5O8 - 2:1 1:2.3 polished single wedge
11.5 300 Na10B5O8 - 1:1 1:3.5 polished single wedge
11.5 300 Na10B5O8 - 1:2 1:6.1 polished single wedge
4.7 300 Na10B5O8 - 2:1 1:2.3 polished single wedge
4.7 300 Na10B5O8 - 1:1 1:3.5 polished single wedge
4.7 300 Na10B5O8 - 1:2 1:6.1 polished single wedge

11.5 300 natBN - 2:1 1:3.1 polished single wedge
11.5 300 natBN - 1:1 1:5.1 polished single wedge
11.5 300 natBN - 1:2 1:9.21 polished single wedge
4.7 300 natBN - 2:1 1:3.1 polished single wedge
4.7 300 natBN - 1:1 1:5.1 polished single wedge
4.7 300 natBN - 1:2 1:9.2 polished single wedge

11.5 300 10B2O3 - 1:1 1:4 white poly
coating single wedge

11.5 300 10B2O3 - 1:1 1:4 FSM single wedge
11.5 300 10B2O3 - 1:1 1:4 matte single wedge
11.5 300 6LiF - 1:2 1:9.2 matte black single wedge
6.7 300 6LiF - 1:2 1:9.2 matte black single wedge
4.7 300 6LiF - 1:2 1:9.2 matte black single wedge

11.5 300 6LiF - 1:2 1:9.2 matte single wedge
6.7 300 6LiF - 1:2 1:9.2 matte single wedge
4.7 300 6LiF - 1:2 1:9.2 matte single wedge

11.5 300 10B2O3 - 1:1 1:4 white poly sheet single wedge
4.7 20 10B2O3 - 2:1 1:2.5 matte black
4.7 20 10B2O3 - 1:1 1:4 matte black
4.7 20 10B2O3 - 1:2 1:7 matte black
4.7 20 Na10B5O8 - 2:1 1:2.3 matte black
4.7 20 Na10B5O8 - 1:1 1:3.5 matte black
4.7 20 Na10B5O8 - 1:2 1:6.1 matte black
4.7 20 natBN - 2:1 1:5.7 matte black
4.7 20 natBN - 1:1 1:10.4 matte black
4.7 20 natBN - 1:2 1:19.9 matte black
4.7 20 pure 10B 10 - - matte black layered
4.7 20 10B4C 10 - - matte black layered
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2.1.2. Wedged Scintillator Screens

Screen thickness is one of the most impactful parameters that determines the performance of a
scintillator screen. To determine screen performance as a function of thickness, one could fabricate
multiple screens with a range of discrete thicknesses, measure the performance of each, and then
interpolate between the data points. However, this is expensive and time-consuming.

This work simultaneously studies a continuous range of thicknesses using a wedged scintillator
screen, where scintillator layer thickness varies continuously across the screen, as described in previous
work [49]. The wedged screens were fabricated by first depositing a nominally 300 µm-thick scintillator
layer onto the substrate. Then, a rigid blade was used to scrape the scintillator layer away until the
target high and low thicknesses were reached with a monotonic gradient in between them. A jig was
used to keep the blade at the proper angle. The resulting screens had a nominal maximum thickness
of 300 µm that decreased to a thin layer a few microns thick. The as-fabricated scintillator thickness
deposited on the substrate was measured with two different commercial coating thickness gauges
that use eddy current probes. The measurements from both gauges were taken at the thicker portion
of the screen and averaged together to produce a maximum as-fabricated thickness. A schematic of
the wedged scintillator design emphasizing the wedge shape (exaggerated, not to scale) is shown in
Figure 4. In total, 84 wedged screens were part of this study.
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Figure 4. Schematic of a wedged scintillator concept [49].

