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Abstract: Advances in image processing technologies have provided more precise views in medical
and health care management systems. Among many other topics, this paper focuses on several
aspects of video-based monitoring systems for elderly people living independently. Major concerns
are patients with chronic diseases and adults with a decline in physical fitness, as well as falling among
elderly people, which is a source of life-threatening injuries and a leading cause of death. Therefore,
in this paper, we propose a video-vision-based monitoring system using image processing technology
and a Hidden Markov Model for differentiating falls from normal states for people. Specifically,
the proposed system is composed of four modules: (1) object detection; (2) feature extraction;
(3) analysis for differentiating normal states from falls; and (4) a decision-making process using a
Hidden Markov Model for sequential states of abnormal and normal. In the object detection module,
background and foreground segmentation is performed by applying the Mixture of Gaussians
model, and graph cut is applied for foreground refinement. In the feature extraction module,
the postures and positions of detected objects are estimated by applying the hybrid features of the
virtual grounding point, inclusive of its related area and the aspect ratio of the object. In the analysis
module, for differentiating normal, abnormal, or falling states, statistical computations called the
moving average and modified difference are conducted, both of which are employed to estimate the
points and periods of falls. Then, the local maximum or local minimum and the half width value are
determined in the observed modified difference to more precisely estimate the period of a falling
state. Finally, the decision-making process is conducted by developing a Hidden Markov Model.
The experimental results used the Le2i fall detection dataset, and showed that our proposed system is
robust and reliable and has a high detection rate.

Keywords: normal and abnormal states; fall detection; Mixture of Gaussians; graph cut; virtual
grounding point; Hidden Markov Model

1. Introduction

The risk of falling is a huge issue, not only for older adults in aging societies, but also for younger
adults with drug and alcohol problems and for patients with chronic diseases. Falling has serious
health consequences and is a leading cause of death. According to a survey by the World Health
Organization [1], falling occurs most frequently in the 28–35% of individuals between the ages of 65
and 70 and in the 42% who are over 70 years old. Falling is particularly dangerous for persons who
live alone in an indoor environment, because much time can pass before they receive assistance. In this
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situation, many countries are adopting policies to increase the life expectancy, by providing extra care
to people living independently.

For this reason, much research has focused on developing a robust fall-detection process in smart
home systems using their respective specialized technologies. Progress in developing such intelligent
technologies holds the promise of improving the quality of life for the aged and infirm. Popular fall
detection and prediction systems have emerged based on wearable monitoring devices, ambient
devices, vision-based devices, and portable devices. The most commonly used wearable devices
feature accelerometers and gyroscopes embedded in belts, watches, or pendants that are reasonably
comfortable to wear. However, some of these devices have disadvantages that limit their usability,
such as excessive power consumption. Some of these devices produce false alarms when triggered by
normal body movements, and some require the manual activation of an alarm after a fall. In addition,
the elderly often forgets to wear the devices. However, wearable devices based on machine learning
and intelligent systems are effective for monitoring people in both indoor and outdoor environments.
Various interesting approaches for fall detection systems using wearable devices are discussed in [2–5],
in which accelerometers and gyroscopes are employed to collect data on the emotional state and body
movements of subjects.

The processing of data collected using ambient devices provides information without demanding
user intervention. Commercially available devices using advanced technologies include presence
sensors, motion sensors, and vibration sensors, which can be embedded in an indoor environment,
such as on furniture. Presence sensors can detect the tiniest movements of subjects, such as the
movement of a finger, with a high resolution and precision. They can easily be set on high ceilings,
as well as the floor, to detect the smallest movement. Compared to presence sensors, motion sensors are
useful in perceiving the arm movements involved in walking in detection zones. Such zones are selected
as high-traffic areas for detecting moving objects in busy indoor or outdoor areas. Vibration sensors are
useful for detecting falling events, and can distinguish the activities through vibrations. Vibration sensors
installed on floors or beds acquire vibration data that can be analyzed by determining the fall detection
ratio [6]. Although such sensors do not disturb the people involved, they can generate false alarms.

In recent years, the development of smart phone technologies that are incorporated with
accelerometers has provided some very interesting approaches for healthcare monitoring systems,
including fall detection. Mobile phone-based fall detection algorithms have been presented in [7–10].
However, these devices are not useful if the monitored subject does not always have them in their hand.

For these reasons, video monitoring systems based on computer vision and machine learning are
potentially more beneficial and reliable for fall detection. Vision-based devices utilizing cameras have
some of the same limitations as ambient devices, such as the fact that the devices must be installed
in several places to provide full coverage of the required areas over a long period of time. However,
video surveillance systems can effectively predict specific human activities, such as walking, sitting
down, going to bed, and getting up from bed [11,12], as well as detecting fall events [13]. Moreover,
a large amount of visual information is captured in the video record of falling events. The various
definitions of falling events, as well as the reasons and circumstances behind such events and other
abnormal occurrences in real-world environments, should be visually analyzed in monitoring systems.
The vision-based detection of abnormal or fall events could become an important tool in elderly
care systems.

In developing better vision-based video monitoring systems, abnormal event detection holds
great promise, but faces many challenges in real-world environments. In developing applications for
this purpose, establishing a fall detection system presents difficulties because the dynamic conditions
involved in falls are not well-understood. As an important focus, researchers must investigate the
universal features common to all falling events. Therefore, we must differentiate falls from normal
activities in a comprehensive way that reflects the scene of falling scenarios. Any system developed
must be robust in the face of changing postures and positions, such as a loss of balance, and abrupt
changes in direction. These conditions must be considered in reliably assessing abnormal events.
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However, research trends and current best practices indicate that the prospects are great for using
vision-based monitoring to improve the quality of health care.

Therefore, we propose a vision-based system for fall detection by differentiating abnormal behavior
or falls from normal states. This system includes simple and uncomplicated feature extraction or
effective statistical analyses. Key to detecting abnormal or falling events is the recognition that they
involve a loss of balance. The three research objectives of this proposed system are as follows:

• Develop a monitoring system that provides a visual understanding of a person’s situation and
can judge whether the state is abnormal or normal based on video data acquired using a simple
and affordable RGB camera;

• Develop an individualized and modified statistical analysis on each of the extracted features,
providing trustworthy information, not only on the definite moment of a fall, but also on the
period of a fall;

• Develop an efficient way of using a Hidden Markov Model (HMM) for the detailed detection of
sequential abnormal and normal states for the person being monitored.

