
Journal of

Imaging

Article

Fully Automated 3D Cardiac MRI Localisation
and Segmentation Using Deep Neural Networks

Sulaiman Vesal 1,*, Andreas Maier 1 and Nishant Ravikumar 1,2

1 Pattern Recognition Lab, Computer Science, Friedrich-Alexander-Universität Erlangen-Nürnberg,
91052 Erlangen, Germany; andreas.maier@fau.de (A.M.); n.ravikumar@leeds.ac.uk (N.R.)

2 Centre for Computational Imaging and Simulation Technologies in Biomedicine (CISTIB),
School of Computing, LICAMM Leeds Institute of Cardiovascular and Metabolic Medicine, School of
Medicine, University of Leeds, Leeds LS2 9JT, UK

* Correspondence: sulaiman.vesal@fau.de

Received: 23 April 2020; Accepted: 1 July 2020; Published: 6 July 2020
����������
�������

Abstract: Cardiac magnetic resonance (CMR) imaging is used widely for morphological assessment
and diagnosis of various cardiovascular diseases. Deep learning approaches based on 3D fully
convolutional networks (FCNs), have improved state-of-the-art segmentation performance in CMR
images. However, previous methods have employed several pre-processing steps and have focused
primarily on segmenting low-resolutions images. A crucial step in any automatic segmentation
approach is to first localize the cardiac structure of interest within the MRI volume, to reduce false
positives and computational complexity. In this paper, we propose two strategies for localizing
and segmenting the heart ventricles and myocardium, termed multi-stage and end-to-end, using a
3D convolutional neural network. Our method consists of an encoder–decoder network that is
first trained to predict a coarse localized density map of the target structure at a low resolution.
Subsequently, a second similar network employs this coarse density map to crop the image at a
higher resolution, and consequently, segment the target structure. For the latter, the same two-stage
architecture is trained end-to-end. The 3D U-Net with some architectural changes (referred to
as 3D DR-UNet) was used as the base architecture in this framework for both the multi-stage
and end-to-end strategies. Moreover, we investigate whether the incorporation of coarse features
improves the segmentation. We evaluate the two proposed segmentation strategies on two cardiac
MRI datasets, namely, the Automatic Cardiac Segmentation Challenge (ACDC) STACOM 2017,
and Left Atrium Segmentation Challenge (LASC) STACOM 2018. Extensive experiments and
comparisons with other state-of-the-art methods indicate that the proposed multi-stage framework
consistently outperforms the rest in terms of several segmentation metrics. The experimental results
highlight the robustness of the proposed approach, and its ability to generate accurate high-resolution
segmentations, despite the presence of varying degrees of pathology-induced changes to cardiac
morphology and image appearance, low contrast, and noise in the CMR volumes.

Keywords: cardiac MRI; deep neural network; CNN; multistage segmentation; MRI segmentation;
cardiovascular diseases

1. Introduction

Cardiovascular diseases (CVDs) and other cardiac pathologies are the leading cause of
death in Europe and the USA [1,2]. Timely diagnosis and post-treatment follow-ups are
imperative for improving survival rates and delivering high-quality patient care. These steps rely
heavily on numerous cardiac imaging modalities, which include CT (computerized tomography),
coronary angiography, and cardiac MRI. Cardiac MRI is a non-invasive imaging modality used to
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detect and monitor cardiovascular diseases. Consequently, quantitative assessment and analysis of
cardiac images is vital for diagnosis and devising suitable treatments. The reliability of quantitative
metrics that characterize cardiac functions such as myocardial deformation and ventricular ejection
fraction, depends heavily on the precision of the heart chamber segmentation [3]. Manual segmentation
is an error-prone, time-consuming, and tedious task, which requires roughly 20 min per ventricle for
an expert, even with assistance from a suitable software [4,5]. Additionally, manual approaches suffer
from high inter- and intra-rater variability, affecting the reproducibility, interpretability, and reliability
in the diagnostic workflow. Consequently, the development of an accurate, efficient, and automatic
approach for cardiac segmentation is highly desirable.

Among the four heart chambers, imaging of the left ventricle (LV), right ventricle (RV) and left
atrium (LA) are of great importance and interest, as several cardiac diseases affect the morphology
and function of these structures, such as atrial fibrillation (AF), cardiomyopathy, etc. [6]. An essential
step in any automatic segmentation approach is to first localize the cardiac structure of interest within
the MRI volume, to reduce false positives and computational complexity, by limiting the computation
domain to the vicinity of the target structure.

Robust and accurate anatomy localization is an active area of research, and one of significant
interest, due to the ever-increasing numbers of 3D medical images acquired in clinics worldwide.
Such approaches enable faster data navigation and visualization of target structures, saving valuable
time for the radiologist [7]. Additionally, they help initialize subsequent segmentation or registration
algorithms, thereby significantly improving their performance, as demonstrated in the previous
studies [8]. Overall, it is a crucial component in the design of an accurate computer-aided-diagnosis
(CAD), and clinical decision support workflow.

2. Related Work

Traditional approaches to cardiac MRI segmentation were model-based, or hybrid techniques,
which employed deformable [9], active contour [10], or statistical shape models [11], in combination
with thresholding and morphological operations. A variety of atlas-based label fusion
approaches [12–14] have also been proposed for the same task.

