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Abstract: In this paper, we propose a method for halftoning color images based on an error diffusion
technique, a color design criterion and Neugebauer models for expressing colors. For a natural extension
of the conventional method for grayscale error diffusion to its color version, we first reformulate grayscale
error diffusion with a one-dimensional Neugebauer model. Then we increase the dimension of the model
to derive a color error diffusion method based on a three-dimensional Neugebauer model in RGB
(red, green and blue) color space. Moreover, we propose a sparse Neugebauer model based on a color
design criterion, or the minimal brightness variation criterion (MBVC), from which we derive a sparse
Neugebauer model-based error diffusion method. Experimental results show that color halftone images
produced by the proposed methods preserve the color contents in original continuous-tone images better
than that by conventional color error diffusion methods. We also demonstrate that the proposed sparse
method reduce halftone noise better than the state-of-the-art method based on MBVC.

Keywords: halftoning; error diffusion; sparse Neugebauer model

1. Introduction

Digital halftoning is the process of converting a continuous-tone image into a pattern of a limited
number of gray levels or colors. Recently, the techniques for digital halftoning have attracted the interest
of researchers in the field of smart paper technology [1]. Smart paper is another name for the e-paper
or electronic paper which is the electronic ink display technology designed to mimic the appearance of
ordinary ink on paper. Electronic papers reflect light like ordinary papers, and can hold texts and images
indefinitely without drawing electricity, while allowing the image to be changed later [2]. Therefore,
it is said to be used for applications such as e-books, electronic newspapers, portable sings and foldable
display [3]. Hsu et al. [4] mentioned the movie “Minority Report”, in which an electronic newspaper
appears, and remarked that those technologies in the near future are becoming reality now. Kao et al. [5]
proposed an integrated driving system for playing videos/animations on the electrophoretic display
(EPD). The EPD system contains a real-time signal processing hardware engine for video halftoning based
on Jarvis error diffusion. The proposed algorithm in this paper is a kind of error diffusion algorithms such
as Jarvis error diffusion; therefore, the proposed algorithm can be applied to the EPD system by replacing
the conventional error diffusion algorithm with the proposed one.

Error diffusion [6] is one of the typical digital halftoning techniques. Floyd and Steinberg [7] originated
a grayscale error diffusion algorithm. A simple extension of grayscale error diffusion to color is to apply
grayscale error diffusion to each color channel in a color image separately. These kinds of extensions
are referred to as separable methods [8]. Shaked et al. formulated a color design criterion named the
minimal brightness variation criterion (MBVC), and developed an ink relocation post-process applicable
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to arbitrary color halftone algorithms [9] and a color diffusion algorithm which decreases halftone noise
successfully [10].

Neugebauer model for color representation can be used to infer the gamut boundaries of printed
colorants on paper [11] by printers such as conventional CMYK (cyan, magenta, yellow and black) printers.
Monga et al. [12] proposed an extension of tone-dependent error diffusion to color, which employs a
Neugebauer printer model with a simple correction by Yule and Nielsen [13]. Inoue et al. [14] applied the
Neugebauer model to the estimation of spectral reflectance.

In this paper, we propose a grayscale Neugebauer model for representing an arbitrary grayscale
value by a linear combination of black and white, and apply it to grayscale error diffusion to derive
a grayscale Neugebauer model-based method. Then we show the equivalence between conventional
grayscale error diffusion and the Neugebauer model-based method. After that, we extend the grayscale
Neugebauer model-based error diffusion method to its color version by extending the dimension of color
space from 1D to 3D. Therefore, the proposed color error diffusion method can be expected as a good
candidate for the color extensions of a standard grayscale error diffusion technique. Moreover, we propose
a sparse Neugebauer model for improving the quality of halftone images. Experimental results show the
effectiveness of the proposed color error diffusion method on real image data including standard images
for image processing researches.

The rest of this paper is organized as follows: Section 2 summarizes grayscale error diffusion,
and shows the equivalence between conventional grayscale error diffusion and Neugebauer model-based
method. Section 3 extends grayscale Neugebauer model to its color version. Section 4 proposes a
color Neugebauer model-based error diffusion method. Section 5 proposes a sparse color Neugebauer
model-based error diffusion method. Section 6 shows experimental results for demonstrating the
performance of the proposed methods. Finally, Section 7 concludes this paper.

