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Abstract: Baggage travelling on a conveyor belt in the sterile area (the rear collector located after
the check-in counters) often gets stuck due to traffic jams, mainly caused by incorrect entries from
the check-in counters on the collector belt. Using suitcase appearance captured on the Baggage
Handling System (BHS) and airport checkpoints and their re-identification allows for us to handle
baggage safer and faster. In this paper, we propose a Siamese Neural Network-based model that is
able to estimate the baggage similarity: given a set of training images of the same suitcase (taken in
different conditions), the network predicts whether the two input images belong to the same baggage
identity. The proposed network learns discriminative features in order to measure the similarity among
two different images of the same baggage identity. It can be easily applied on different pre-trained
backbones. We demonstrate our model in a publicly available suitcase dataset that outperforms the
leading latest state-of-the-art architecture in terms of accuracy.

Keywords: deep learning; Siamese Neural Networks; baggage re-identification

1. Introduction

In a society where airport efficiency and security are increasingly crucial, it is strategic to invest
in methodologies that can improve Baggage Handling Systems (BHS) performances. The checked-in
suitcase is loaded from high speed BHS for quick processing and the stowing of it. Currently, almost
all airports use X-ray technology to manage baggage: at check-in, a X-ray image of each suitcase
is produced and inspected. Suspected (or in general interested) baggage is marked by means of a
RFID (Radio Frequency Identification) tag. It will facilitate a security check at claim area (because an
alert/alarm will be produced when the marked suitcases cross the RFID detection zone). However,
a similar approach that is based on RFID technology can fail when:

• tags accidentally fall off during check-in/check-out procedures, and/or transfer process;
• passengers deliberately remove tags; and,
• in presence of metallic baggage: in this case, the RFID technology could work in a wrong way

producing false positives and/or false negatives.

Moreover, the human presence is mandatory for tagging interested baggage (and it results in
longer and expensive baggage sorting). All of these aspects lead to the main final drawback of this
approach: the detection of interested baggage will fail, with negative consequences in terms of people
security. For all of the aforementioned reasons, an approach for baggage monitoring that does not
require physical tags can improve airport processes in terms of security, time, costs, efficiency. To do it,
a relationship between the image scanned at BHS and related inspection information has to be created
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(see Figure 1). The images acquired at BHS (Figure 1a) are compared with images of baggage at the
customs checkpoint (see Figure 1b). When a suspect baggage is detected, an alert can be sent to security
agents and a physical check of baggage can be done by specialized agents. It should be noted that the
identification of baggage can be based not only on the generic aspect of it, but also additional items can
be used (stickers, tags, labels, ropes, defects—such as missing wheel, and so on).

Figure 1. Multi-view camera system at: (a) Baggage Handling Systems (BHS), (b) checkpoint.

The problem of image association among the baggage images captured at BHS (see Figure 1a) and
the ones grabbed at the checkpoint represents a large research field well known as object re-identification.

The object re-identification problem is currently one of the most studied topics in the Computer
Vision community with many contributions on “Person Re-identification”, “Vehicle Re-identification”,
and so on. The Artificial Intelligence (AI) in recent years—with the advent of the Deep Learning—has
proposed many algorithms and network architectures to solve the object re-identification problem
(see Section 2). This paper proposes a siamese CNN network that is able to evaluate a baggage similarity
score in order to verify whether the baggage images belong to the same identity. We take advantage of
the annotated data in terms of image group similarity and image identities. During experimental session,
the final convolutional activations are extracted for the Euclidean distance based suitcase similarity
rate. To summarize, our contributions are: (i) we propose a siamese network that giving as input two
baggage images returns their similarity measure. This network simultaneously learns a discriminative
feature embedding from different CNN backbones and a similarity metric, thus improving baggage
retrieval accuracy; and, (ii) we report competitive accuracy as compared to the state-of-the- art methods
on the only publicly available large-scale dataset for baggage re-ID (Multi View Baggage (MVB)) [1]
demonstrating that the proposed implementation outperforms them (about 20%).

The remainder of this paper is organized, as follows. Section 2 contains a review of the state of
the art. Section 3 presents the proposed system. In Section 4, the experimental results obtained on a
publicly available dataset are reported. Section 5 reports the conclusions.