Figure 5 shows a photograph of a representative wedged screen taken with an oblique light
applied to enhance the appearance of the surface texture in the picture. Multiple surface defects can be
seen in these prototype screens, but these discontinuities are accounted for in the post-processing of
experimental data [49]. The thicker section of the wedge is at the top of the image, with the thickness
decreasing continuously toward the bottom of the screen.
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Figure 5. Photograph of a wedged scintillator screen with an oblique light applied to enhance the
appearance of the surface texture. The screen shown is a 10B2O3 neutron converter in a 1:1 (10B:ZnS)
mix ratio with a ZnS:Cu scintillator with 11.5 µm median particle size.

2.1.3. Double-Wedged Scintillator Screens

Mixing the converter and scintillator particles is feasible for white converter particles because they
do not absorb the light emitted from the scintillator like a dark-colored material would. This study tested
the performance of dark boron-containing converters, including 10B4C and 10B metal, but separated
them into a distinct layer from the scintillator in the form of a double-wedged scintillator screen.
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The converter layer was deposited directly onto an aluminum substrate and the thickness ranged from
100 µm to a few microns. The scintillator layer was deposited on top of the converter layer and varied
from 300 µm to a few microns thick. The thickest parts of the two wedges were placed perpendicularly
to each other, so each position of the scintillator screen represented a different combination of converter
and scintillator layer thickness. This approach allowed a continuous range of thickness combinations
to be assessed using a single screen. Nine separate double-wedged screens were included in this study.
A double-wedged screen is displayed in Figure 6. The scintillator thickness varies from top (thicker) to
bottom (thinner), while the converter is thickest on the right and decreases toward the left of the screen.
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Figure 6. Photograph of a double-wedged scintillator screen consisting of a boron carbide converter
(10B4C) and a ZnS:Cu scintillator with 11.5 µm median particle size.

2.1.4. High-Resolution Scintillator Screens

Boron-based screens with uniformly thick scintillator coatings deposited as thin as possible were
also explored in this study. The scintillator layers for these screens all had target maximum thicknesses
of ≤ 20 µm. Light dispersion within the scintillator layer is a source of image unsharpness, so thin
screens should exhibit higher spatial resolution. This part of the study explored the feasibility of
achieving higher spatial resolution by exploiting boron’s increased neutron detection efficiency to
offset the lower light output of a thinner screen. Figure 7 displays a photograph of a high-resolution
screen under oblique lighting to emphasize screen texture. The missing portion of the coating was
caused by the insufficient adhesion of the coating to the substrate during a delicate scraping operation
to make the wedged thickness profile. However, this defect did not prohibit measurements because it
is outside the central field of view (FOV) of the screen.
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Figure 7. Photograph of a high-resolution scintillator screen consisting of a 10B2O3 neutron converter
in a 1:1 (10B:ZnS) mix ratio with a ZnS:Cu scintillator with 4.7 µm median particle size.

2.2. Neutron Source and Instrumentation

The measurements for this study were taken using the ANTARES cold neutron beam located at
the FRM II reactor [50]. All radiographs were acquired with a neutron flux of 5.7 × 107 n/cm2/s at the
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sample position and a length-to-diameter ratio (L/D) of 540, where L is the beamline length measured
from the aperture to the image plane and D is the effective diameter of the aperture. A 1 mm-thick
cadmium filter was placed in the beamline to filter thermal neutrons for the testing of the screens’
sensitivity to epithermal neutrons. ANTARES has two imaging systems, one with a larger FOV and
another for high resolution applications. The large FOV system uses an Andor iKon-L camera (Andor
iKon-L, Oxford Instruments, Belfast, UK). The high-resolution imaging system utilizes an Andor Neo
camera (Andor Neo, Oxford Instruments, Belfast, UK). The peak light emission of the ZnS:Cu used in
this study is ~530 nm, which matches well with the camera used to study light output, as the camera
has > 90% quantum efficiency between ~480 and ~710 nm with a peak near 550 nm [51]. The large
FOV system was used to simultaneously characterize multiple screens for detection efficiency and
light output, and the high-resolution system was used for resolution testing and neutron tomography.