Recently, there have been tremendous improvements in cardiac MRI segmentation [15], and in
medical image segmentation in general, using deep convolutional network architectures [16,17].
These networks are usually encoder–decoder type architectures, where the role of the decoder
network is to project the encoded low-resolution feature maps, to high-resolution ones for pixel-wise
classification. Encoder–decoder-based CNN architectures have been used extensively for several
medical image segmentation applications. For example, Zotti et al. [15] proposed an extension to
the U-Net. A cardiac shape priorly employed to accurately localize the endo- and epicardium of the
left ventricle and the endocardium of the right ventricle. It achieved using a multi-resolution grid
architecture that learned both low and high-level features to register the shape prior to a short-axis
cardiac MRI.

Xiong et al. [18] proposed AtriaNet for segmenting left atria in 3D late gadolinium-enhanced
(LGE)-MRI. Their method consists of a multi-scale CNN architecture, which captures both local and
global atrial morphology. AtriaNet achieved a dice score of 0.940 and 0.942 for the LA epicardium and
endocardium. A spectrum-based method developed by Zhong et al. to locate the left ventricle using
a discrete Fourier Transform [19]. Harmonic images of all frequencies were analyzed visually and
quantitatively to determine different spectral patterns for the left and right ventricles. The first and
fifth harmonic images were selected to perform an anisotropically-weighted circular Hough detection.

Omega-net proposed by Vigneault et al. [20] for the ACDC challenge [21], comprises multiple
steps—any given input image is first segmented using the network; subsequently, the features learned
during this initial step are used to predict the parameters needed to transform the input image into
a canonical orientation; and finally, the image is segmented once again in the transformed canonical
space. A two-stage CNN-based approach proposed by Yang et al. [22] for left atrium segmentation,
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which comprised a detection module, and a subsequent segmentation step using transfer learning,
a novel focal loss, and a recursive training strategy. Similar approaches used in CT [23,24]. Furthermore,
Isensee et al. [25] created an ensemble of 2D and 3D U-Net architectures (with residual connections
along with the up-sampling layers) for the heart segmentation and disease diagnosis challenges hosted
as part of the STACOM workshop at MICCAI 2017. Here, due to the large slice thickness of the input
images, pooling and upsampling operations were performed only in the short axis plane, for the 3D
network. Moreover, due to memory constraints, the 3D network was designed using a smaller number
of feature maps.

In a more clinically adapted approach, [26] employed a deep learning model for cardiac motion
analysis and human survival prediction. They used MR sequences to train a multi-task convolutional
neural network for image segmentation and anatomical keypoint extraction. The key points were
employed for further motion estimation. Moreover, based on the segmentation output, they extracted
latent representation to predict the survival rate of the patient. Ruijsink et al. [27] proposed a
deep-learning framework based on biventricular segmentation (3975 subjects) in long-axis and
short-axis views and a post-analysis quality control to detect erroneous results. They cropped images
automatically based on the center of the MR images to find the region of interest only. Moreover,
Fahmy et al. [28] proposed a method for automatically quantifying LV mass and scar volume on LGE
in patients with cardiomyopathy. However, most of these methods are based on 2D models.

To address the challenges as yet unmet by existing methods such as model complexity, robustness
to noise, and lack of incorporating temporal information, we propose a fully 3D automatic deep
learning model for localizing and segmenting ventricular anatomies in cardiac MRI. The objective is to
facilitate the generation of accurate, high-resolution segmentation, by detecting the cardiac anatomy
first. To this end, a multi-stage fully convolutional neural network was designed, wherein the first
stage estimates a coarse density map localizing the structure of interest. It acts as an attention map
to guide the second network (segmentation) to focus on the region of interest (ROI). Two strategies
to focus the second stage of the network using the estimated attention map are investigated, namely,
a ‘multi-stage’ and an ‘end-to-end’ approach. For the former, the attention map enables an ROI to
be cropped from the input volume, maintaining the same image resolution. The cropped ROI is
subsequently used by the second stage of the network to segment the structure(s) of interest at the
original resolution of the image. As the training of each step is disjoint, we call it as ‘multi-stage’.
With the ‘end-to-end’ approach, the attention map estimated by the first stage of the network is added
to a downsampled (low-resolution) version of the original image and used as input for the second
stage of the network.

We applied our framework to the challenging task of cardiac MRI segmentation to highlight
the efficacy of the proposed contributions. It is considered a challenging segmentation task due to
low and varied contrast at tissue-boundaries, and large variability in the morphology of cardiac
structures across healthy subjects, and patients suffering from different cardiac diseases. We evaluated
our framework on two publicly available datasets: Automatic Cardiac Segmentation Challenge
(ACDC) STACOM 2017 [21]; and Left Atrium Segmentation Challenge (LASC) STACOM 2018
(http://atriaseg2018.cardiacatlas.org/) datasets.

3. Methods

In this section, first we describe our proposed methods for cardiac MRI localisation and
segmentation in detail, and then, explain the performed experiments on different datasets.

The proposed multi-stage network consists of three modules: an encoder–decoder for localisation,
gradient-weighted class activation maps (GCAM) for density map generation, and an encoder–decoder
for final segmentation. The overall architecture is depicted in Figure 1. The first network takes the
downsampled MRI volumes as input and produces coarse feature maps for each volume. The GCAM
module estimates the gradient-weighted activation maps of the object of interest from these feature
maps and subsequently, a fixed-size sub-volume is cropped based on the GCAM density map.

http://atriaseg2018.cardiacatlas.org/
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The outputs of this module are then used by the second encoder–decoder network, to generate the final
segmentation. An end-to-end variant of this network was also designed, wherein, a dot product of the
coarse feature map estimated from the first module and the input volume is computed to generate
an ‘attention’ map. This attention map is used in place of the GCAM module and cropping function
employed by the multi-stage network and forms the input for the subsequent segmentation network.