2. Grayscale Error Diffusion

Let F = [ fij] be a grayscale image, where fij ∈ [0, 1] for i = 1, 2, . . . , m and j = 1, 2, . . . , n denotes the
pixel value at the position (i, j) in F. Then conventional error diffusion method is described as follows.

2.1. Conventional Method

Let HF = [hF
ij] be a halftoned binary image of F. Then each pixel value hF

ij in HF is given by

hF
ij =

{
1, if fij > θ

0, otherwise
(1)

in raster scan order, where θ denotes a threshold value for binarization, and is given as θ = 1
2 in this paper.

This binarization in Equation (1) causes an error as follows:

eij = fij − hF
ij (2)

which is diffused to subsequent adjoining pixels as follows:

f ′i+k,j+l = fi+k,j+l + wkleij (3)

where such a pixel fi+k,j+l at the position (i + k, j + l) is updated to f ′i+k,j+l by adding the error eij
weighted by predetermined coefficients wkl as shown in Figure 1, where “#” denotes the current pixel
being processed, and “-” denotes the past pixel in the raster scan order.
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16
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Figure 1. Error diffusion coefficients by Floyd–Steinberg [7].

For subsequent pixels, the updated values f ′ij are binarized with Equation (1) instead of the original fij.

2.2. Grayscale Neugebauer Model-Based Method

We present a grayscale Neugebauer model as follows:

fij = pK
ij K + pW

ij W (4)

where K = 0 and W = 1 denote black and white, respectively, and the coefficients defined by

pK
ij = 1− fij (5)

pW
ij = fij (6)

can be viewed as the occurrence probabilities of black and white because of pK
ij ≥ 0, pW

ij ≥ 0 and

pK
ij + pW

ij = 1. In other words, the grayscale Neugebauer model expresses an arbitrary grayscale value fij
as an internally dividing point between black (K) and white (W) as illustrated in Figure 2.

Figure 2. Grayscale Neugebauer model.

Based on the grayscale Neugebauer model in Equation (4), we propose another expression of grayscale
error diffusion as follows (the equivalence of these expressions will be discussed in the next subsection):
A pixel value hF

ij in HF is given by selecting black or white which has larger probability than another as

hF
ij = arg max

x∈{K,W}

{
px

ij

}
(7)

After this binarization, the occurrence probabilities become

p̃K
ij = 1− hF

ij (8)

p̃W
ij = hF

ij (9)

using which, we define the errors in occurrence probabilities pK
ij and pW

ij as

eK
ij = pK

ij − p̃K
ij (10)

eW
ij = pW

ij − p̃W
ij (11)
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which are diffused to the subsequent pixels as follows:

p′Ki+k,j+l = pK
i+k,j+l + wkleK

ij (12)

p′Wi+k,j+l = pW
i+k,j+l + wkleW

ij (13)

where the occurrence probabilities pK
i+k,j+l and pW

i+k,j+l of the subsequent adjoining pixel (i + k, j + l) are

updated to p′Ki+k,j+l and p′Wi+k,j+l , respectively.

For subsequent pixels, the updated values p′Kij and p′Wij are used for the binarization in Equation (7)

instead of the original pK
ij and pW

ij .

2.3. Equivalence of the Two Methods

Here we show an equivalence of the above two methods for grayscale error diffusion.
When hF

ij = K = 0 in Equation (7), we have pK
ij ≥ pW

ij or 1− fij ≥ fij, which means that fij ≤ 1
2 = θ,

that is the condition for hF
ij = 0 in Equation (1). On the other hand, when hF

ij = W = 1 in Equation (7),

we have pW
ij > pK

ij or fij > 1− fij, which means that fij >
1
2 = θ, that is the condition for hF

ij = 1 in
Equation (1). Therefore, the binarization in Equation (7) is equivalent to that in Equation (1).