Our proposed system intends to establish a long-term monitoring system for facilitating
independent living. Major steps in the system include (1) feature extractions in estimating positions
and postures of the person by utilizing the virtual grounding point (VGP) concept, and related
visual features inspired by our previous research [13]; (2) modified statistical analysis to estimate
the time interval or period for falls and normal states through extensive feature observation; and
(3) the establishment of a Hidden Markov Model (HMM) to detect the sequential normal and fall
states of the person. The rest of the paper is organized as follows: Section 2 presents related works;
Section 3 presents theoretical analysis and methodologies of the proposed system; Section 4 presents
and evaluates experimental results, comparing the robustness and limitations of the proposed systems
with existing algorithms; and finally, Section 5 presents the conclusions of this work.

2. Related Works

Related state-of-the-art fall detection systems will be discussed in this section. In order to effectively
define the postures assumed by a human object, it is very important to perform feature extraction or
selection, analyze the selected features, and set detection rules in a vision-based video monitoring
system, especially for monitoring in health care. The most common feature extraction methods used in
fall detection systems involve the human shape and motion-history images. The fall detection system
presented in [14] is a method based on motion history images (MHI) and changes in the human shape.
In this system, information on the history of motion occurring over a fixed interval can be obtained from
MHI. Then, the human shape is obtained by constructing a blob using an approximate ellipse. Finally,
fall detection is achieved by considering three factors: motion quantification, analysis of the human
shape, and the lack of motion after a fall. Motion quantification allows sudden motion to be detected
when a person falls. The approximated ellipse constructed on the object can provide information about
changes in the human shape, more precisely, changes in orientation. The final analysis provides a
moving ellipse, which indicates whether the person is moving after a fall. The decision confirming
a fall is made when the ellipse stops moving for five seconds after a fall. The video sequences are
captured using wall-mounted cameras to cover wide areas, and the results are presented in 2D motion
and shape information. Extended work on the system presented in [15] involves both 2D and 3D
information for fall detection, as the researchers intended to recover localization information on the
person relative to the ground. This extended process of feature extraction involves computing the 3D
head trajectories of a person, and a fall is detected if the velocity of the head exceeds a certain value
and the position of the head is too close to the floor or the ground.

Similarly, a process of detecting unnatural falls has been developed [16], which includes
background subtraction using the frame difference method, feature extraction using MHI, and a
change in human shape and classification using a support vector machine (SVM). Compared with
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the previous approach [15], the system involves constructing three specific features on the human
shape, namely, the orientation of the approximated ellipse, its aspect ratio, and silhouette detection
below a threshold line. The aspect ratio of the ellipse describes changes in major and minor axes,
and differentiates a fall from normal activities. After a fall, the previously moving object lies on the
ground. For this reason, the threshold line is set by considering a suitable height from the ground.
After that, fall and non-fall objects can be differentiated according to the height of the silhouette object.
Finally, classifications are performed using the support vector machine (SVM), k-nearest neighbor
(KNN) classifier, Stochastic Gradient Descent (SGD), Decision Tree (DT), and Gradient Boosting (GB).
The DT algorithm consistently outperforms the rest, with a high detection rate, as confirmed using the
Le2i fall detection dataset.

Another fall detection system for elderly care is proposed in [17]. This system firstly conducts
background subtraction to segment out the silhouette moving object, and then tracks the object to
determine the trajectory. Secondly, a timed motion history image (tMHI) is constructed to detect high
velocities. Then, the motion is quantified to acquire pixel values for the tMHI, which are divided by the
number of pixels in the detected silhouette object. Similar to the approach presented in [16], this system
provides a useful definition of the human body posture using the following combined features as the
input: the ratio, orientation, and major and minor semi-axes of the fitted ellipse. In this system, both
MHI and a projection histogram are applied to confirm that a falling event has occurred. In addition,
the position of the head can be tracked in sequential frames in order to obtain useful information, since
the trajectory of the head is visible most of the time. Finally, a multilayer perceptron (MLP) neural
network is applied on the extracted features to classify falls and non-falls, with an accuracy of 99.24%,
and a precision of 99.60%, as confirmed using the UR fall detection dataset. In addition, an extensive
automated human fall-recognition process is proposed in [18] to support independent living for the
elderly in indoor environments using the Le2i fall-detection dataset. This system is based on motion,
orientation, and histogram features, and achieves an overall accuracy of 99.82%. The approaches
in [14–18] discussed above focus on distinguishing falls from normal activities.

However, any monitoring system should take into account consecutive daily activities in a
real-world environment. Such activities include walking, standing, and sitting, as well as transitioning
between these activities. In this regard, our previous work [19] proposed human action analysis
based on motion history and the orientation of the human shape. As its main purpose, this system
takes into consideration a prediction of the degree of mobility for the elderly in daily activities,
such as getting into and out of bed. These activities include the following consecutive actions: sitting,
transitioning from sitting to lying, lying, transitioning from lying to sitting, transitioning from sitting to
standing, and walking. We firstly conducted background subtraction [20,21] for the proper separation
of foreground and background objects. Among the features used in this system are tMHI and the
orientation of the approximated ellipse. However, the construction of one ellipse is not enough
for detecting the human object region. As a key part of our design, two approximated ellipses are
constructed using horizontal and vertical histogram values. The vertical histogram is employed for the
whole body region, and the horizontal histogram is employed for the upper body region. Then, motion
quantification is used to analyze these human activities. In considering detailed sequential actions,
multiple threshold values are observed, which depend on the shape orientation and the coefficient
of motion. Rather than using fall scenes, the experiments were conducted using the normal scenes
in the 14 videos of the Le2i dataset. After that, we extended our system [22] to analyze not only
normal activities, but also falls. In this system, the virtual grounding point (VGP) is introduced for
feature extraction, and analyses are performed by the combined features of tMHI and VGP. The overall
accuracy of the proposed system for the detection of falling events was 82.18%, as experimentally
confirmed using 15 videos from the Le2i fall detection dataset. To improve the accuracy of detecting
falls in a given video sequence, we extended our research [13] by incorporating feature selection using
the VGP concept with its related features and statistical analysis for estimating the falling period,
as well as two classification methods, namely the support vector machine (SVM) and period detection
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(PD). A comparison with existing approaches using the Le2i dataset showed that our SVM approach
outperforms the rest, with a precision of 93%, a recall of 100%, and an accuracy of 100%. However,
our previous system exclusively concentrated on differentiating falling events from normal events; in
other words, classifying the videos which contain abnormal or normal events. A long-term monitoring
system for home care requires the effective detection of sequential normal and abnormal states.