Figure 1. Overall pipeline for the proposed multi-stage network architecture, which depicts an
example late gadolinium-enhanced (LGE)-MRI scan with its corresponding intermediate GCAM result.
Both encoder–decoder networks used for localisation and segmentation have similar architectures,
except in terms of complexity (i.e., number of convolution kernels used in each encoder–decoder block).

For both the localization and segmentation networks, we developed a 3D dilated residual U-Net
(3D DR-UNet) as the backbone architecture. It is motivated by the success of the U-Net [17] which uses
an encoder–decoder architecture, interconnected with skip connections. Conceptually, the encoder
path is used to aggregate semantic information at the cost of reduced spatial information. The decoder
path is the counterpart of the encoder that reconstructs the spatial information while being aware
of the semantic information learned by the encoder. Skip connections are used to transfer feature
maps from the encoder to the decoder to enable precise localization of objects, and improved flow of
gradients during backpropagation.

3D DR-UNet (refer to Figure 2) comprises three encoder and decoder blocks, separated
by a bottleneck block (Figure 2). This is followed by a 1 × 1 × 1 convolution layer and a
sigmoid/softmax-classifier. The architecture includes skip connections between all encoder and
decoder blocks at the same spatial resolution. Each encoder/decoder block consists of two 3D
convolution layers, where each convolution layer is proceeded by a batch-normalization and a
Rectifier Linear Unit (ReLU) layer. In each encoder–convolution block, the input of the first
convolution layer concatenated with the output of the second convolution layer (red line in Figure 2).
The subsequent 3D max-pooling layer reduces the dimensions of the volume by half. The use of
residual connections [29] between convolution layers of each block in the encoder, help improve the
flow of gradients in the backward pass of the network. Image dimensions are preserved between
the encoder–decoder branches following convolutions, by zero-padding the estimated feature maps.
It enabled corresponding feature maps to be concatenated between the branches. We use 1 × 1 ×
1 convolution to aggregate the feature maps from the final decoder block. This operation improves
discriminative power as feature maps with lower activations are more likely to be suppressed through
the assignment of lower weights. Ultimately, a sigmoid activation function was used in the last layer
of the first network to produce a value between 0 and 1 for binary segmentation, and a soft-max



J. Imaging 2020, 6, 65 5 of 19

layer was used for multi-label segmentation, to distinguish the background from the foreground
classes. Our network takes a volume fs as input with an image size of N × N × N × 1 and produces
a segmentation mask of N × N × N. Compared to 3D U-Net, we replace the bottleneck convolution
layers of the network with dilated convolutions [30] of size 3× 3× 3, to enlarge the receptive field and
enable the network to capture both local and global contextual information. The dilation rate of the
four convolution layers is increased successively from 1–8, and subsequently, their feature maps are
summed together, enabling the network to capture the entire volume’s field of view.

Figure 2. This figure illustrates the architecture of the 3D Dilated Residual U-Net (3D DR-UNet)
comprising encoder/decoder blocks. The bottleneck comprises four convolution layers with
successively increasing dilation rates from 1–8, to increase the receptive field size. In the encoder block,
the red arrow represents the residual connection between convolution layers.

Due to GPU memory constraints, it is usually infeasible to process the entire 3D image volume
during training. A typical solution is to downsample the original images to a manageable size, however,
this adversely impacts the overall segmentation accuracy. Another solution adopted in previous
studies is based on a sliding-window, which crops the original images into small blocks and performs
segmentation in a block-wise manner. In this study, we propose two different methods for cardiac MRI
localization and segmentation, namely, a ‘multi-stage’ and an ‘end-to-end’ network. The former in
particular is designed to address this issue by localizing and cropping the ROI, thereby reducing the
computational expense.

Multi-stage localisation and segmentation: This setup comprises three modules—(a)
localization: an encoder–decoder network (based on the 3D DR-UNet) is first used to localize the
structure of interest; (b) GCAM: The coarse feature maps produced by the localizer is used by this
module to estimate gradient-weighted class activation maps (or GCAM) [31], which is a generalization
of class activation (CAM) [32], that provides localized density maps. GCAM discovers the class-specific
contribution of each pixel in the feature maps of the final convolution layer to the classification score,
based on their corresponding gradients. We compute the gradients of the target class score with
respect to the feature maps x and then sum the feature maps along the channel axis, weighted by these
gradients. The estimation of GCAM for each target class c can be expressed as follows:

GCAMc = RELU(∑
k

xk ×
∂Sc

∂xk
), (1)
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where xk ∈ IRZ,W,H is the kth channel of the feature map x, and Sc is the classification score of class
c. Z, W and H are the depth, width, and height of image respectively. The estimated GCAM is
subsequently used to crop a small ROI, thereby reducing the overall computational expense for the
subsequent segmentation step; and (c) segmentation: the cropped ROI is used by the segmentation
network (also based on the 3D DR-UNet), to segment the region(s) of interest at a high resolution.
While the localization network utilizes the downsampled, low-resolution versions of the original
images, the segmentation network can process the cropped ROIs at a higher resolution. This multi-stage
pipeline helps mitigate the expensive memory requirements common to the use of 3D convolution
kernels, with large medical image volumes.