Next, we describe the equivalence of error diffusion procedures. Assume that hF
ij = K = 0 in

Equation (7). Then the occurrence probabilities in Equations (8) and (9) become p̃K
ij = 1 − hF

ij = 1

and p̃W
ij = hF

ij = 0, and the errors in Equations (10) and (11) become eK
ij = pK

ij − p̃K
ij = pK

ij − 1 and

eW
ij = pW

ij − p̃W
ij = pW

ij , respectively. Substituting these errors into Equations (12) and (13), we have

p′Ki+k,j+l = pK
i+k,j+l + wkl

(
pK

ij − 1
)

(14)

p′Wi+k,j+l = pW
i+k,j+l + wkl pW

ij (15)

from both of which, using the relationships in Equations (5) and (6), we have

f ′i+k,j+l = fi+k,j+l + wkl fij (16)

which coincides with Equation (3) with Equation (2) for hF
ij = K = 0.

On the other hand, when hF
ij = W = 1 in Equation (7), the occurrence probabilities in Equations (8)

and (9) become p̃K
ij = 1− hF

ij = 0 and p̃W
ij = hF

ij = 1, and the errors in Equations (10) and (11) become

eK
ij = pK

ij − p̃K
ij = pK

ij and eW
ij = pW

ij − p̃W
ij = pW

ij − 1, respectively. Substituting these errors into Equations (12)
and (13), we have

p′Ki+k,j+l = pK
i+k,j+l + wkl pK

ij (17)

p′Wi+k,j+l = pW
i+k,j+l + wkl

(
pW

ij − 1
)

(18)

from both of which, using the relationships in Equations (5) and (6), we have

f ′i+k,j+l = fi+k,j+l + wkl
(

fij − 1
)

(19)

which also coincides with Equation (3) with Equation (2) for hF
ij = W = 1.
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Consequently, the grayscale Neugebauer model-based error diffusion in Equations (12) and (13) can
be reduced to the conventional error diffusion in Equation (3) with Equation (2), that shows the equivalence
of the two methods.

3. Extending Grayscale Neugebauer Model to Higher Dimensions

The grayscale Neugebauer model illustrated in Figure 2 has a one-dimensional structure,
where a midpoint fij is expressed as a linear interpolant between K and W. This one-dimensional
structure of grayscale Neugebauer model can be extended to two-dimensional bilinear interpolation as
follows: Let fij = (rij, gij) be a two-dimensional color vector on an RG (red and green) color plane as
illustrated in Figure 3. Then fij can be expressed as a bilinear interpolant of four basic colors: K (black),
R (red), G (green) and Y (yellow) as shown in Figure 3, where a linear interpolant between K and G is
expressed as gijG + (1− gij)K for a given green value gij. Similarly, a linear interpolant between R and Y
is expressed as gijY + (1− gij)R. Using those expressions, fij on the RG color plane can be expressed as a
linear interpolant of gijG + (1− gij)K and gijY + (1− gij)R for a given red value rij as follows:

fij =
(
1− rij

) [
gijG +

(
1− gij

)
K
]
+ rij

[
gijY +

(
1− gij

)
R
]

=
(
1− rij

) (
1− gij

)
K + rij

(
1− gij

)
R +

(
1− rij

)
gijG + rijgijY

= pK
ij K + pR

ij R + pG
ij G + pY

ijY (20)

where four basic colors are given by K = (0, 0), R = (1, 0), G = (0, 1) and Y = (1, 1), and the coefficients
are given by

pK
ij =

(
1− rij

) (
1− gij

)
(21)

pR
ij = rij

(
1− gij

)
(22)

pG
ij =

(
1− rij

)
gij (23)

pY
ij = rijgij (24)

Thus we have a two-dimensional Neugebauer model in Equation (20) with Equations (21)–(24).

Figure 3. Two-dimensional Neugebauer model.
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Next, we further extend the above two-dimensional Neugebauer model to three-dimensional one in
order to deal with arbitrary colors in three-dimensional color space. Figure 4 illustrates the derivation of
three-dimensional Neugebauer model as a trilinear interpolation of eight basic colors in RGB color space
for representing an arbitrary color as a linear combination of the basic colors.

Figure 4. Three-dimensional Neugebauer model.