2. Related Work

Re-identification (Re-ID) is the problem of identifying objects across images that have been taken
while using different (overlapped or not overlapped) cameras or across time using a single camera.
Re-identification is a very powerful method for video security systems as well as human computer
interaction systems.

Traditional approaches have focused on low-level features such as colours, shapes, contours,
and local descriptors, but with the development of deep learning, the convolutional neural networks
(CNN) have dominated this field. Traditional approaches are based on discriminative classifiers,
with the objective of distinguishing between the target and surrounding environment. To cope with
natural image changes, these classifiers are typically trained with translated and/or scaled sample
patches (often used for long term visual tracking). Kernelized Correlation Filter [2] with Histogram
of Oriented Gradients (HOG) features instead of raw pixels outperforms by a large margin to other
trackers, such as Struck [3] or Track-Learn-Detect (TLD) [4], working at hundreds of fps.
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With the advent of the Deep learning era, new techniques that use deep learning technology, such
as convolutional neural network, recurrent neural network, and generative adversarial network, are
introduced to address the object ReID issue. Traditionally, the most important field of application is
people PeID (based on facial landmarks, gait, posture, ...), but there are also other different applications,
such as boats [5] and cars ReID [6,7].

A robust approach that integrates CNN and traditional feature detectors is proposed in [8]: here,
the authors introduce a fusion feature network (FFN), which combines a variety of hand-crafted
features (texture and colour histogram features) and CNN features.

In [9], the authors introduce a hybrid deep architecture for person ReID with the dual goal of
reducing the variations of the intra-personal and increasing the differences of inter-personal. Another
interesting work regarding the reduction of the intra-class variance for face verification task by the
introduction of center loss has been proposed in [10]. Person re-identification is also the topic of the
approach presented in [11]. Here, a CNN is used for learning generic deep features descriptors by
combining multiple datasets together in order to train the designed CNN; in addition, a domain guide
dropout strategy is introduced in order to discard worthless neurons for each domain dataset to keep
the deep model in the right track.

The approach proposed that is in [12] is an evolution of [10]. Here again center loss is used for the
reduction of the intra-class variation; but authors now combine it with identification loss to jointly train
the designed network, also adding a feature re-weighting (FRW) layer to learn the weight coefficients
of each dimension of the deep descriptors; the criticism of this approach is the over-fitting that seems
to affect it.

A different point of view on re-identification problem is given by the verification model:
approaches of this category take a pair of images as input and produce a similarity value in order to
determine whether the paired images are the same object or not; in other words, the ReID is treated as
a binary-class classification problem. An exhaustive overview on this aspect is proposed in [13].

Person Re-identification (PReID) is the core of the approach that is presented in [14]. The authors
introduce a filter pairing neural network (FPNN), which includes max-out pooling layers and
patch-matching; the goal is to jointly handle geometric transforms and photometric, misalignment,
background clutter and occlusions. In [15], the authors introduce a “Siamese” deep network for metric
learning; the proposed architecture implements three shared parameters independent convolutional
networks that perform on three non-overlapping parts of the two images. The output of the fully
connected layers are the deep descriptors of the two input images, and the similarity score is obtained
by the evaluation of the cosine function of two output descriptors. In a similar way, in [16], the authors
proposed a PersonNet model for person ReID. This work is a direct consequence of the approach that
was proposed in [17] and it uses the patch matching layer to detect local relationship between patches.

The drawback of these approaches is the relatively shallow depths of their networks which do
not benefit of digging the deep features to improve discrimination.

In the specific field of PReID excellent results have been obtained by combining the identification
and verification models. One of the first works on this has been proposed in [18], with the use of
verification and identification losses to train the network for face recognition. Later, in [19], the authors
proposed a verification-identification model that combines the verification and identification losses to
train the CaffeNet for person ReID.