Another vision-based fall detection system using a convolutional neural network has been developed
by Adrian [23]. This system was designed to work on human motion, avoiding any dependence on the
appearance of an image. An optical flow image generator is utilized to efficiently represent human motion.
A set of optical flow images are stacked and then set as inputs in a convolutional neural network (CNN)
that can learn longer time-related features. A fully connected neural network (FCNN) receives these
features as inputs, and produces fall and non-fall outputs. The best overall accuracy for this system is 97%,
as confirmed using the Le2i fall-detection dataset. Moreover, the approach used in [24] proposes fall
detection based on body keypoints and sequence-to-sequence architecture. In this system, a skeleton
framework is modeled to receive a sequence of observed frames. Then, the coordinates of keypoints of
the object are extracted from observed frames. The bounding boxes of the detected object are given to
the tracking algorithm for clustering body keypoints belonging to the same person in different video
sequences. A keypoint-vectorization method is exploited to extract salient features from associated
coordinates. Next, the pose prediction phase is conducted, predicting the vectors of future keypoints for
the person. Finally, falls are classified using the Le2i dataset, achieving an accuracy of 97%, a precision
of 90.8%, a recall of 98.3%, and an F1-score of 0.944.

A related approach is presented in [25] in an automatic fall-detection system with an RGB-D
camera using a Hidden Markov Model (HMM). Background subtraction is firstly performed by
averaging the depth map to learn the background. The Kinect optical parameters for factory use are
employed to obtain a real-world coordinate system, and an Open Natural Interaction (OpenNI) is used
for a Kinect-to-real-world transformation. After that, the center of mass of the person is extracted to
calculate the vertical speed from that point. The standard deviation for all points belonging to a person
are then calculated. After that, these three features are used as inputs to calculate the probability of
HMM. Finally, the forward-backward and Viterbi algorithms are applied to classify the states of normal
activities and falls. The experiments were conducted on young and healthy subjects, and occlusions
were not included. In future research, this system will be tested using real-life unhealthy subjects with
occlusions. In addition, other fall detection systems for shop floor applications [26] were modeled
using an HMM based on the vertical velocity, area variance, and height of a person, using cameras
positioned to provide a top view. This incident detection method focuses on two things: detecting
people in restricted areas and detecting falls. Potential fall events are analyzed based on specific
features and on circumstances such as whether the person can get up or not. Analysis is also based on
an allocation of status according to the location, whether the event occurs in an area that is restricted to
all personnel, where work is ongoing, or where maintenance is being performed. Such considerations
are valuable in identifying health and safety issues. In future work, this system will be improved by
incorporating more incidents, such as collisions.

Vision-based monitoring systems for detecting falls or abnormal events can be powerful tools in
various applications. These new technologies have great potential as intelligent monitoring systems.
Therefore, we propose a detection system for indoor environments that include normal activities; one
that is based on the consecutive states of abnormal or fall events using image processing techniques
and a Hidden Markov Model. This detection system will be ideal for elderly care monitoring systems.

3. Proposed Architecture of the System

The proposed monitoring system provides a way to detect normal, abnormal, and falling states
for persons being monitored, such as seniors with a limited mobility, patients with chronic diseases,
and those recovering from surgical procedures. The proposed system is composed of the following
four main modules: (1) object detection; (2) feature extraction using the virtual grounding point (VGP)
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concept; (3) analysis of normal, abnormal, or falling events; and (4) establishment of decision-making
rules utilizing a Hidden Markov Model (HMM). The major work flow for our proposed system is
illustrated in Figure 1, and specialized theoretical analyses for each module are described in the
following sections.
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Figure 1. The major work flow of our proposed system.

3.1. Object Detection

This module features an object detection procedure similar to that used in our previous work [13],
and is briefly described here. We select a specific Mixture of Gaussians (MoG) distribution [20] for
modeling the foreground, which is updated frame by frame. We also use specific low-rank subspace
learning for modeling the background for each successive frame in the video sequences. After that,
an expectation and maximization (EM) algorithm is used for updating the foreground and background
parameters of each new frame. However, the quality of the foregrounds is unsatisfactory because
ghost effects are included in the resultant foregrounds. In real-life video sequences, as well as in
simulated video sequences, much redundant data occurs, such as when a person moves very slowly or
stays in place for a long period of time. In such situations, most systems have trouble recognizing
a person as the foreground. To overcome this problem, a graph cut algorithm is applied to refine
the foreground [21]. A set of the resulting foreground and background frames is given as inputs
for the video sequences. Then, we seek binary labels regarded as the foreground, which is set to 1,
and the background, which is set to 0. These foreground and background labels are calculated by
constructing a graph structure, G = (vvertex, ε), where vvertex is the set of vertices or pixels and ε is the
set of edges linking the closest four-connected pixels [21]. The maximum-flow and minimum-cut
method is used to find the vertex label with a minimum energy function. Most traditional graph cut
algorithms work on manual drawings of the scribbles and region of interest for the targeted object in
every frame. In applying graph cut theory for refining the foreground, we obtain the associated MoG
foreground mask in every 100th frame, instead of repeatedly re-drawing the scribbles and region of
interest. The combination of these two effective methods optimizes the solution for object detection.

3.2. Feature Extraction

In this module, feature extraction is performed by applying the virtual grounding point (VGP),
as well as the area and aspect ratio of the object [13]. The computation strategies for feature extraction
are simple and effective. Using these strategies, we adapted our previously proposed method of feature
extraction [13] in this extension of our work. Here, we briefly describe our previous research using the



J. Imaging 2020, 6, 49 7 of 23

VGP concept. A virtual grounding point is a point which is constructed for exploring the position and
posture of humans. Specialized technical details are described as follows.

Let p be the position at time t on the detected silhouette object. Then, the centroid of object C(t) is
extracted as defined in Equation (1):

C(t) = (xc(t), yc(t)), (1)

where t represents p(t) = (x(t),y(t)), and xc and yc denote that xc =
∑N

i=1(xi/N) and yc =∑N
i=1(yi/N) respectively.

Then, a vertical line from the top-most to the bottom-most row corresponding to the x axis of
C(t) is constructed on the detected object. Similarly, a horizontal line from the left to the right column
corresponding to the y axis of C(t) is constructed. Finally, a central point where the vertical line along
the x axis crosses the horizontal line along the y axis is marked as a VGP, which can be defined as in
Equation (2):

VGP(t) = (xVGP(t), yVGP(t)), (2)

where the VGP is a virtual grounding point at time t.
Then, the point distance (d) between the centroid C(t) and its corresponding virtual grounding

point VGP(t) is formulated as shown in Equation (3):

d(t) =
∣∣∣yVGP(t) − yc(t)

∣∣∣, (3)

where d(t) can be denoted as the point distance between centroid C(t) and its corresponding virtual
grounding point VGP(t) on the detected object at time t to extract the features for the position and
posture of the person.