Let fij = (rij, gij, bij) be a three-dimensional color vector in an RGB color space as shown in Figure 4.
Then the orthogonal projection of fij onto the bottom plane KRYG of the RGB color cube is given by
Equation (20) using two-dimensional Neugebauer model. Similarly, another orthogonal projection of fij
onto the top plane BMWC of the RGB color cube is given by (1− rij)(1− gij)B + rij(1− gij)M + (1−
rij)gijC + rijgijW. On the contrary, fij can be represented as an interpolant of the above two orthogonal
projections of fij as follows:

fij =
(
1− bij

) [(
1− rij

) (
1− gij

)
K + rij

(
1− gij

)
R +

(
1− rij

)
gijG + rijgijY

]
+ bij

[(
1− rij

) (
1− gij

)
B + rij

(
1− gij

)
M +

(
1− rij

)
gijC + rijgijW

]
=
(
1− rij

) (
1− gij

) (
1− bij

)
K + rij

(
1− gij

) (
1− bij

)
R

+
(
1− rij

)
gij
(
1− bij

)
G + rijgij

(
1− bij

)
Y

+
(
1− rij

) (
1− gij

)
bijB + rij

(
1− gij

)
bij M

+
(
1− rij

)
gijbijC + rijgijbijW

=pK
ij K + pR

ij R + pG
ij G + pY

ijY + pB
ijB + pM

ij M + pC
ij C + pW

ij W (25)



J. Imaging 2020, 6, 23 7 of 18

where eight basic colors are given by K = (0, 0, 0), R = (1, 0, 0), G = (0, 1, 0), Y = (1, 1, 0), B =

(0, 0, 1), M = (1, 0, 1), C = (0, 1, 1) and W = (1, 1, 1), and the coefficients are given by

pK
ij =

(
1− rij

) (
1− gij

) (
1− bij

)
(26)

pR
ij = rij

(
1− gij

) (
1− bij

)
(27)

pG
ij =

(
1− rij

)
gij
(
1− bij

)
(28)

pY
ij = rijgij

(
1− bij

)
(29)

pB
ij =

(
1− rij

) (
1− gij

)
bij (30)

pM
ij = rij

(
1− gij

)
bij (31)

pC
ij =

(
1− rij

)
gijbij (32)

pW
ij = rijgijbij (33)

This three-dimensional Neugebauer model in Equation (25) with Equations (26)–(33) is used for color
error diffusion in the next section.

4. Color Neugebauer Model-Based Method

Analogous to the grayscale Neugebauer model-based method in Section 2.2, we propose a color error
diffusion method based on the color Neugebauer model in Section 3.

In color image halftoning, it is common to use a limited number of basic colors instead of true color.
Let S = {K, R, G, Y, B, M, C, W} be the set of eight basic colors. Then the color quantization of a pixel color
fij of an RGB color image F to one of the eight basic colors can be described as

hF
ij = arg max

x∈S

{
px

ij

}
(34)

which is the corresponding pixel color in the color halftone image HF = [hF
ij] of F, and px

ij for x ∈ S
are given by Equations (26)–(33). This expression in Equation (34) is a natural extension of grayscale
binarization in Equation (7) to color quantization.

After this quantization, the occurrence probabilities become

p̃x
ij =

{
1, if x = hF

ij

0, otherwise
(35)

using which, we define the errors in occurrence probabilities px
ij for x ∈ S as

ex
ij = px

ij − p̃x
ij (36)

which are diffused to the subsequent pixels as follows:

p′xi+k,j+l = px
i+k,j+l + wklex

ij (37)

where the occurrence probability px
i+k,j+l of the subsequent adjoining pixel (i + k, j + l) is updated to

p′xi+k,j+l .
For subsequent pixels, the updated values p′xij for x ∈ S are used for the quantization in Equation (34)

instead of the original px
ij.
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The above method is summarized in Algorithm 1.