The goal of distance metric-based deep models [13] is to reduce, as much as possible, the distances
between the same person images, and increase as much as possible the distances between different
person images. Several papers have followed this trend topic. Firstly, a similar model was introduced
by authors in [20] to target the image retrieval task; the application of this model in the face recognition
task was proposed in [21], and then, in [22], the authors first adopted the triplet model in order to
address the person ReID task. The most recent state-of-the-art work on person ReID is based on the
part-based deep model [13], with the goal of learning discriminative deep features. Local visual cues
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are close to the behaviour of human visual system and they are complementary to global information.
In the field of person ReID, the combination of local and global features seems to be a good choice.

The use of hand-crafted features could seem far from the human appearance and particularly
to how appearance varies between people [23]. Another interesting aspect that is related to person
ReID is the dataset construction and availability of training images. Often, the number of images for
one person in a certain dataset is limited in person ReID community, as highlighted in [13]. In [24],
the authors first introduce a generative adversarial network (GAN) to generate unlabeled pedestrian
samples and adopt a CNN sub-model for feature representation learning.

In the last years, several works on Siamese Neural Networks and their application in the field of
re-identification have been produced. Siamese neural network is a kind of neural network architecture
that contains two or more identical (Siamese) sub-networks; the word ’identical’ means that the
sub-networks share the same architecture and the same parameters and weights for each other.

Typically, a Siamese network is employed as pairwise, with two sub-networks included.
The output of Siamese model is basically a similarity score that takes place at the top of the network [25].
The last layer represents two functions: connection function, which is used to evaluate the relationship
between two samples, and cost function, which is used to convert the relationship into a cost. How to
choose these functions is closely related to the CNN performance [26].

3. Proposed System

The proposed network model is, basically, a convolutional siamese network that will be trained
to determine whether or not two objects are the same or different. The goal is to associate, using a
similarity loss, image inputs that belong to same identity, minimizing the distance between them and
maximizing the difference between dissimilar ones. Figure 2 briefly describes the network structure.
Given as input, to the backbone network, a pair of resized images the proposed siamese network,
estimates the images similarity score. The network consists of two CNN backbones already pre-trained
on ImageNet dataset, three convolutional layers, a square layer, and a similarity loss, as can be noticed
in Figure 2. The pre-trained backbones will be ResNet-50 [27], SENet [28], and EfficientNet [29],
where we have removed last fully-connected (FC) layer. The optimization objective is reached by
computing a similarity loss.

Figure 2. The proposed system. Given n groups of suitcase image associations, two identical Backbone
models are used as the non-linear embedding functions and output 2048-dim embeddings f1, f2. Then,
f1 and f2 are used to predict the identity of the input suitcase. We introduce a non-parametric layer, called
Square Layer, to compare high level features f1 and f2. Finally, the softmax loss is applied on the objective.

3.1. Network Fine-Tuning

From Figure 2, it can be noticed that there are two backbones that share weights in order to predict
the identities of the input image couples at the same time. We fine-tune the network on the MVB dataset
(see Section 4.1), replacing the fully connected layer of the pre-trained backbone with a new conv-layer.
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3.2. Similarity Loss

A non-parametric layer named Square Layer is introduced to compare the extracted high-level
features f1 and f2, as shown in Figure 2. These features coming from the fine-tuned CNN have a
discriminating capability and they are easier to handle than activation function in the intermediate
levels. As input, it takes two tensors giving as outputs one tensor obtained by subtracting and squaring
element-wise. This Square Layer is defined as fs = ( f1 − f2)

2, where f1 and f2 are the 2048-dim tensors
and fs is the 2048-dim output tensor.

Subsequently, we add a convolutional layer and the softmax output function in order to embed the
resulting tensor fs to a 2-dim vector (p1, p2), which is the estimated probability of the two input images
that belong to the same identity (note that p1 + p2 = 1). The third convolutional layer has fs as input
filtering it with two kernels of size 1 × 1 × 2048. We do not add a ReLU after this convolution, and we
manage baggage similarity as a binary classification problem using a cross-entropy loss, which is:

p = so f tmax(ΓS ◦ fs) (1)

Similarity( f1, f2, s, ΓS) =
2

∑
i=1

−pi log pi (2)

where f1, f2 are the two tensors of of size 1 × 1 × 2048 containing the high-level features; s is the binary
target class (same/different identity), ΓS represents the added convolutional layer parameters, and p
is the inferred probability. If the image pair contains the same luggage, then p1 = 1, p2 = 0, if not,
p1 = 0, p2 = 1.