End-to-end localisation and segmentation: the multi-stage approach trains each network,
for localisation and segmentation, independently. To evaluate the benefits of such an approach,
and in particular, the use of GCAM for localization and ROI-refinement, we also investigated the
end-to-end training of both networks, to perform both tasks simultaneously. Given a final feature map
Fl ∈ IRZ,W,H,C estimated by the first network, the input to the second network F′s, was estimated as:
F′s = Il ⊗ Fl, where, ⊗ denotes element-wise multiplication. This operation helps guide the attention
of the second network to regions with high activations, thereby focusing the segmentation on areas
suggested by the localisation network.

3.1. Loss Functions

We use two different loss functions to train the multi-stage and end-to-end networks.
BCE-Dice Loss: The dice coefficient (DC) loss (Equation (2)) is a measure of overlap widely used

for training segmentation networks [33]. We used a combination of binary cross-entropy (Equation (3))
and DC loss functions, to train both networks for the binary segmentation task. This combined loss
(Equation (4)) is less sensitive to class imbalance in the data, and leverages the advantages of both loss
functions. Our experiments demonstrated better segmentation accuracy when using the combined
loss for binary segmentation, relative to employing either individually.

ζdc(y, ŷ) = 1− ∑n ynk ŷnk

∑n ynk + ∑n ŷnk
(2)

ζbce(y, ŷ) = −∑
k
[ŷnklog(ŷnk) + (1− ynk)(1− ŷnk)] (3)

ζ(y, ŷ) = ζdc(y, ŷ) + ζbce(y, ŷ) (4)

In Equations (2) and (3) ŷnk denotes the output of the model, where n represents the pixels,
k denotes the classes, and the ground truth labels are denoted ynk. We used the two-class version of
the DC loss ζdc(y, ŷ) proposed in [30].

Multi-class Dice loss: A modified version of the soft-dice loss was used for the task of multi-class
segmentation. We first calculate the dice score for each class individually, and then average them
over the number of classes. In order to segment an N × N × N input image (for example, a Cine-MRI
volume with LV, RV, myocardium (MYO) and Background as labels), the outputs are four probabilities
for classes k = 0, 1, 2, 3 where, ∑c yn,k = 1 for each voxel. Given the one-hot encoded ground truth
label ŷn,k for that corresponding voxel, the multi-class soft dice loss is defined as follows:

ζdc(y, ŷ) = 1− 1
K
(∑

k

∑n ynk ŷnk

∑n ynk + ∑n ŷnk
). (5)

3.2. Datasets

In order to validate our framework, we conducted experiments using two different datasets
comprising Late-Gadolinium Enhanced MRI (LGE-MRI) and Cine-MRI scans. Both datasets are
publicly available and were provided as part of the STACOM 2018 and 2017 challenges. This study
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complies with the Declaration of Helsinki. For all patients, informed consent obtained and the
institutional ethical board (ethics committee of the University of Utah and University Hospital of
Dijon) approval was provided prior to the study. The data are parts of the challenge and analyzed
retrospectively. Table 1. demonstrates imaging parameters of the two datasets employed in this
study as well as pathology. Figure 3 illustrates a sample slice from each dataset and the specific heart
structure respectively. We split both the datasets into training, validation (80%), and test (20%) sets.
On the 80% training data, we performed five-fold cross-validation, and then tested the models on the
remaining 20%. We tried to be fair and have a thorough evaluation of our model, and that is why we
split the data in this way. Since the challenge organizers only provided the ground-truth label for their
training sets but not test set.

Table 1. Imaging parameters of the sequences employed in this study. Abbreviations: FOV, field
of view.

Datasets Sequence Resolution (mm3) Slices FOV (mm3) MR Scanner Pathology

ACDC STACOM Short-axis MR 5–10 × 1.37 × 1.68 9–18 9–18 × 235 × 263
1.5 T Area
3.0 T Trio

Healthy,
Cardiomyopathy,
Hypertrophies,
Infraction

LASC STACOM LGE-MR 0.625 × 0.625 × 0.625 88
88 × 640 × 640
88 × 576 × 576

1.5 T Avanto
3.0 T Verio Atrial Fibrillation

Figure 3. Examples of Cine short-axis (left) and LGE-MR (right) images with different heart structures.
The red arrow points toward specific heart structure in different moralities.

3.2.1. LASC STACOM 2018

This dataset comprises 100 3D LGE-MRIs acquired from patients diagnosed with atrial fibrillation
(AF), and was provided as part of the STACOM 2018 challenge for the task of left atrium (LA)
segmentation. The resolution of the provided data is 0.625× 0.625× 0.625 mm3, with dimensions
of 88× 640× 640 and 88× 576× 576 voxels. A large proportion of the data was provided by the
University of Utah [34], while the rest were from multiple other institutes. Each 3D LGE-MRI volume
was acquired using a clinical whole-body MRI scanner (either a 1.5 Tesla Avanto or 3.0 Tesla Verio),
and its corresponding ground truth binary mask for the LA cavity, was annotated by experts.