After that, the area of the object shape (a) can be derived to obtain knowledge for the shape
regularity of the moving object, as described in Equation (4):

a(t) =

 N∑
i=1

N∑
j=1

I(i, j), t

, (4)

where a(t) is the measurement of the area indicating the relative size of the object obtained by summing
all the pixels in the object at time t.

Finally, the aspect ratio (r) with respect to the object is simply calculated to estimate the human
posture as shown in Equation (5):

r(t) = w(t)/h(t), (5)

where r(t) is the aspect ratio of the object found by dividing the value of the width (w) by that of the
height (h) for the object at time t. The concepts for deriving the individualized features are illustrated
in Figure 2.
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3.3. Analysis of Abnormal and Normal Events

For detecting abnormal or falling events, we first computed the moving average (MA) [13] using
features extracted from sequential data. In our previous research [13], we used two features (point
distance (d) and aspect ratio (r)) for analyzing the data points of the moving object. In this extension of
our work, statistical analysis of the area of the object shape on the observable data series is used with
one additional feature. As a result, our proposed formulation uses the following three features: (1) the
point distance (d) between the centroid and the corresponding virtual grounding point; (2) the area of
the object shape (a); and (3) the aspect ratio of the object (r), as shown in Equation (6):

MA(t, F, N) =
1

2N + 1

f=t+N∑
f=t−N

F(t), F(t) = d(t), a(t), r(t), (6)

where MA(t,F,N) is an output value for the average period in N at time t, N represents the number of
periods, and F(t) is the calculation on the three extracted features: the point distance (d), the area of the
object shape (a), and the aspect ratio (r) at time t. The optimized threshold (Th) value is considered
in detecting abnormal or falling events. Here, we set the threshold value of N at Th(MA(t,d,Th)),
Th(MA(t,a,Th)), and Th(MA(t,r,Th)), where Th = 51, which depends on the video frame rate. The process
for selecting the optimal threshold is similar to that used in our observations in previous research [13].
Calculating the moving average for the sequential data approximates irregular and falling events by
observing the crossing point on primary and average feature points.

After that, we define the difference calculation, specifically the modified difference (MD), for more
precisely estimating abnormal and falling states on the crossing point of the moving average (MA),
as shown in Equation (7):

MD(t, F, N0, N1) = MA(t, F(t + N0 + N1), N1) −MA(t, F(t−N0 −N1), N1), F(t) = d(t), a(t), r(t), (7)

where MD(t,F,N0,N1) denotes the modified difference for the three selected features (d, a, and r) at time
t and here, the selected optimal value of the threshold for N0 = 0 and N1 = 51.

In analyzing a series of data based on the point distance (d), the modified difference (MD) reached
a minimum point, which indicates a high possibility of a fall. The modified difference observed for
the aspect ratio (r) of the person indicates a high possibility of a fall with a maximum point. Here,
we say that the highest point is the local maximum (lmax) and the lowest point is the local minimum
(lmin). The concepts of discovering a point which is important in referring an abnormal state or a fall by
utilizing r and d are illustrated in Figures 3 and 4, respectively.

When we observe stationary points for the modified difference on the area of the object shape
(a), we make an interesting discovery that both lmax and lmin occur with respect to the falling posture
and direction of the object. The observations for lmax and lmin which correspond to the different falling
postures and positions (sideways falls, forward falls, and backward falls) are described in Figures 5–7,
respectively. This observation and analysis of the area of the object shape is part of the extension of our
previous work [13], and can be properly used in further observations to develop decision-making rules.

Then, we analyze the interval or period of the abnormal event by computing the half width value
(vhw) [13] on the observed curve of modified difference (MD), as formulated in Equation (8). The half
width value (vhw) more accurately estimates the period of abnormal and normal events. At the halfway
point on the largest curve obtained from the computation of MD, the starting point (f 1) and ending
point (f 2) are set to represent irregular fall events. After that, the periods of events are observed by
calculating the distance of the two points f 1 and f 2.

vhw =
∣∣∣ f1 − f2

∣∣∣, (8)
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where vhw is the estimated period for falling assumed by the half of the curve including lmax or lmin,
and f 1 and f 2 represent the starting and ending points of a fall, respectively. Illustrations for developing
a better understanding of vhw are embedded in Figures 3–7.

In Figure 3, the analysis for a high possibility of abnormal (falling) points is illustrated based on
the aspect ratio (r) with respect to the crossing point of the moving average (MA), local maximum
(lmax), and half width value (vhw) obtained from the distance between f 1 and f 2. Figure 4 describes a
high possibility of abnormal points based on the point distance (d) with respect to the crossing point of
the moving average (MA), local minimum (lmin), and half width value (vhw) obtained from the distance
between f 1 and f 2. By observing the area of the object shape (a), we noticed that the local minimum
(lmin) occurs in the posture involved in falling sideways and backwards, as demonstrated in Figures 5
and 6, respectively. In Figure 7, the local maximum (lmax) occurs for the posture involved in falling
forward when analyzing a high possibility of falling points based on the area of the object shape.
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Figure 3. Analysis for a high possibility of abnormal (falling) points based on the aspect ratio (r).
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Figure 5. Analysis for a high possibility of abnormal (falling) points based on the area of the object
shape (a) by falling sideways.
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Finally, we consider the threshold values of the time intervals for abnormal and normal events
based on the half width value (vhw) in a given video sequence. Let A = {a1,a2, . . . ,ak} represent the
videos that include the abnormal events, and N = {n1,n2, . . . ,nk} represent the videos composed of the
normal events. After that, we calculate

α1 = min(vhw) ∈ A, α2 = max(vhw) ∈ N, . (9)

Then, the mid value or falling period detection (PD) is calculated for three features, namely,
the point distance (d) between the centroid and its corresponding virtual grounding point of the object,
the area of the object shape (a) as an extensive feature observation, and the aspect ratio (r), which are
formulated as shown in Equations (10)–(12), respectively.

PD(d) =
(α1(d) + α2(d))

2
,
{

l1 if vhw ≥ PD(d)
l2 otherwise

, (10)

PD(a) =
(α1(a) + α2(a))

2
,
{

l1 if vhw ≥ PD(a)
l2 otherwise

, (11)

PD(r) =
(α1(r) + α2(r))

2
,
{

l1 if vhw ≥ PD(r)
l2 otherwise

, (12)

where α1 and α2 represent the minimum and maximum threshold values used to estimate the period
of abnormal and normal events, respectively; l1 represents the class label for the given video that
includes an abnormal event; and l2 represents the class label which indicates that the given video does
not include an abnormal event.
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3.4. Decision-Making Rules

As the main contributions of this research, we developed considerations for decision-making
rules. Abnormal and normal actions for the person being monitored will be detected for every detailed
moment by employing a Hidden Markov Model (HMM).