3.3. Backbone

Convolutional neural networks represent a more than valid alternative to traditional methods
in various computer vision tasks, such as classification, segmentation, and so on. Over the years,
increasingly deep and complex networks have been developed in order to improve their performance.
Usually a pre-trained model is used and its performance is improved by performing a fine-tuning
operation or new levels or improved techniques are used to make the network deeper. Many of the
works that are seen in Section 2 use the VGG-16 network as a backbone, in the proposed architecture
different backbones have been used to try to achieve better performance. As previously said, we test
three different pre-trained networks as backbones in the proposed architecture; in the following
subsections, they will be briefly presented.

3.3.1. ResNet

The architecture of the ResNet, as specified in [27], is mainly based on that of the VGG network
(Figure 3-left), in which the convolutional layers mostly have 3 × 3 filters and follow two simple
design rules:

• for the same output feature map size, the layers have the same number of filters; and,
• if the feature map size is halved, the number of filters is doubled, so as to preserve the time

complexity per layer.

Downsampling is directly performed by convolutional layers that have a stride of 2. The network
ends with a global average pooling layer and a 1000- way fully-connected layer with softmax. The total
number of weighted layers is 34 (Figure 3-middle). When considering the aforementioned network ,
then there are inserted shortcut connections (Figure 3-right), which turn the network into its counterpart
residual version. The identity shortcuts can be directly used when the input and output are of the
same dimensions. When the dimensions increase (dotted line shortcuts in Figure 2), we consider
two options:
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1. the shortcut still performs identity mapping, with extra zero entries padded for increasing
dimensions. This option introduces no extra parameter; and,

2. the projection shortcut is used to match dimensions (done by 1 × 1 convolutions).

For both options, when the shortcuts go across feature maps of two sizes, they are performed
with a stride of 2.

Figure 3. (Left): the VGG-19 model as a reference. (Middle): a plain net- work with 34 parameter
layers. (Right): a residual network with 34 parameter layers [27].
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3.3.2. SENet

Squeeze-and-Excitation Networks (SENets) [28] introduce a building block for CNNs that
improves channel interdependencies at almost no computational cost and they helped to improve the
result by 25%. Besides this huge performance boost, they can be easily added to existing architectures.
The main idea is: “Let’s add parameters to each channel of a convolutional block so that the network
can adaptively adjust the weighting of each feature map.” As simple as it may sound, this is it. So, let us
take a closer look at why this works so well and how we can potentially improve any model with
this network. CNNs use convolutional filters in order to extract hierarchical information from images.
Lower layers find trivial pieces of context, like edges or high frequencies, while upper layers can detect
faces, text or other complex geometrical shapes. They extract whatever is necessary to solve a task
efficiently. All of this works by fusing the spatial and channel information of an image. The different
filters will first find spatial features in each input channel before adding the information across all
available output channels. The network weights each of its channels equally when creating the output
feature maps. SENets are all about changing this by adding a content aware mechanism to weight
each channel adaptively. In it is most basic form, this could mean adding a single parameter to each
channel and giving it a linear scalar how relevant each one is. In Figure 4, we can see an SE block:

1. the function is given an input convolutional block and the current number of channels it has;
2. we squeeze each channel to a single numeric value using average pooling;
3. A fully connected layer followed by a ReLU function adds the necessary nonlinearity. Its output

channel complexity is also reduced by a certain ratio;
4. a second fully connected layer followed by a Sigmoid activation gives each channel a smooth

gating function; and,
5. at last, we weight each feature map of the convolutional block based on the result of our

side network.

These five steps add almost no additional computing cost (less than 1) and they can be added to
any model.

Figure 4. The schema of the original Residual module (left) and the SE- ResNet module (right) [28].
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The authors in [28] also showed that, by adding SE-blocks to ResNet-50, you can expect almost
the same accuracy as ResNet-101 delivers. This is impressive for a model requiring only half of the
computational costs.