2.3. Testing Methodology

The goal of this study was to characterize the performance of a variety of boron-based
scintillator screens to understand how different screen parameters affected the final imaging
performance. Previous reports of low light output were a concern, so initial scoping studies focused on
identifying borated screens that produced sufficient light output for neutron imaging applications
and down-selecting the boron converter chemical form to the few most promising candidates for a
subsequent set of screens and measurements. The second phase of testing measured the detection
efficiency and light yield of the candidate scintillator screens for a wider variety of screen parameters.
Spatial resolution was quantified by taking a radiograph of a 1 cm-wide, 75 µm-thick gadolinium strip
and calculating the modulation transfer function (MTF) from the edge profile.

Light output and detection efficiency were measured using previously developed methodology [49].
The larger FOV imaging system was used for these measurements because four screens could be
simultaneously measured in a single radiograph. First, radiographs were acquired with the borated
screens optically coupled directly to the imaging system to measure the relative light output of each
screen. For cold neutron radiographs, this consisted of a single six-second exposure. Epithermal
testing was performed by acquiring five 20 s exposures and summing them together. A diagram of
this measurement and a sample radiograph from it are displayed in Figure 8.
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Figure 8. Schematic diagram showing the light yield measurement of the borated screens (left).
A representative radiograph showing the light output from four borated screens (right).

Once the radiograph measuring the light yield of the screens was captured, the borated screens
were removed from the imaging system and a common 6LiF/ZnS:Cu screen was mounted to the
imaging system. An open beam image was acquired for the post-process correction of subsequent
radiographs. The borated screens were then placed on the source-side of the 6LiF/ZnS:Cu screen and
a radiograph of the borated screens was acquired to measure the detection efficiency of each screen.
Figure 9 shows a schematic of this setup, as well as a representative radiograph of this measurement.
There was a gap of only 8 mm between the image plane and the borated screens, so the magnification
effects were negligible. This procedure was performed for the double- and single-wedged screens with
the cold neutron beam. Epithermal measurements using the same process with a cadmium-filtered
beam were also conducted with the single wedge screens.
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Figure 9. Schematic diagram of the detection efficiency measurement (left) and a representative
radiograph of four borated screens obtained with this setup (right).

2.4. Data Processing

A median filter (3 × 3-pixel radius) was applied to all images to reduce noise in the radiographs
used to measure relative light output and detection efficiency. All radiographs were open-beam and
dark-field corrected. Acquisition times were six seconds for the images taken in the unfiltered cold
beam. For the epithermal (i.e., cadmium-filtered) beam, a set of five 20-second images were taken
for each measurement and summed together. Spatial resolution images were integrated over ten
seconds. A python code was written to correlate data from both the light-yield and detection-efficiency
measurements for each screen. Once correlated, relative light yield and detection efficiency as a
function of scintillator layer thickness was calculated. A separate python script calculated the effective
spatial resolution in terms of MTF. More details on the measurement procedure and data analysis
methods can be found in Chuirazzi et al. [49].

3. Results

3.1. Results of Initial Scoping Studies

The light outputs of the first set of borated neutron scintillator screens was measured, which are
shown in Figure 10. Scintillator screens with layered converter and scintillator material produced
minimal light output. The performance of sensors with a converter and scintillator mixture varied
based on the converter material and mix ratios. More converter means less scintillator, and vice
versa. Too much converter means there is not enough scintillator to produce photons, and too much
scintillator means there is not enough converter to absorb the neutrons. There will be an optimal
mixture ratio. Thus, the light output does not necessarily change monotonically with the mix ratio.J. Imaging 2020, 6, x FOR PEER REVIEW 13 of 22 
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Figure 10. The measured relative light output of borated neutron scintillator screens from the initial
scoping studies.
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The highest performing screens in these initial scoping measurements included 10B2O3, natBN,
and Na10B5O8. The light output of the 10B2O3 screens was notably higher for screens on FSM than
for a matte black aluminum substrate, indicating that further study of substrate variations may be
warranted. Results of this testing informed the fabrication of additional boron-based scintillator screens.
This second generation of screens focused on 10B2O3, natBN, and Na10B5O8 converter materials.