Algorithm 1 Color Neugebauer model-based error diffusion

Require: RGB color image F = [ fij] where fij = (rij, gij, bij)
Ensure: halftone image HF = [hF

ij]
1: S← {K, R, G, Y, B, M, C, W}
2: Ω← {(i, j) | i = 1, 2, . . . , m and j = 1, 2, . . . , n}
3: for i← 1 to m do

4: for j← 1 to n do

5: Compute coefficients px
ij for x ∈ S by (26)–(33)

6: end for
7: end for
8: for i← 1 to m do

9: for j← 1 to n do

10: hF
ij ← arg maxx∈S

{
px

ij

}
11: for x ∈ S do

12: p̃x
ij ← 1 if x = hF

ij else 0
13: ex

ij ← px
ij − p̃x

ij
14: for (k, l) ∈ {(0, 1), (1,−1), (1, 0), (1, 1)} do

15: if (i + k, j + l) ∈ Ω then

16: px
i+k,j+l ← px

i+k,j+l + wklex
ij

17: end if
18: end for
19: end for
20: end for
21: end for
22: return HF = [hF

ij]

In Algorithm 1, although we suppose that the error diffusion coefficients by Floyd–Steinberg [7] in
Figure 1 is adopted, it is replaceable with other coefficients such as Jarvis–Judice–Ninke [15], Stucki [16]
and Burkes [17].

5. Sparse Color Neugebauer Model-Based Method

The above Neugebauer model expresses an arbitrary color as a linear combination of eight basic
colors in S. However, this expression is somewhat redundant, because a color in RGB color space exists in
a tetrahedron, the vertices of which are selected from S, and therefore, four basic colors are sufficient for
expressing an arbitrary color as a linear combination of basic colors.

Shaked et al. [10] proposed a high-quality color error diffusion method based on the MBVC, i.e., to
reduce halftone noise, select from within all halftone sets by which the desired color may be rendered,
the one whose brightness variation is minimal [9,10]. Based on MBVC, they derived the minimal brightness
variation quadruples (MBVQs): {C, M, Y, W, }, {M, Y, G, C}, {R, G, M, Y}, {K, R, G, B}, {R, G, B, M}
and {C, M, G, B}, which are the subsets of S, the elements of which are ordered on the brightness axis as
shown in Figure 5. Although Shaked et al. [9] suggested a different brightness order, K, B, R, M, G, C, Y and
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W, for a CRT screen, we would like to use the order in Figure 5 for consistency with Shaked’s algorithm.
That is, selecting a suitable brightness order is a problem-dependent on the display environment of colors.

Figure 5. Eight basic colors ordered on the brightness axis.

For a given RGB color, we can determine the corresponding MBVQ uniquely by Shaked’s algorithm.
Let S f = {s1, s2, s3, s4} ⊂ S be the MBVQ for a color f = (r, g, b). Then this situation can be illustrated as
Figure 6, and we would like to express f as a linear combination of S f as:

f = p1s1 + p2s2 + p3s3 + p4s4 (38)

where p1, p2, p3 and p4 are nonnegative coefficients satisfying p1 + p2 + p3 + p4 = 1.

Figure 6. MBVQ {s1, s2, s3, s4} for a color f .

As shown in Figure 6, the vector f − s1 can be expressed as a linear combination of the vectors
s2 − s1, s3 − s1 and s4 − s1 as follows:

f − s1 = p2 (s2 − s1) + p3 (s3 − s1) + p4 (s4 − s1) (39)

Solving this simultaneous equations for p2, p3 and p4, we have the following expression of f :

f = (1− p2 − p3 − p4) s1 + p2s2 + p3s3 + p4s4 (40)

Putting p1 = 1− p2 − p3 − p4, we have a sparse Neugebauer model as follows:

f =
4

∑
ξ=1

pξ sξ +
4

∑
η=1

qηtη (41)
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where qη = 0, and tη ∈ S \ S f for η = 1, 2, 3, 4, i.e., every tη is the element of the complement of S f
in S. By replacing the standard Neugebauer model in Algorithm 1 with the above sparse Neugebauer
model, we propose another color error diffusion algorithm as Algorithm 2, where the function MBVQ( f )
computes an MBVQ for a given color f by Shaked’s algorithm.