3.3.3. EfficientNet

When compared to other models achieving similar ImageNet accuracy, EfficientNet is much
smaller. For example, the ResNet50 model as you can see in some applications has 23,534,592
parameters in total, and even though, it still underperforms the smallest EfficientNet, which only
takes 5,330,564 parameters in total. We will dive into its base model and building block, like for the
classical ResNet model is identity and convolution block. For EfficientNet, as it can be noticed in
Figure 5, its main building block is mobile inverted bottleneck MBConv, which was first introduced in
MobileNetV2. By directly using shortcuts between the bottlenecks that connect a much fewer number
of channels as compared to expansion layers, combined with depth-wise separable convolution that
effectively reduces the computation by almost a factor of k2, when compared to traditional layers.
Where k stands for the kernel size, specifying the height and width of the two-dimensional (2D)
convolution window.

Figure 5. The architecture for baseline network EfficientNet-B0 is simple and clean, making it easier to
scale and generalize. [29].

In [29], a squeeze-and-excitation (SE) optimization is also added, which contributes to further
performance improvements. The second benefit of EfficientNet is due to the fact that it scales more
efficiently by carefully balancing network depth, width, and resolution, which lead to better performance.

4. Experimental Results

We tested the proposed algorithm on a public available dataset against the up to date state of the art
methods. The network architecture used for training phase is that described in Section 3. In particular,
different well-known backbones have been used: ResNet50 [27], SeNet [28], and EfficientNet-b5 [29].

4.1. MVB Dataset

The dataset that we used in our experiments (provided by Zhang et al. [1]), contains the largest
available public collection of suitcases images. MVB Dataset contains 4519 suitcase identities (classes)
and 22,660 annotated suitcase images, the train set contains 4019 suitcase identities, while the validation
set contains 500 suitcase identities.

The image sizes is not unique for all; it varies from image-to-image, since all of the images
are captured by specially-designed multi-view camera system in order to handle pose variation
and occlusion.

Some suitcases are naturally very hard to distinguish from each other according to their appearance,
even more difficult than the context of person Re-ID. The suitcases can look very similar, but they
actually have different identities. Two suitcases that look very similar, but in real scenario have two
different identities, as it can be noticed in Figure 6. The cues to distinguish them are hiding in detail
of images. Meanwhile, the images of BHS and checkpoint are substantially different. The intra-class
dissimilarity aspects are shown in Figure 7. It can be noticed that: (i) suitcase images have quite different
backgrounds between BHS and checkpoint. Mainly black conveyor belt in BHS images, meanwhile
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in checkpoint images background depends on the context (i.e. passengers clothes, body parts, floor,
and so on); (ii) suitcase on cart can lead to heavy occlusion in checkpoint images (Figure 7d), while the
checkpoint image might be also partially invisible in BHS image, because surface is at bottom, which
corresponds to the case in Figure 7c; (iii) baggages are essentially unlike, due to different locations of
cameras, and a suitcase can be in various poses, such as Figure 7a showed; (iv) lighting conditions at
BHS and checkpoint are not the same which often leads to color and reflection differences. For instance,
Figure 7b displays obviously different color characteristics at BHS and checkpoint; and, (v) as passengers
walking through checkpoint gate at different speed, motion blur makes the suitcase image to be less
distinctive, as shown in Figure 7e.

Figure 6. Samples of inter-class similarity on MVB (Multi View Baggage) dataset. Images in each row
are from one identity. (a) different image views of the baggage. (b) different image views of the another
baggage [1].

Figure 7. Samples of intra-class dissimilarity on MVB. Blank cell indicates corresponding view image
is not valid. Images in each row represent the same identity. (a) images containing different viewpoint
and pose; (b) images taken with different lighting conditions; (c,d) images with different occlusions;
(e) images blurred for passenger motion [1].

All of these above factors make suitcase Re-ID on MVB dataset a challenging and inspiring task
between different domains.

The MVB dataset is composed by images that were captured from seven different cameras and
relevant label has been applied to each image, following very precise rules.