3.2. Additional Testing

Converter material, converter grain size, converter-to-scintillator mix ratio, and substrate material
were all varied to investigate their impact on the scintillator screens’ performance. The results of
the data taken in the cold neutron beam are reported first, followed by epithermal neutron results.
Duplicate screens were fabricated with the same combination of screen parameters, and the results of
duplicate screens were averaged to reduce the effects of any outliers. Relative light yield is normalized
to the single brightest screen to facilitate a relative comparison between all screens.

3.2.1. Cold Neutron Results

Figure 11 shows relative light yield as a function of screen thickness for the same 10B2O3(1:1)ZnS:Cu
scintillator composition deposited on various substrates. Reflective materials such as white poly and a
first surface mirror (FSM) increase light output because they simply reflect photons originally traveling
away from the camera back toward the camera. However, photons reflected off the substrate undergo
further diffusion in the scintillator material with the increased path-length, degrading the spatial
resolution. The matte black backing absorbs photons so they do not reflect back and contribute to the
image, which reduces light output but can improve spatial resolution. These measurements show that
a reflective substrate can increase the relative light yield by > 20% compared to a matte black substrate.J. Imaging 2020, 6, x FOR PEER REVIEW 14 of 22 
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Figure 11. Relative light yield as a function of thickness for a 10B2O3(1:1)ZnS:Cu scintillator composition
deposited onto various substrates.

Converter materials of natBN, 10B2O3, and Na10B5O8 were mixed with ZnS:Cu scintillator material
in B:ZnS atomic ratios of 2:1, 1:1, and 1:2. Results of borated screens with different converter materials,
scintillator particles, and scintillator particle size are displayed in Figures 12–14. All screens in these
results were mounted on a matte black substrate to remove effects of photon reflection by the substrate.
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Figure 12. Results for 10B2O3 screens with different mix ratios and scintillator particle sizes.
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Figure 13. Results for natBN screens with different mix ratios and scintillator particle sizes.
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Figure 14. Results for Na10B5O8 screens with different mix ratios and scintillator particle sizes.

Relative neutrons per graylevel, which is the ratio of the detection efficiency to the relative light
yield, provides a measure of how many neutrons are represented in a grayscale value and a useful
measure to compare screen performance. Detection efficiency scales with the amount of boron converter
material, simply due to the increased macroscopic absorption cross-section of the converter–scintillator
mixture. However, the screens with higher detection efficiency exhibited fewer photons produced
per detected neutron because an increase in the amount of boron decreases the amount of phosphor
material, inhibiting photon production.

Two sizes of scintillator particles, 11.5 and 4.7 µm, were used in the fabrication of the screens.
However, there was not a consistent trend in the performance of screens with different sized scintillator
particles. Detection efficiency was not affected by scintillator particle size because the bulk boron
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concentration of the mixture is independent of scintillator particle size. Optical examination did not
reveal any differences in homogeneity between screens with different scintillator particle sizes.

A comparison of the performance of the different neutron converters with a 2:1 mix ratio, mounted
to a polished aluminum substrate, is shown in Figure 15. 10B2O3 produced the highest light output
while Na10B5O8 provided the best detection efficiency. The natBN contained unenriched boron, which
explains its relatively poor performance compared to the other screens that used enriched 10B. However,
based solely on the limited amount of 10B present in naturally occurring boron (19.9% 10B, 80.1% 11B),
10BN may be superior to 10B2O3 and Na10B5O8 if it were available for future testing.J. Imaging 2020, 6, x FOR PEER REVIEW 16 of 22 
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Figure 15. Results for neutron scintillator screens with different neutron converters.