3.2.2. ACDC STACOM 2017

The ACDC dataset provided as part of the MICCAI 2017 Challenge on automated cardiac
diagnosis, was created from real clinical exams, acquired at the University Hospital of Dijon.
This dataset consists of cardiac Cine-MR images (CMRI) from 100 patients that belong to one of
five classes, namely, healthy, dilated cardiomyopathy, hypertrophic cardiomyopathy, heart failure with
infarction, and right ventricular abnormality. The provided images are uniformly distributed over all
classes. Ground truth segmentations for the LV cavity, RV endocardium, and MYO, at end-diastole
(ED) and end-systole (ES), were generated manually by experts for all 100 samples. For each patient,
short-axis (SA) CMRIs with 28–40 frames are available, in which the ED and ES frame have been
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annotated. On average images, consist of nine slices where each slice has a spatial resolution of
≈235 × 263 voxels. The image slices cover the LV from the base to the apex. In-plane voxel spacing
varies from 1.37 to 1.68 mm, with a slice thickness of 5–10 mm. These images were acquired over six
years using two MRI scanners of different magnetic strengths (1.5 T (Siemens Area, Siemens Medical
Solutions, Germany) and 3.0 T (Siemens Trio Tim, Siemens Medical Solutions, Germany)). Cine-MR
images acquired during a breath-hold, with retrospective or prospective gating along the short-axis.

3.3. Training

Due to low contrast in some of the LGE-MRI and Cine-MRI volumes, we enhanced the contrast
slice-by-slice, using contrast limited adaptive histogram equalization (CLAHE) [35], and normalized
each volume based on its the mean and standard deviation of intensity values. The volumes were
zero-padded, and center-cropped to a fixed-size input for the networks. Both datasets were split into
80% for training and validation and 20% for testing within a five-fold cross-validation scheme. For the
ACDC dataset, we uniformly distributed the pathological cases across the training and validation
sets. In all experiments, the trained networks evaluated using the held-out test data (20 subjects).
The adaptive moment estimation (ADAM) optimizer [36], a type of gradient descent algorithm,
was used to estimate the weights of all networks throughout this study. The learning rate was fixed
at 0.0001, and the exponential decay rates of the 1st and second—-moment estimates were set to 0.9
and 0.999, respectively. During training, segmentation accuracy was evaluated on the validation set
after each epoch of the network. Networks trained until the validation accuracy stopped increasing,
and the best performing model was selected for evaluation on the test set. The network was developed
in Keras and TensorFlow [37], an open-source deep learning library for Python, and trained on an
NVIDIA Titan X-Pascal GPU with 3840 CUDA cores and 12GB RAM.

3.4. Evaluation Metrics

To evaluate the performance of each CNN, we compared their segmentations with the provided
ground-truth masks, for each MRI volume. We used three different metrics to evaluate segmentation
accuracy, namely, the dice similarity coefficient (DSC), Hausdorff distance (HD), and average surface
distance (ASD). The DSC metric, also known as the F1-score, measures the degree of overlap between
the predicted and ground truth segmentations. It is the most widely used metric for evaluating
segmentation quality in medical imaging [38], and is defined as:

DSC(G, P) =
2TP

(FP + 2TP + FN)
=

2|Gi ∩ Pi|
|Gi|+ |Pi|

, (6)

where G is the ground truth, and P is the predicted mask. TP, TN, FP and FN refer to true positive,
true negative, false positive, and false negative voxels, respectively.

HD is defined as the maximum of the minimum voxel-wise distances between the ground truth
and predicted object boundaries. This is expressed as:

HD(G, P) = max
g∈G

{
min
p∈P

{√
g2 − p2

}}
. (7)

ASD is the average of the minimum voxel-wise distances between the ground truth and predicted
object boundaries. By defining the shortest Euclidean distance of an arbitrary voxel v to a point P as
d̄(v, P) = minp∈P ||v− p||2, ASD can be expressed as:

ASD(G, P) =
1

NG + NP

{
∑

xp∈P
d̄(xP, G) + d̄(xG, P)

}
, (8)
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where NP and NG are the number of voxels on the object boundaries in the predicted and ground truth
masks, respectively.

4. Results

The LASC dataset comprised 100 volumes of 3D Late-Gadolinium Enhanced MRIs, from patients
diagnosed with atrial fibrillation. The CNN-based segmentation algorithms investigated in this study
were trained using a subset of this data, to learn features relevant to localizing and segmenting the
left atrium. All networks trained across these cross-validation experiments were evaluated using
the held-out test data (20 samples). The segmentation performance of each network investigated
was assessed using three evaluation metrics, namely, dice score (DSC), Hausdorff distance (HD),
and average surface distance (ASD). These measures were averaged across all cross-validation
experiments, and are summarized in Table 2.

The 3D DR-UNet multi-stage approach achieved mean DSC, HD, and ASD values of 90.44%,
21.68 mm, and 1.53 mm on the test data, respectively. On the other hand, the 3D DR-UNet
end-to-end network achieved a mean DSC value of 88.92%, HD of 21.73 mm, and ASD of 1.62 mm.
The segmentation scores for the other three networks were as follows—3D U-Net: DSC of 84.33%,
HD of 25.56 mm, ASD of 1.83 mm; 3D-VNet: DSC of 84.26%, HD of 26.39 mm, ASD of 1.62 mm; and
3D DR-UNet: DSC of 87.46%, HD of 24.61 mm, ASD of 1.72 mm. These results indicate that both
proposed approaches, i.e., the multi-stage and end-to-end networks, outperform the state-of-the-art
in terms of the DSC, HD, and ASD metrics. Furthermore, based on these results, we conducted
additional experiments using the 3D DR-UNet multi-stage approach, with higher network capacity in
the second stage (i.e., 16 filters rather than 8). These results also presented in Table 2 and highlight the
additional improvement in segmentation accuracy afforded by increasing network capacity. The DSC,
HD, and ASD metrics improved to 91.2%, 20.3 mm, and 1.38 mm, respectively.