In order to describe Hidden Markov Chains, we define two states: S = {S1,S2}. Let S1 be an
abnormal state which includes “falling,” and let S2 be a normal state, including a set of actions,
{“falling,” “lying,” “lying to sitting,” “sitting to standing,” “walking,” “walking to sitting,” “sitting,”
and “sitting to lying”}. The process would be started in one of these two states, and proceed smoothly
from one state to another. If the chain were presently in state S1, then it would proceed to the next state
S2 with a specific probability. However, it should be noted that this probability will not be based on
which state the chain was in before the current state.

In order to form the Markov Transition matrix, we firstly observe each of the given videos by
developing fixed intervals. The video sequence will become a sequence of intervals, such as t, t + d, t +

2d, t + 3d, . . . , t + nd. Here, d is the length of the interval to be predefined, in which only one abnormal
or normal state occurs. The video sequences are manually observed to obtain the occurrence state
symbol for every interval. These video sequences provide the sequences of the occurrences of the
states, S = {S1..S2}, as illustrated in Figure 8. In this figure, S1 represents the abnormal state and S2

represents the normal state.

J. Imaging 2020, 6, x FOR PEER REVIEW 11 of 23 

 

includes an abnormal event; and l2 represents the class label which indicates that the given video does 
not include an abnormal event. 

3.4. Decision-Making Rules 

As the main contributions of this research, we developed considerations for decision-making 
rules. Abnormal and normal actions for the person being monitored will be detected for every 
detailed moment by employing a Hidden Markov Model (HMM). 

In order to describe Hidden Markov Chains, we define two states: S = {S1,S2}. Let S1 be an 
abnormal state which includes “falling,” and let S2 be a normal state, including a set of actions, 
{“falling,” “lying,” “lying to sitting,” “sitting to standing,” “walking,” “walking to sitting,” “sitting,” 
and “sitting to lying”}. The process would be started in one of these two states, and proceed smoothly 
from one state to another. If the chain were presently in state S1, then it would proceed to the next 
state S2 with a specific probability. However, it should be noted that this probability will not be based 
on which state the chain was in before the current state. 

In order to form the Markov Transition matrix, we firstly observe each of the given videos by 
developing fixed intervals. The video sequence will become a sequence of intervals, such as t, t + d, t 
+ 2d, t + 3d, …, t + nd. Here, d is the length of the interval to be predefined, in which only one abnormal 
or normal state occurs. The video sequences are manually observed to obtain the occurrence state 
symbol for every interval. These video sequences provide the sequences of the occurrences of the 
states, S = {S1..S2}, as illustrated in Figure 8. In this figure, S1 represents the abnormal state and S2 
represents the normal state. 

 
Figure 8. Observed sequence of the occurrences of states. 

Then, the co-occurrence matrix M is constructed as shown below: 

,
2221

1211








=

CC
CC

M  (13)

where C11 represents the number of pairs (S1,S1), C12 represents the number of pairs (S1,S2), C21 
represents the number of pairs (S2,S1), and C22 represents the number of pairs (S2,S2). After that, each 
row of matrix M is summed as shown in the following: 

( ) += 12111 CCC ,   ( ),22212  += CCC . (14)

To form the Markov transition matrix, we defined the following: 

1

11
11 C

Ca = ,   
1

12
12 C

Ca = ,   
2

21
21 C

Ca = ,   ,
2

22
22 C

C
a = . (15)

Then, the state transition matrix of the Markov Chain for the Hidden Markov Model (HMM) is 
obtained as shown in Equation (16): 

,
2221

1211








=

aa
aa

A  (16)

Figure 8. Observed sequence of the occurrences of states.

Then, the co-occurrence matrix M is constructed as shown below:

M =

[
C11 C12

C21 C22

]
, (13)

where C11 represents the number of pairs (S1,S1), C12 represents the number of pairs (S1,S2), C21

represents the number of pairs (S2,S1), and C22 represents the number of pairs (S2,S2). After that,
each row of matrix M is summed as shown in the following:

C1 =
∑

(C11 + C12), C2 =
∑

(C21 + C22), . (14)

To form the Markov transition matrix, we defined the following:

a11 =
C11

C1
, a12 =

C12

C1
, a21 =

C21

C2
, a22 =

C22

C2
, . (15)

Then, the state transition matrix of the Markov Chain for the Hidden Markov Model (HMM) is
obtained as shown in Equation (16):

A =

[
a11 a12

a21 a22

]
, (16)
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where the elements in the first row of matrix A represent the probabilities for the actions following an
abnormal action or fall. Similarly, the elements in the second row represent the probabilities for the
actions following normal actions.

For each of the possible states, emission probabilities are calculated. We define the observable
features with respect to the distance between the centroid and the corresponding virtual grounding
point (d), the area of the object shape (a), and the aspect ratio (r). To define the observable symbols,
a suitable threshold value for each of the features is selected. In doing so, we firstly calculate the
features for extracting the falling period for a person, as discussed in Section 3.3. These falling periods
can determine that each of the observed videos includes an abnormal or normal event. The frame
index numbers through the video sequences represent that a fall can be extracted between starting
point f 1 and ending point f 2, as illustrated in Figure 9.

In the upper part of Figure 9, the frame numbers marked in green represent the normal activities of
a person, such as walking, standing, sitting, and lying. The frame numbers marked by black represent
abnormal or falling events. The period of a fall might be obtained when the half width value (hwv),
referring to the distance between a starting point (f 1) and an ending point (f 2), is greater than or equal
to period detection (PD), as formulated in Section 3.3. Similarly, in the lower part of Figure 9, the frame
numbers represent the normal activities of a person. When the person is involved in activities such as
walking, walking to sitting, and sitting to standing, the analyzed half width value (hwv) is less than the
detected period.
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After that, it is determined whether the action is abnormal or normal by observing the six possible
feature values defined below. Satisfying the criteria for this determination involves passing the selected
value for threshold F in the consecutive frames from starting to ending points for abnormal and normal
events based on the observed half width value, which determines the period of events.