The top performing boron-based screens were compared with a 6LiF/ZnS:Cu screen comprised
of a 1:2 (6LI:ZnS) mix ratio under cold neutron exposure, for which the results are summarized in
Figure 16. All scintillator screens had a matte black backing.
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Figure 16. Top-performing boron-based screens under a cold neutron beam compared to a
6LiF:ZnS screen.

The 6LiF-based screens produce significantly higher relative light yield than the boron-based
screens, which is to be expected based on the higher reaction energy and longer range of 6Li’s daughter
products. However, the boron-based screens exhibit a much higher detection efficiency than the
6Li-based screen, with some screens demonstrating 125% higher neutron detection efficiency for the
same thickness. Their higher detection efficiency enables boron screens to provide improved neutron
counting statistics, potentially accelerating image acquisition times proportionally to the improvement
in detection efficiency.

The metric of relative neutrons per graylevel indicates that all boron-based scintillator screens
correlate with improved neutron statistics compared to 6LiF screens. These measurements show that
6LiF screens are brighter, but the brightness is not caused by the detection of additional neutrons.



J. Imaging 2020, 6, 124 16 of 22

Borated scintillator screens that are thinner than 6LiF could offer the same neutron detection efficiency
but improved resolution. These results align with theoretical predictions and justify the further
exploration of boron-based scintillators in neuron imaging applications.

3.2.2. Epithermal Neutron Results

The absorption cross-section of 10B is also higher than that of 6Li in the epithermal energy range,
suggesting that 10B may exhibit superior performance in epithermal neutron imaging applications.
Epithermal neutron imaging is useful when examining large, dense samples because epithermal
neutrons have greater penetration than thermal neutrons, usually at the expense of contrast [52].
Epithermal neutron imaging is used to examine both archeological artifacts [53,54] as well as nuclear
fuels [4,55], among other objects. The epithermal region, which overlaps with the resonance region,
contains many absorption resonances for different materials. These resonances can be exploited using
pulsed neutrons and time-of-flight techniques to determine the isotopic composition of a material [56].
Neutron scintillator screens with an improved detection efficiency for epithermal neutrons could also
be useful in resonance imaging techniques [57–59].

In this work, a 1 mm-thick sheet of cadmium was placed in the neutron beam to absorb thermal
neutrons, leaving primarily epithermal neutrons. Borated scintillator screen performance was measured
under epithermal neutron exposure following the same procedure as with the unfiltered neutron beam.
Figure 17 shows the top performing boron-based scintillators compared to a common 6LiF scintillator.
The 6LiF scintillator exhibited superior light output compared to the borated screens under epithermal
neutron exposure, as was the case with cold neutrons. However, the boron-based screens exhibit a
much higher detection efficiency than the 6Li-based screen, with some screens exhibiting 67% higher
epithermal neutron detection efficiency for the same thickness. Epithermal neutron tomography can
take more than a day to acquire a full set of projections, but these results show that boron-based
screens have the potential to reduce the time necessary for an epithermal neutron tomography by
approximately 60%. Additionally, the relative neutrons per graylevel is significantly higher for the
boron-based scintillators than for the 6LiF scintillator, which could indicate improved SNR for the
images produced using the boron-based scintillators.
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Figure 17. Top-performing boron-based screens under an epithermal neutron beam compared to a
6LiF:ZnS screen.