Algorithm 2 Sparse Neugebauer model-based error diffusion

Require: RGB color image F = [ fij] where fij = (rij, gij, bij)
Ensure: halftone image HF = [hF

ij]
1: S← {K, R, G, Y, B, M, C, W}
2: Ω← {(i, j) | i = 1, 2, . . . , m and j = 1, 2, . . . , n}
3: for i← 1 to m do

4: for j← 1 to n do

5: Compute the MBVQ S f = {s1, s2, s3, s4} ← MBVQ( f ) for each color f ← (rij, gij, bij)
6: Solve the following simultaneous equations for p2, p3 and p4:

f − s1 = p2 (s2 − s1) + p3 (s3 − s1) + p4 (s4 − s1)
7: Compute p1 ← 1− p2 − p3 − p4
8: for ξ ← 1 to 4 do

9: p
sξ

ij ← pξ

10: end for
11: Compute {t1, t2, t3, t4} ← S \ S f
12: for η ← 1 to 4 do

13: p
tη

ij ← 0
14: end for
15: end for
16: end for
17: for i← 1 to m do

18: for j← 1 to n do

19: hF
ij ← arg maxx∈S

{
px

ij

}
20: for x ∈ S do

21: p̃x
ij ← 1 if x = hF

ij else 0
22: ex

ij ← px
ij − p̃x

ij
23: for (k, l) ∈ {(0, 1), (1,−1), (1, 0), (1, 1)} do

24: if (i + k, j + l) ∈ Ω then

25: px
i+k,j+l ← px

i+k,j+l + wklex
ij

26: end if
27: end for
28: end for
29: end for
30: end for
31: return HF = [hF

ij]
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6. Experimental Results

In this section, we demonstrate the performance of the proposed error diffusion methods using real
images. Figure 7 shows an example of color image halftoning, where an original color image in Figure 7a
is halftoned by conventional separable error diffusion method as shown in Figure 7b. The separable
method [8] applies grayscale error diffusion to each color channel separately, and combines the resultant
three grayscale halftone images into a single color halftone image. Figure 7c shows the result of the
proposed color Neugebauer model-based error diffusion method summarized in Algorithm 1. Although
Figure 7b,c look similar to each other from a distance, a close look at these images reveals that Algorithm 1
loses the clarity of the reproduction of contours. Algorithm 2 will improve the quality of contour
reproduction as shown in the following results.

(a) Original (b) Separable (c) Proposed

Figure 7. Color image halftoning.

In order to show the difference between Figure 7b,c clearly, we show the occurrence probabilities of
eight basic colors (K = (0, 0, 0), R = (1, 0, 0), G = (0, 1, 0), Y = (1, 1, 0), B = (0, 0, 1), M = (1, 0, 1), C =

(0, 1, 1) and W = (1, 1, 1)) in each image in Figure 8, where the vertical and horizontal axes denote the
occurrence probability and the basic colors, respectively, where the occurrence probability of a basic color
x ∈ S is defined by

px =
1

mn

m

∑
i=1

n

∑
j=1

px
ij (42)

Blue, orange and green bars denote the original image and the halftoned images by the separable and
the proposed methods, respectively. This figure shows that the occurrence probabilities for the separable
method deviate from the original ones, on the other hand, that for the proposed method follow the original
ones well. To confirm this difference quantitatively, we compute the absolute error of the occurrence
probabilities defined by

E(px
Orig, px

Half) =
∣∣∣px

Orig − px
Half

∣∣∣ (43)

for x ∈ S, where px
Orig and px

Half denote the occurrence probabilities of basic color x in an original and its
halftoned images, respectively. Figure 9 shows E(px

Orig, px
Half) for eight basic colors, where orange and

green bars denote that the occurrence probabilities px
Half are computed from the halftoned images by the
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separable and proposed methods, respectively. This figure shows that the proposed method can decrease
the absolute error compared with the separable method.

Figure 8. Occurrence probabilities of basic colors.

Figure 9. Absolute errors in occurrence probabilities in Figure 8.

Figure 10 shows additional results on the standard image database SIDBA [18], which contains twelve
color images as shown in Figure 10a. Figures 10b,c show the results of the separable and the proposed
methods, respectively. Figure 11 shows the mean absolute error of the occurrence probabilities of the eight
basic colors, where the vertical and horizontal axes denote the mean absolute error and the twelve images
shown in Figure 10, respectively. The proposed method denoted by green bars achieved smaller errors
compared with the separable method denoted by orange bars for all twelve SIDBA images.
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(a) Original images

(b) Separable

(c) Proposed

Figure 10. Results on the SIDBA images.