For the ACDC dataset, we resampled all volumes to 10 × 1.25 × 1.25 mm per voxel to account for
varying spatial resolutions. The intensities of all images normalized to zero-mean and unit variance.
Subsequently, we zero-padded all volumes to 16 × 256 × 256 voxels and used them to train all
networks. Table 3 summarizes the average segmentation performance of different methods across
all structures. As with the previous dataset, the DSC, HD, and ASD metrics were used to evaluate
segmentation quality. In the first set of experiments on this dataset, all networks performed the
max pooling operation on all three dimensions of the input volumes. The 3D DR-UNet multi-stage
achieved a mean DSC score of 84.8%, HD of 5.81 m, and ASD of 0.57 mm, on the test data. While,
the end-to-end variant achieved mean DSC scores of 83.7%, HD of 5.99 mm, and ASD of 0.60 mm.
As the slice thickness along the z dimension of all volumes in the ACDC dataset is very large, 5–10 mm,
in the second set of experiments, we ensured that the inputs were downsampled only along the x
and y axes. With these settings, 3D DR-UNet multi-stage yielded a mean DSC score of 88.4%, HD of
4.91 mm and ASD of 0.41 mm, and the end-to-end variant achieved mean DSC scores of 87.5%, HD
of 5.58 mm, and ASD of 0.54 mm, respectively. These results indicate that both proposed methods
once again outperformed the state-of-the-art, and both benefit from max-pooling only along the x
and y dimensions, to account for the large voxel sizes along the z axis. Additionally, structure-wise
segmentation accuracy for the RV, LV, and MYO in the ACDC dataset, is summarized in Table 4.
These results further highlight the improvement in segmentation quality afforded by 3D DR-UNet
multi-stage (Keep Z), relative to all other networks investigated. The former consistently outperforms
the rest, across all structures, at both the ED and ES phases.
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Table 2. Segmentation performance of different network architectures on the test samples from the
LASC STACOM 2018 dataset, evaluated using the dice similarity coefficient (DSC), Hausdorff distance
(HD) and average surface distance (ASD) metrics (mean ± (std)). Filters denote here the initial number
of convolution kernels which used the byeach network.

Methods DSC ↑ HD[mm] ↓ ASD[mm] ↓
8 Filters

3D U-Net [17] 0.843 (±0.187) 25.569 (±21.107) 1.853 ±(1.536)
3D V-Net [33] 0.842 (±0.209) 26.397 (±25.387) 1.628 (±1.136)
3D DR-UNet [39] 0.874 (±0.098) 24.612 (±11.829) 1.728 (±1.200)
3D DR-UNet multi-stage 0.904 (±0.029) 21.685 (±7.793) 1.539 (±0.615)
3D DR-UNet end-to-end 0.889 (±0.062) 21.734 (±11.216) 1.621 (±0.889)

16 Filters
Yang et al. [22] 0.893 (±0.067) 24.45 (±12.455) 1.455 (±1.211)
3D DR-UNet multi-stage 0.912 (±0.031) 20.308 (±8.305) 1.386 (±0.486)

Table 3. Segmentation performance of different network architectures on the ACDC STACOM 2017,
evaluated using the DSC, HD and ASD metrics (mean ±(std)). Filters denote the initial number of
convolution kernels used by each network.

Methods DSC ↑ HD [mm] ↓ ASD [mm] ↓
32 Filters

3D U-Net [17] 0.825 (±0.123) 7.282 (±7.013) 1.680 (±4.505)
3D V-Net [33] 0.842 (±0.080) 5.894 (±2.664) 0.586 (±0.406)
3D DR-UNet [39] 0.848 (±0.056) 5.729 (±2.573) 0.591 (±0.461)
Mask-RCNN [40] 0.853 (±0.088) 5.127 (±2.312) 0.505 (±0.821)
3D DR-UNet multi-stage 0.850 (±0.068) 5.815 (±2.715) 0.575 (±0.465)
3D DR- UNet end-to-end 0.837 (±0.078) 5.991 (±2.598) 0.608 (±0.370)
3D DR-UNet multi-stage (Keep Z) 0.884 (±0.053) 4.916 (±2.247) 0.415 (±0.244)
3D DR-UNet end-to-end (Keep Z) 0.875 (±0.084) 5.583 (±3.447) 0.543 (±0.651)

Table 4. Structure-wise DSC, HD and ASD scores (mean ±(std)) for the right ventricle (RV), left
ventricle (LV) and myocardium (MYO) from the ACDC dataset.

Methods
LV RV MYO

DSC ↑ HD
[mm]↓

ASD
[mm] ↓ DSC↑ HD

[mm]↓
ASD

[mm]↓ DSC↑ HD
[mm]↓

ASD
[mm]↓

32 Filters

3D U-Net [17]
0.889

(±0.128)
3.943

(±2.69)
0.568

(±0.86)
0.781

(±0.203)
11.751

(±19.97)
3.780

(±16.82)
0.805

(±0.113)
6.153

(±3.55)
0.693

(±1.08)

3D V-Net [33]
0.908

(±0.066)
3.683

(±1.522)
0.424

(±0.25)
0.809

(±0.121)
8.231

(±4.25)
0.777

(±0.70)
0.809

(±0.079)
5.769

(±2.43)
0.556

(±0.31)

3D DR-UNet [39]
0.904

(±0.081)
3.588

(±1.54)
0.439

(±0.32)
0.825

(±0.109)
8.097

(±3.78)
0.78

(±0.69)
0.814

(±0.098)
5.501

(±2.64)
0.550

(±0.42)