F1 = {f 1 . . f 2} where vhw ≥ PD(d), F2 = {f 1 . . f 2} where vhw < PD(d),

F3 = {f 1 . . f 2} where vhw ≥ PD(a), F4 = {f 1 . . f 2} where vhw < PD(a),

F5 = {f 1 . . f 2} where vhw ≥ PD(r), F6 = {f 1 . . f 2} where vhw < PD(r),
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where the symbol F denotes that for the observed features for HMM, the set {f 1 . . f 2} represents the
sequential falling frames from starting point f 1 to ending point f 2. PD(d), PD(a), and PD(r) denote the
period detection for a fall or an abnormal event with respect to the distance between the centroid and
the corresponding VGP, the area of the shape, and the aspect ratio of the person, respectively, and vhw
means the half width value employed to determine the period of the abnormal event.

After obtaining thresholds for features, calculations of emission probabilities are performed for
developing the HMM model. The hierarchical tree structure used to form features for independent
observable symbols O is illustrated in Figure 10.
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Figure 10. Hierarchical tree structure of independent observable symbol O.

When studying the observable symbols, we can see that F1 and F2, F3 and F4, and F5 and F6 are
all disjointed. The occurrence of an observable symbol is then labeled based on the eight observable
symbols O = {o1,o2,o3,o4,o5,o6,o7,o8} for the video sequence. The emission probability of observed
symbol ok (k = 1,2, . . . ,8) in state Sj (j = 1,2) is denoted as in Equation (17).

b j(k) =
Expected Number of Occurrences of ok ∈ States S j

Expected Number of Occurrences of States S j
, (17)

The emission probability matrix B is then obtained by using the following:

B =

[
b1(1) b1(2) b1(3) b1(4) b1(5) b1(6) b1(7) b1(8)
b2(1) b2(2) b2(3) b2(4) b2(5) b2(6) b2(7) b2(8)

]
, . (18)

Then, the initial probability states are assumed to be Prob(S1) = 0.8 and Prob(S2) = 0.2. Denoting
the initial probability vector as π gives the Hidden Markov Model (HMM), as shown in Equation (19):

λ = (A, B,π), (19)

where π is the initial probability vector.
After that, the Viterbi algorithm [27] is applied to solve the HMM model to detect consecutive

moments in the actions. The idea is to compute the best hidden state sequence (abnormal and normal
states) in the given observation sequences and in an HMM.

4. Experiments

4.1. The Dataset

In order to demonstrate a sub-sequential experiment, we used the publicly available Le2i fall
detection dataset [28], which simulates the activities of the elderly in a home environment, as well
as in an office. This dataset was developed for detecting falls using artificial vision, which can be
useful in helping the elderly. These simulated videos illustrate the difficulties in creating realistic
video sequences that include variable illumination, occlusions, and cluttered or textured backgrounds.
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The actors performed various normal daily activities and falls, in an attempt to simulate elderly
behavior. In addition, the actors did not perform acts that would be unnatural for the elderly, such as
running or walking quickly. The video sequences were captured using a single RGB camera, in which
the frame rate was 25 frames per second, and the resolution was 320 × 240 pixels. From this dataset,
20 videos taken in an office were selected, representing normal daily activities and falls as performed
by four different actors.

Acquiring useful qualitative data for surveillance systems is very important in measuring distances,
positions, velocities, and directions for the objects in the scenes, and is a necessary consideration in
developing reliable systems [29]. As an important contribution of the current work, we have developed
guidelines for setting up and calibrating cameras. First of all, it is essential to try to confirm whether
or not the camera height and angle are approximately the same for all videos. We can derive an
approximate linear equation for camera calibration. To do so, two extracted features for the object
are employed, namely, the aspect ratio (r), and yVGP, corresponding to the y coordinate. These two
features can provide information on steps in the walking pattern for a person, as described in Figure 11.
In Figure 11, the person exhibits the same posture corresponding to yVGP and r, as illustrated by the
blue and orange dashed lines. The interval of the step can be obtained from the place between where
the same postures occur. Then, we can observe the index numbers for frames and the corresponding
values for the point distance (d), area of the object shape (a), and aspect ratio (r), with respect to
starting and ending frames in the step intervals. In order to formulate a linear equation for camera
calibration, we assume three kinds of points: (yVGP,d), (yVGP,a), and (yVGP,r), as shown in Figure 12.
Then, by observing the testing points, Figure 12 shows that no significant differences exist between the
variation within a scene and the variation between all scenes.
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Figure 11. Two extracted features—yVGP (y coordinate of the virtual grounding point (VGP)) and aspect
ratio (r)—which can provide information on the number of steps for a person.

J. Imaging 2020, 6, x FOR PEER REVIEW 14 of 23 

 

videos taken in an office were selected, representing normal daily activities and falls as performed 
by four different actors. 

Acquiring useful qualitative data for surveillance systems is very important in measuring 
distances, positions, velocities, and directions for the objects in the scenes, and is a necessary 
consideration in developing reliable systems [29]. As an important contribution of the current work, 
we have developed guidelines for setting up and calibrating cameras. First of all, it is essential to try 
to confirm whether or not the camera height and angle are approximately the same for all videos. We 
can derive an approximate linear equation for camera calibration. To do so, two extracted features 
for the object are employed, namely, the aspect ratio (r), and yVGP, corresponding to the y coordinate. 
These two features can provide information on steps in the walking pattern for a person, as described 
in Figure 11. In Figure 11, the person exhibits the same posture corresponding to yVGP and r, as 
illustrated by the blue and orange dashed lines. The interval of the step can be obtained from the 
place between where the same postures occur. Then, we can observe the index numbers for frames 
and the corresponding values for the point distance (d), area of the object shape (a), and aspect ratio 
(r), with respect to starting and ending frames in the step intervals. In order to formulate a linear 
equation for camera calibration, we assume three kinds of points: (yVGP,d), (yVGP,a), and (yVGP,r), as 
shown in Figure 12. Then, by observing the testing points, Figure 12 shows that no significant 
differences exist between the variation within a scene and the variation between all scenes. 

 
Figure 11. Two extracted features—yVGP (y coordinate of the virtual grounding point (VGP)) and 
aspect ratio (r)—which can provide information on the number of steps for a person. 

 
Figure 12. Analysis of camera calibration for all scenes. 

4.2. Experimental Results 

The given video was firstly analyzed by setting a fixed interval. Here, we made the interval 
every frame in which only one state occurs (S1: abnormal or S2: normal). Manual observations of the 
video sequences were performed to provide the occurrence state symbol for every interval or frame. 
Such observations for a video sequence used in these experiments are illustrated in Figure 13. For 
effectively demonstrating the consequences of the sub-sequential experimental results, here, we 
denote the name of the person in the video sequence as “Mr. ONE.” 