3.2.3. Spatial Resolution

Spatial resolution of the high-resolution boron screens was measured using the high-resolution
imaging system at ANTARES. The effective pixel pitch of this system was 57 pixels/mm (17.5 µm/pixel),
corresponding to a Nyquist frequency of 28.5 lp/mm. Figure 18 shows the MTF results for the
high-resolution screens, which consisted of thinly deposited (10–20 µm) scintillator layers with 4.7 µm
median scintillator particle size. The spatial resolution of all high resolution screens is displayed in
Table 5 and the MTF curves of the top two performers, a layered 10B4C/ZnS screen and a natBN/ZnS
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screen, are displayed in Figure 18. Discrepancies in the spatial resolution for screens of the same
material can be attributed to variations in the already the thin (≤20 µm) target scintillator layer thickness.
At thin scintillator layers, a slight variation in the amount of deposited scintillator material or surface
defects can drastically affect screen performance.
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Figure 18. MTF curves of high-resolution scintillators with the best spatial resolution. The boron
carbide screen is layered with ZnS, while the boron nitride screen is mixed with the ZnS scintillator.

Table 5. Effective spatial resolution for uniform thickness screens.

Converter Material Converter to Scintillator Atomic Ratio
(Boron atom to ZnS:Cu)

Resolution at 10% Modulation
Transfer Function (MTF) (lp/mm)

10B2O3 2:1 10.6
10B2O3 2:1 7.6
10B2O3 1:1 9.6
10B2O3 1:1 9.6
10B2O3 1:2 7.4
10B2O3 1:2 7.3

10NaB5O8 2:1 10.5
10NaB5O8 2:1 8.8
10NaB5O8 1:1 10.2
10NaB5O8 1:1 9.9
10NaB5O8 1:2 7.6
10NaB5O8 1:2 8.2

natBN 2:1 4.8
natBN 2:1 9.7
natBN 1:1 8.3
natBN 1:1 6.7
natBN 1:2 6.6
natBN 1:2 15.2

Layered 10B4C 10 µm 10B4C, 20 µm ZnS:Cu 16.0

3.2.4. Neutron Computed Tomography

Radiographs were acquired with some of the high-resolution scintillator screens. These screens
were chosen based on their promising performance, but also for the relatively uniform surface texture
in the central field of view of the screens. Figure 19 (left) shows a radiograph of a small mechanical
wristwatch acquired using a thin 10B2O3/ZnS:Cu screen. A set of 1229 radiographs was acquired for
neutron computed tomography, and the resulting 3D rendering of the wristwatch is displayed in the
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right side of Figure 19. The mechanical gears inside the watch are clearly visible, demonstrating that
these prototype screens are feasible to use in neutron radiography and tomography applications.
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Figure 19. A neutron radiograph (left) and a cut-away of a 3D tomographic reconstruction (right) of a
mechanical wristwatch.

4. Discussion

Boron-based scintillator screens demonstrated superior neutron detection efficiency for both cold
and epithermal neutron applications when compared to widely used 6LiF/ZnS neutron scintillator
screens. Borated screens demonstrated up to 125% higher cold neutron detection efficiency and 67%
higher epithermal neutron detection efficiency than representative 6LiF screens. Although borated
screens produce less light output than representative 6LiF screens, the borated screens deliver improved
neutron counting statistics compared to representative 6LiF screens. The higher neutron detection
efficiency of boron-based screens offers the potential for higher quality neutron images and lower
acquisition times. Epithermal neutron tomography acquisition time can potentially be reduced from
days to hours, depending on the application.

Thin boron-based scintillator screens were measured to compare their spatial resolution
performance. While some of the boron-based screens provided relatively high-resolution performance,
the resolution performance was limited by the Nyquist limit of the imaging system employed in
this study. Further measurements should be pursued using a neutron imaging system with a higher
Nyquist limit to determine the spatial resolution potential of boron-based screens.

The top performing screens successfully produced a useful tomographic reconstruction of a test
object. Boron-based screens may be able to deliver improved spatial resolution over common widely
used screens based on the fundamental properties of the neutron absorption daughter products of
10B compared to those of 6Li. Provided an imaging setup has sufficient light sensitivity, boron-based
neutron scintillators can provide improved neutron detection statistics. The higher neutron detection
efficiency of boron-based screens stands to benefit the world-wide neutron imaging community by
increasing neutron counting statistics and reducing measurement times.
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