3D DR- UNet multi-stage
0.910

(0.090)
3.634

(±2.39)
0.422

(±0.47)
0.820

(±0.107)
8.046

(±5.79)
0.789

(±1.21)
0.821

(±0.131)
5.766

(±3.19)
0.513

(±0.62)

3D DR- UNet end-to-end
0.901

(0.080)
3.799

(±2.47)
0.474

(±0.46)
0.811

(±0.120)
8.166

(±6.11)
0.776

(±1.23)
0.800

(±0.201)
6.007

(±4.19)
0.575

(±0.71)

3D DR- UNet multi-stage (Keep Z)
0.928

(±0.057)
3.054

(±1.24)
0.313

(±0.17)
0.871

(±0.075)
6.975

(±3.44)
0.515

(±0.41)
0.853

(±0.06)
4.718

(±2.32)
0.418

(±0.19)

3D DR- UNet end-to-end (Keep Z)
0.920

(0.070)
3.623

(±2.39)
0.397

(±0.41)
0.86

(±0.097)
7.889

(±5.59)
0.727

(±1.11)
0.846

(±0.108)
5.237

(±3.09)
0.504

(±0.60)

The quality of the segmentations generated using each network investigated in this study can
be visually assessed in Figure 4 for the LASC dataset, and Figures 5 and 6 for the ACDC dataset.
These help further highlight the benefits of the proposed multi-stage approach, for example, Figure 6
clearly shows the reduced number of false positives and false negatives estimated using the former,
compared to all other network configurations. This leads to RV, LV and MYO surfaces that resemble
the ground truth more closely than the rest; Figure 4 highlights a similar advantage for the LA; and
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Figure 5 depicts a test sample wherein, the myocardium is captured completely in the apical and
basal slices using the multi-stage approach, which is not afforded by the others. This is particularly
important in the analysis of cardiac MRI as accurate segmentation of these slices directly impacts the
estimation of important cardiac functional indices such as LV volume, used routinely in the clinic
for the diagnosis of various cardiac pathologies. Furthermore, Figure 4 illustrates that the proposed
methods accurately segment the LA in contrast to the others, particularly in the case of the first subject
which was more challenging due to the presence of noise and low soft tissue contrast.

Figure 4. Examples of LA segmentations and 3D mesh generated using each network for the LASC
dataset. Top and bottom rows depict slices chosen at random from two test cases and their mesh
representation. The ground-truth mask is in green, and the rest are in red color respectively.

Figure 5. Figure depicts segmentation of the RV, LV, and MYO at the ED phase, for a test sample
from the ACDC dataset, generated using each network. Rows from top to bottom depict the basal,
middle and apical slices, respectively. In all figures, red, blue and green represent the RV, LV, and MYO,
respectively.
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Figure 6. The surface mesh outputs produced by the different networks on a random test subject at the
ED phase of the heart. The colors red, green and blue indicate RV, MYO, and LV respectively.

Comparison With State-of-the-art Methods: We further compared our proposed method with
two other similar localization and segmentation methods including, Yang et al. and Mask-RCNN.
The results are shown in Tables 2 and 3. In [22], the authors first trained a Faster R-CNN to find the ROIs
(left atrium) within the volume and further segments LA using an encoder–decoder. They employed
many tweaks on their segmentation backbone such as, deep supervision, combo loss, and using
transfer learning to improve their model initialization. They also adopted a recursive refinement
step to improve the segmentation accuracy further. Thereby, their pipeline has so many trainable
parameters, and it is very complex to train. In contrast, we aimed to introduce a light-weight network
architecture to perform both localization and segmentation together. Here, our localization network
has less than a million parameters, which are very fast to train, and inference time takes only less than
a second for the entire volume. Yang et al. approach without any other tweaking steps achieved an
overall dice score of 0.893 and HD and ASD values of 24.45 and 1.455 mm for 20 test subjects on the
LASC dataset, while our method achieved an overall dice score of 0.91. Our reported results are an
average of all five fold-cross-validation, which covers both hard and easy cases. We also compared
our model with Mask-RCNN for the ACDC dataset, which outperformed Mask-RCNN based on all
evaluation metrics. The Mask-RCNN method achieved an overall dice score of 0.853 and HD and
ASD values of 5.127 and 5.05 mm, respectively. These results highlight the advantages afforded by our
proposed method.

4.1. Statistical Analysis

The effectiveness of our approach and its advantages over other segmentation methods was
evaluated using Bland–Altman analysis [41]. This statistical technique determines the agreement
between two quantitative measurements by constructing limits of agreement (LoA). The limits are
estimated using the mean and the standard deviation of the differences between the two segmentation
methods. For each component in the plot (each dot corresponds to one MR scan), a negative bias
indicates that the automated segmentation overestimates the volumes, while a positive one indicates
that it underestimates the volumes.