Dataset and data Augmentation. We generate the pair data for the proposed Siamese network
training, from all positive pairs, i.e., pair of suitcase images that has the same identity, among 4019



J. Imaging 2020, 6, 126 10 of 15

identities are employed as training data; instead, negative training pairs are randomly sampled between
all different identities. This way, we create a training set that is balanced in both positive and negative
labels. The proposed Siamese network is then trained, with five epochs on this balanced training set.
We used the trained output model to infer 500 baggage identities that were randomly taken from the
4019 identities in order to execute hard example mining: High confidence False positive pairs are
selected as supplement negative pairs and then added to original training set. Furthermore, it was
necessary to augment the examples in the starting dataset given the complexity of the network and the
number of parameters to be trained during the fine-tuning procedure. For this reason we made the
geometrical transformations (i.r. flipping, rotation), a centred and square cropping on baggage image
examples, increasing the total number of pairs up to 75k. At the end of this process, the amount ratio of
the positive and negative pairs in the obtained augmented training set is about 1:2. All of the resulting
instance of the training set was resized to the required size of the backbone and the network input layer.

Performance metrics. We report the most commonly used metrics for evaluating the performance,
which include: the mean average precision (mAP) and Cumulated Matching Characteristics (CMC).

CMC is adopted as evaluation metric in order to measure the performance of baggage ReID on
MVB, since there is only one ground-truth identity among the gallery of 500 identities. In this paper,
CMC at rank1, rank5, and rank10 will be evaluated.

mAP quantifies how good our model is at performing the query. Going deeply, the mean average
precision (mAP) of a set of queries is defined as:

mAP =
∑Q

q=1 AveP(q)

Q
(3)

where Q is the number of queries in the set and AveP(q) is the average precision (AP) for a given query,
q. For a given query, q, we calculate its corresponding AP, and then the mean of all these AP scores
would give us a single number, called the mAP, which quantifies how good our model is at performing
the query. We have chosen to use this metric, because mAP has been widely used in this kind of
applications [6,30].

4.2. Implementation Details

Section 3 describes the proposed network model. Training and evaluation was performed on
NVIDIA TITAN RTX GPU 24GB while using the PyTorch framework.

Using a backbone network already trained for a different task allows for us to take advantage
from the extracted feature boosting the whole training phase. This way, we can fine-tune our network
while using different backbones already trained on large datasets.

Table 1 summarizes the different hyperparameters used during the network training phase; as it
can be noticed, they depend on the used different backbones. The first column contains the input image
size (wxh), second one the learning rate value, finally the last one, the batch size dimension. We adopt
the mini-batch stochastic gradient descent (SGD) in order to update the parameters of the network.

Table 1. Training hyperparameters for different backbone

Backbone h × w lr Batch Size

ResNet50 [27] 224 × 224 0.05 64
SENet [28] 224 × 224 0.05 32
EfficientNet-b5 [29] 250 × 250 0.05 64

The dataset has been splitted into four subsets: “train”, “val”, “query”, and “gallery”, in order to train
and test the different network performance while using the different backbones as feature extractor.

Table 2 contains the accuracy performance for ResNet50, SENet, and EfficientNet backbones.
It can be noticed that, in all three models, rewarding results are achieved with regard to the accuracy
on the training and validation sets.
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Table 2. Top results of proposed methods at Rank 1, 5, 10, and mean average precision (mAP) on
MVB dataset.

Backbone Rank1 (%) Rank5 (%) Rank10 (%) mAP

ResNet50 [27] 64.82 85.26 90.68 61.65
SENet [28] 67.49 85.26 90.68 63.58
EfficientNet-b5 [29] 69.10 85.74 90.68 63.11

Figures 8–10 show an example of how the proposed architecture works: a “query” image is
the network input (first from the left), while the other five are the network outputs, which are the
most similar suitcases extracted from the gallery. The number above the images represents the rank,
while the color stands for: green (same suitcase) or red (different suitcase).

Figure 8. Results with Resnet50 as backbone. Green labels are correct query answers, while red ones
indicate different identities.

Figure 9. The results with EfficientNet-b5 as backbone. Green labels are correct query answers, while
the red ones indicate different identities.

Figure 10. Results with with Squeeze-and-Excitation Networks (SENet) as backbone. Green labels are
correct query answers, while the red ones indicate different identities.