-1

-0.5

0

0.5

0.00

100.00

200.00

300.00

400.00

1 10 19 28 37 46 55 64 73 82 91 10
0

10
9

11
8

12
7

13
6

14
5

15
4

16
3

17
2

18
1

19
0

19
9

20
8

21
7

22
6

23
5

24
4

25
3

26
2

27
1

ry V
G

P

Frames

Vy - Cy Aspect R.yVGP r

1st 2nd 3rd 4th 5th

Standing
6th 7th 8thSteps:

Standing, Standing to Sitting

y = 0.2105x + 29.558

0

50

100

150

0 100 200 300

a

yVGP

a Linear (a)

y = 0.2208x + 38.061

0

50

100

150

0 100 200 300

d

yVGP

d Linear (d)

y = 0.0001x + 0.3001

0
0.2
0.4
0.6
0.8

0 100 200 300

r

yVGP

r Linear (r)

Figure 12. Analysis of camera calibration for all scenes.

4.2. Experimental Results

The given video was firstly analyzed by setting a fixed interval. Here, we made the interval
every frame in which only one state occurs (S1: abnormal or S2: normal). Manual observations of
the video sequences were performed to provide the occurrence state symbol for every interval or
frame. Such observations for a video sequence used in these experiments are illustrated in Figure 13.
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For effectively demonstrating the consequences of the sub-sequential experimental results, here,
we denote the name of the person in the video sequence as “Mr. ONE.”J. Imaging 2020, 6, x FOR PEER REVIEW 15 of 23 
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After that, as discussed in Equation (16), the state transition matrix of the Markov Chain for the
HMM was obtained by applying Equations (13)–(15).

After making observations of the occurrence state symbols (S1,S2), the co-occurrence matrix was
constructed by applying Equation (13), as shown below.

M =

[
900 11550

11550 148225

]
Then, the following values were obtained using Equations (14) and (15):

a11 = c11/c1 = 0.07229, a12 = c12/c1 = 0.92771, a21 = c21/c2 = 0.07229, a22 = c22/c2 = 0.92771.

After that, we obtained the transition probability matrix A(aij), which represents the probability of
proceeding from state Si to state Sj, by computing Equation (16).

A =

[
0.07229 0.92771
0.07229 0.92771

]
By employing Equations (17) and (18), the independent observable symbols O were obtained as

shown in Figure 14. After that, the occurrence of an observable symbol was identified using one of the
labels for the eight observable symbols {o1,o2,o3,o4,o5,o6,o7,o8} for the video sequence. The emission
probability matrix B was then obtained as shown below:

B =

[
0.75 0 0.25 0 0 0 0 0

0.020672 0.062016 0.015504 0 0 0.069767 0.054264 0.777778

]
.

Matrix B represents a sequence of observation likelihoods in which each element expresses the
probability of an observation ok (k = 1,2, . . . ,8) being generated from a state Sj (j = 1,2).

Finally, the Viterbi algorithm [27] was employed for solving the HMM model to recognize
sequential abnormal and normal states for “Mr. ONE.” The input parameters for implementing the
Viterbi algorithms were summarized as two states—abnormal and normal—including eight observable
action symbols; {“falling,” “lying,” “lying to sitting,” “sitting to standing,” “walking,” “walking to
sitting,” “sitting,” and “sitting to lying”}, a state transition probability matrix (A), a sequence of
observation likelihood or emission probability matrix (B), and an initial probability distribution over
states. The final outcome results for “Mr. ONE” are illustrated in Figure 15. Additional experimental
results for sequential abnormal and normal states in each of the video sequences simulated by Ms. TWO
are demonstrated in Figures 16–18, respectively.
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4.3. Performance Evaluation of the Proposed Approach

In order to evaluate the performance of our proposed system, we firstly used the detection process
for falling and normal events using three-fold cross-validation, which presents the swapped variables
for learning and testing used in our previous work [13]. The given videos were classified as either
falling or non-falling videos. Our proposed period detection (PD) achieved a precision of 93.33% and a
recall of 93.33%. In the current work, we enhanced our detection system “from video to consecutive
video sequences” by utilizing the analyzed features working for the PD. The features were used
as inputs to calculate the probability for HMM. There are four possible outcomes in discriminating
abnormal and normal states for the consecutive states of a person, and definitions and relative symbols
are described in the following:

• Detected Abnormal State (As1): A video frame represents an abnormal state, and is correctly
classified as “Positive Abnormal”;

• Undetected Abnormal State (As2): A video frame represents an abnormal state, and is incorrectly
classified as “Negative Normal”;

• Normal State (Ns1): A video frame does not represent an abnormal state, and is correctly classified
as “Negative Normal”;

• Mis-detected Normal State (Ns2): A video frame does not represent an abnormal state, and is
incorrectly classified as “Positive Abnormal”.

The following Equations (20)–(24) describe as a performance evaluation the calculated precision,
recall, accuracy, specificity rate, and negative predictive value, respectively. In evaluating each of the
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given videos, an “undecided class” is nominated in order to save the unnecessary failed states. In other
words, where we consider the risk to be low for a given video, we ignore it when a normal case is
misclassified as abnormal.

Precision =
As1

(As1 + Ns2)
∗ 100, (20)

Recall =
As1

(As1 + As2)
∗ 100, (21)

Accuracy =
(As1 + Ns1)

(As1 + Ns1)
∗ 100, (22)

Speci f icityRate =
Ns1

(Ns1 + Ns2)
∗ 100, (23)

NPV =
Ns1

(Ns1 + As2)
∗ 100, (24)

Table 1 provides the precision, recall, accuracy, specificity rate, and negative predicted value
(NPV) for 13 videos, including both abnormal and normal states. The remaining seven videos that
include a normal state provide a precision of 100% and a recall of 100%. Figure 19 shows receiver
operating characteristic (ROC) curve analyses for the results of true positive and false positive fractions,
for the 13 videos that include abnormal events. The results of AUC (area under ROC curve) show that
our proposed method is quite capable of distinguishing between the classes. A comparison of the
performance of the proposed system for each video and related existing methods is shown in Table 2.

Our proposed system was implemented in MATLAB 2019a on an academic license. A series
of experiments were performed on Microsoft Windows 10 Pro with an Intel (R) Core (TM) i7-4790
CPU@3.60 GHz and 8GB RAM. The overall computation time in this system is 0.93 s per frame. In order
to achieve real-time monitoring, we expect that the GPU implementation could be further fine-tuned
to our system.

Table 1. Performance evaluation for 13 fall video sequences.