Figure 11. Mean absolute errors of halftoned SIDBA images in Figure 10.
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Next, we compare the proposed sparse Neugebauer model-based method (Algorithm 2) with Shaked’s
method [10]. Figure 12 compares conventional separable, Shaked’s and the proposed sparse methods,
where Figure 12a shows an original color image, which is halftoned by the separable, Shaked’s and
proposed methods as Figure 12b–d, respectively. Their zoomed parts are also shown at the bottom of them.

(a) Original (b) Separable (c) Shaked (d) Sparse

(e) Zoomed (a) (f) Zoomed (b) (g) Zoomed (c) (h) Zoomed (d)

Figure 12. Color image halftoning with zoomed parts.

As shown in Figure 12f, separable method places dark and light pixels side by side with each
other here and there, which conflicts with the MBVC. On the other hand, Shaked’s method reduces the
brightness variation, however, the subtle gradations on the surface of ceramic ware are disturbed in
Figure 12g. Compared with Shaked’s method, the proposed method achieves both the brightness variation
reduction and the subtle gradation reproduction as shown in Figure 12h.

For evaluating the quality of halftoned images in Figure 12 quantitatively, we show the occurrence
probabilities of eight basic colors in each image in Figure 13, where the vertical and horizontal axes denote
the occurrence probability and the basic colors, respectively. Blue, orange and green bars denote the
original image and the halftoned images by Shaked’s and the proposed methods, respectively.

This figure shows that the occurrence probabilities for the Shaked method deviate from the
original ones, on the other hand, that for the proposed sparse method follows the original ones well.
To confirm this difference quantitatively, we show the absolute error of the occurrence probabilities in
Figure 14, which shows that the proposed sparse method can decrease the absolute error compared with
Shaked’s method.

Figure 15 shows halftoned SIDBA images by Shaked’s and the proposed sparse methods,
which produce visually similar halftone images to each other.

However, the produced halftone images are not identical as shown in Figure 16, where Figure 16a–d
show the zoomed parts of the same subregions of Milkdrop images in Figure 10a,b, and Figure 15a,b,
respectively. The original patch in Figure 16a is halftoned by the separable method as shown in
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Figure 16b, where all eight basic colors are used to reproduce the original colors. In Figure 16c, Shaked’s
method succeeds in reducing black and white pixels for minimizing the brightness variation. However,
in Figure 16c, the second darkest blue and the second lightest yellow pixels are still intermingled spatially.
On the other hand, in Figure 16d, the proposed sparse method reduces the spatial mixture of blue and
yellow pixels compared with Figure 16c. This result demonstrates that the proposed sparse method
(Algorithm 2) can separate different colors spatially on the image plane better than Shaked’s method,
which improves the clarity of the reproduction of contours, and therefore, Algorithm 2 can also be
applicable to the reproduction of textual information as well as Shaked’s method.

To confirm the difference between Shaked’s and the proposed sparse methods quantitatively, we show
the mean absolute error of the occurrence probabilities of the eight basic colors in Figure 17, where the
proposed sparse method denoted by green bars achieved smaller errors compared with the Shaked’s
method denoted by orange bars for all twelve SIDBA images.

Figure 13. Occurrence probabilities of basic colors.

Figure 14. Absolute errors in occurrence probabilities in Figure 13.
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(a) Shaked

(b) Sparse Neug.

Figure 15. Halftoned SIDBA images.

(a) Original (b) Separable (c) Shaked (d) Sparse

Figure 16. Zoomed parts of Milkdrop images.

Figure 17. Mean absolute errors of halftoned SIDBA images in Figure 15.
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7. Conclusions

In this paper, we proposed a method for color error diffusion by extending the grayscale Neugebauer
model to its color version. The color Neugebauer model represents a color by a linear combination of basic
colors, where the coefficients can be interpreted as the occurrence probabilities of the basic colors because
they satisfy the probability axioms.

We also proposed a sparse Neugebauer model for color error diffusion halftoning. The proposed
sparse method is based on the MBVC proposed by Shaked et al. Therefore, the proposed sparse method
can also reduce halftone noise as well as Shaked’s method.

Experimental results demonstrated that the color halftone images given by the proposed method
preserve the occurrence probabilities of the basic colors of the original images well. Compared
with Shaked’s method, the proposed sparse method achieved a better performance both visually
and quantitatively.
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