The results that are contained in Table 3 clearly demonstrate that the proposed architecture with
EfficientNet-b5 backbone achieves the best performance in terms of CMC rate. It can be noticed that
the proposed solution outperformed the network architecure that was decribed by Zhan et al [1] in
terms of Rank1 rate, on the same MVB dataset (about 20 %).
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Table 3. Performance comparison with the solution proposed in [1].

Architecture Rank1 (%)

Proposed 69.10
MVB [1] 50.19

4.3. Comparison with Other Datasets

In order to demonstrate the reliability of the proposed approach in different contexts, it has
been also tested in two different application fields, specifically boat re-identification [31] and person
re-identification. With reference to the boat re-identification problem, our approach has been tested
on a publicly available dataset: it is composed by 107 classes, and each class represents a different
boat with a total of 5523 images. Some images have been obtained by augmenting the original dataset
by means of morphological operators that were applied to original images. In Table 4, the obtained
results are presented. As it can be seen, they confirm the goodness of the proposed approach, even if a
comparison cannot be proposed, because this dataset is very new.

Table 4. Performance of the three tested architectures on boat Re-id dataset in terms of mAP and Rank-1.

Method mAP Rank-1

RESNET50 86.78 98.85
SENet 84.91 96.64
EfficientNet-b5 89.92 98.85

With reference to the person re-identification, we have tested our system in two different datasets
for persons re-identification:

Market1501 [32] contains 32.668 annotated bounding boxes of 1.501 identities. Images of each identity
are captured by at most six cameras. According to the dataset setting, the training set contains 12,936
cropped images of 751 identities and testing set contains 19.732 cropped images of 750 identities.
CUHK03 dataset [14] is composed by 14.097 cropped images of 1.467 identities collected in the CUHK
campus. Each identity is observed by two camera views and has 4.8 images in average for each view.
Following the setting of the dataset, the dataset is partitioned into a training set of 1367 persons and a
testing set of 100 persons.

In Table 5, the results obtained on these dataset are presented. For completeness, we also propose
the results obtained on the same dataset by the architectures proposed in [19]. As it can be seen, the
proposed solution is comparable with [19], and outperforms it in the EfficientNet b-5 configuration.
The encouraging results that were obtained on both of these two different application contexts confirm
the usability and adaptability of the proposed system: we have obtained interesting results on boats,
people and baggage.Again, the obtained results confirmed the goodness of the proposed network
implementation to solve the re-identification problems.
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Table 5. Comparison of the results at Rank 1 and mAP on public datasets.

Market1501 Dataset [32] CUHK03 Dataset [14]
Method Rank1(%) mAP (%) Rank1(%) mAP

CNN embedding (CaffeNet [19]) 62.14 39.61 59.80 65.80
CNN embedding (VGG16 [19]) 70.16 47.45 71.8 76.5
CNN embedding (ResNet-50 [19]) 79.51 59.87 83.4 86.4

Ours (ResNet-50) 77.13 58.42 79.8 78.2
Ours (SENet) 82.53 71.18 82.8 89.3
Ours (EfficientNet-b5) 85.79 80.92 89.6 89.1

5. Conclusions and Future Perspectives

This paper proposed a new Siamese Neural Network-based model able to perform an efficient
baggage re-identification in an airport baggage handling system. The proposed model learns
discriminative features in order to measure similarity among two different images of the same suitcase
identity. We demonstrated our model in a public available suitcase dataset and it outperformed in
terms of performance the leading latest state-of-the-art architecture.

The proposed re-identification model could be used as a brick in more complex monitoring
systems; in this case, it should be noted that it has to be considered as a ’pure’ re-id system: its
goal is the detection/validation of similarity between objects (suitcases). In other words, the overall
architecture should be able to provide, as network input, image pairs: the first one, acquired at
the check-in, the second one (as potential matching), acquired at some checkpoints on the BHS (for
example, all of the suitcases at the check-out).

Future works will include testing of new network backbones, including geometrical and spatial features,
in order to further improve the performance of suitcase re-identification on the large-scale testing set.
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