Videos Precision (%) Recall (%) Accuracy (%) Specificity (%) NPV (%)

1 100 100 100 96.88 96.88
2 100 100 100 96.07 96.09
3 100 86.66 98.32 99.04 97.17
4 100 100 100 97.07 97.06
5 100 100 100 90.40 90.40
6 82.98 97.50 99.76 97.89 97.63
7 98.04 100 100 99.36 99.36
8 100 100 100 94.70 94.70
9 100 83.33 97.41 90.80 99.09
10 100 100 100 97.72 97.72
11 100 100 100 98.54 98.54
12 100 100 100 96.38 96.38
13 100 100 100 88.48 88.48
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Figure 19. Receiver operating characteristic (ROC) curve analysis for the results of the true positive
fraction (As1/(As1 + As2)), and false positive fraction (Ns2/(Ns2 + Ns1)), for 13 videos including abnormal
and normal events. The results of AUC (area under ROC curve) with respect to the true positive fraction
and false positive fraction show that our proposed method is quite capable of distinguishing between
the abnormal and normal states.



J. Imaging 2020, 6, 49 20 of 23

Table 2. Performance of our system compared with existing methods using the same dataset.

Methods Precision (%) Recall (%) Accuracy (%)

Kishanprasad [16] 94 95 —1

Suad [18] 100 95.27 99.82
Adrián [23] —1 99.00 97.00
Minjie [24] 90.8 98.3 97.8

Ours 99.05 98.37 99.8

Note: —1 means the provided data is not available.

4.4. Comparative Studies of the Merits and Demerits of Our Proposed System

Kishanprasad presented a fall-detection system [16] providing a precision of 94% and a recall of
95%, as tested in an office environment from the Le2i dataset. The merits of this system were described
as robust, fast, and computationally efficient. The system could be enhanced using deep learning
models in future work. Demerits of the system were not discussed in detail. However, our proposed
system achieved higher precision and recall rates, as shown in Table 2.

Suad [18] proposed a fall detection approach using threshold-based methods and a neural network.
The system achieved a high detection rate in monitoring a single person in a home environment.
However, their proposed system can only detect events in high-intensity light. They mentioned
ways to enhance their proposed system, such as using it to detect multiple people and installing
multiple cameras to make sure that the object is visible in at least one camera view. Moreover,
they have mentioned adopting enhanced background subtraction for better object segmentation.
Other improvements can be achieved by detecting additional features using sensors such as an
accelerometer. Capturing 3D information using a depth camera could also improve the detection rate.
Using simple algorithms, we achieved an accuracy similar to that of Suad’s proposed system, not
attaining the accuracy of our proposed system.

Adrian [23] presented a vision-based fall detection system using CNN architecture. As one
drawback of the system, using optical flow images involves a heavy computational burden in
generating consecutive sequences. Furthermore, the system is not robust when lighting changes.
Therefore, a more reliable network could be modeled to gain a better representation of hierarchical
motion from the images. In addition, more research involving multiple people in falling events would
be useful before implementation in public areas. Compared to this method, our proposed system gives
more accurate rates.

Minjie’s work [24] investigated an approach for predicting falling events in advance using
monocular videos. The system has credibility as it provided excellent performance results using
a complex system architecture. However, they described two failures due to the non-detection of
keypoints, which occurred when the person’s upper body was not visible from the perspective of the
camera. Moreover, falls cannot be predicted in advance if the precursor of the fall is not detected.
In comparison with our proposed system, we achieved a higher precision, recall, and overall accuracy,
as described in Table 2.

In this paper, we have proposed a system for detecting normal, abnormal, and falling states using
video sequences for people being monitored. In detecting normal states, our system outperformed
other approaches, with an accuracy of 99.8%, using experimental videos containing non-abnormal
events. In addition, our proposed system proved to be reliable and effective, with a precision of 99.05%
and recall of 98.37%, as confirmed using 20 video sequences that contained abnormal and normal
events. Though the system was adapted to a real-world environment, the scope of research was
limited to detecting a single person. The computation time for the object detection module is slow
in a real-time monitoring system. Using multiple cameras to view the human body from different
perspectives would improve feature extraction. Currently, the system is only effective during the day,
and should be improved for night-time use in the real world of elderly care. Moreover, the system
functionality should be expanded by exploring feature analyses such as pre-fall states, dangerous
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post-fall situations, and abnormal gaits (walking patterns). We expect that smart image processing
technologies have great potential for improving the quality of life of the targeted population.

5. Discussion and Conclusions

The research discussed in this paper is concentrated on applied statistical analysis for developing
an advanced image-processing technology in vision-based elderly care monitoring systems, facilitating
health care for elderly people living independently. In brief, our proposed approach involves the
following. Background subtraction is first used to detect moving and motionless objects. Simple and
effective feature extraction is then performed using the virtual grounding point concept (VGP), as well
as the area of the shape and the aspect ratio of the detected object. In addition, these three features
are observed in detailed considerations of the moving average and modified difference calculations.
Careful observations of the critical features of the local maximum or local minimum are made to
predict the high possibility of an abnormal state for the point distance of the VGP, area, and aspect ratio.
Moreover, the optimal threshold values are exploited by calculating the mid value or period detection
for the probability distribution of the Hidden Markov Model. Finally, the consecutive abnormal and
normal states are differentiated using the Viterbi algorithm. Contributing modules include an analysis
of the state with an extensive observable area of shape features and making decision rules using the
Hidden Markov model. Moreover, a simple analysis of camera calibration is performed using our
observed VGP and its inclusive features. Experimental results indicate that our proposed system is
reliable and effective for detection. In order to confirm the validity of our proposed methods, we have
drawn comparisons with existing methods described in the literature. Specifically, comparisons were
made between our approach and three similar methods: (1) threshold-based fall detection; (2) neural
network algorithms [16,18]; and (3) the CNN approach [23,24]. Compared to these methods, our
proposed method achieved a higher performance, as confirmed using the public dataset of videos
taken in simulated environments that closely approximate real life. This paper focuses on detecting
falls, which are common among elderly people. In future research, we will improve our analysis by
applying it to behavioral features, such as timing, posture, and gait. Using the results of surveys,
we will also take into consideration behavioral differences between healthy young adults and the
elderly. Though human behavior is complex and inconsistent between different persons, situations,
and environments, our system can improve the interpretation of human behavior through an analysis
of its visual manifestations in different situations. However, further testing using large amounts of
data is required for system optimization. Furthermore, we expect that our proposed system can
be improved by applying techniques related to modern deep learning. In fact, future experiments
involving simulations of abnormal events should prove a fruitful area for applying such techniques.
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