The Bland–Altman plots for differences in LA volumes obtained using manual and automated
segmentation methods on the LASC dataset, are shown in Figure 7. The volumes per patient is
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expressed in mm3. It can be observed that the agreement between our proposed method 3D DR-UNet
multi-stage (Keep Z) and manually generated ground truth is high with a bias (mean signed difference)
of −1.77 mm3 and limits of agreement of ±30.18 mm3 in terms of LA volume estimation. These results
suggest that the proposed method has a small bias to overestimate LA volume and that the variation
between automated and manual estimates of LA area is only slightly greater than the expert manual
annotation. The other methods have higher average volume differences, and there are some outlier
cases (refer to plots A-C in Figure 4), regarded as hard-examples to segment due to the presence of low
contrast and noise in the scans. However, our methods produced more accurate segmentation masks for
such cases resulting in significantly lower mean differences in LA volume and their corresponding LoA.
In other methods, since the global context information is not considered, they tend to over-segment
parts of MR volume, which have either similar morphology or contrast to LV, RV, and Myo structures.
However, our proposed methods accurately segment those cases, which is mainly because of the
localization step in both multi-stage and end-to-end networks that reduces the search space. For the
end-to-end approach, the first network produces the shallow probability map of the heart anatomy,
and it’s concatenated as an extra channel with the input of the second network to guide the model
to focus only on the localized region. It prevents the model from over-segmentation, consequently
resulting in a lower number of outlier cases.

Figure 7. Bland–Altman graphics presenting the differences between volumes obtained by manual
and automated segmentation methods, plotted against the mean of the 2 measurements for LASC
dataset. Volumes per patient are expressed in mm3. The solid lines(red) indicate the mean bias and the
dashed lines(blue) show the 95% CI (± 1.96SD). Each plot displays the agreement between method
segmentation output against the ground truth, (A) 3D UNet, (B) 3D VNET, (C) 3D DR-UNet, (D) 3D
DR-UNet End-2-End, (E) 3D DR-UNet multi-stage with eight filters and (F) 3D DR-UNet multi-stage
with 16 filters.

Furthermore, in Figure 8 each row depicts three Bland–Altman plots of the LV, RV, and Myo
respectively, generated with respect to the ground truth, for each segmentation method investigated.
These plots indicate that the multi-stage and end-to-end methods have a higher agreement with the
ground truth across all three cardiac structures, compared with 3D UNet, 3D VNet, and 3D DR-UNet.
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3D DR- UNet multi-stage (Keep Z) has an average mean difference volume of 2.18 mm3 for LV,
5.49 mm3 for RV, and 2.81 mm3 for MYO, with respect to their respective ground truth segmentations.

Figure 8. Bland–Altman graphics showing the differences between volumes obtained by manual
and automated segmentation plotted against the mean of the 2 measurements for ACDC dataset.
Volumes per patient are expressed in mm3. The solid lines(red) indicate the mean bias and the dashed
lines (blue) show the 95% CI (mean bias 1.96 SD). Each row shows three plots of LV, RV, and Myo for
3D UNet, 3D VNet, 3D DR-UNet, 3D DR- UNet multi-stage (Keep Z) and 3D DR- UNet end-to-end
(Keep Z) respectively.
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5. Discussion

Automatic localization and segmentation of cardiac structures in MRI are essential for several
clinical applications as they heavily influence subsequent quantitative and diagnostic analyses.
Although fully automated systems for extracting cardiac functional indices from MRIs are yet to
be adopted into routine clinical examinations, the design of robust frameworks for the same has
the potential to enhance the overall diagnostic workflow. For example, cardiac MRI segmentation is
necessary to measure blood pool and cardiac volumes, which aid in deriving functional indices such
as ES and ED ventricular volumes, ejection fractions, etc. These quantitative measures in turn are
used to diagnose patients. Consequently, automating this process would substantially reduce the time
spent by cardiologists in analyzing one patient’s images, as currently, the heart is segmented either
manually or semi-automatically to compute these measures. Additionally, this would help reduce
inter- and intra-rater variations, which are inevitable when such analyses are done manually, thereby
streamlining the overall process. Furthermore, intervention planning and subsequent image-guided
interventions could benefit significantly from the availability of high-quality volumetric segmentation.
To address these needs, this paper proposes a multi-stage, and end-to-end fully convolutional network
for cardiac MRI segmentation, which enables automated and robust delineation of cardiac structures
in the presence of varying degrees of pathology-induced morphological changes to the heart.

The flexibility of the framework is demonstrated by evaluating its segmentation performance
on two different datasets, acquired at separate centers, with different scanners and protocols.
The proposed framework, and in particular the multi-stage variant, consistently outperformed the
state-of-the-art in terms of segmentation accuracy. While CNN-based segmentation algorithms have
proven to be highly effective for a variety of applications, they are computationally expensive and
require a large amount of annotated training data to generalize well to unseen samples. It is particularly
challenging to address within the medical domain, due to the high cost of acquiring such ground
truth annotations. Additionally, 3D medical images such as cardiac MRI volumes require a lot of
computational resources (memory) due to their large size, limiting the complexity of trainable networks.
Consequently, we designed our multi-stage network to exploit the benefits of localizing the structure(s)
of interest (in its first stage), using gradient-based class activation maps (GCAM). By identifying ROIs,
sub-volumes within the cardiac MRIs were cropped and used to train the segmentation network.
This in turn reduced the computational expense, thereby enabling the design of a deeper segmentation
network while also maintaining the sub-volumes at a higher resolution, relative to when the entire
image volume is used. It helps reduce the loss in information resulting from downsampling the image
volumes. The proposed multi-stage approach also exploits both local and global information using
dilated convolutions and residual connections in the encoder branch. Dilated convolutions control the
spatial context of the features learned by the model and adjust the filter’s receptive-field to capture
multi-scale information. Furthermore, the residual connections between convolution layers ensure a
smoother flow of gradients in the backward pass.

Experiments conducted using the LASC dataset indicate that end-to-end training of our
framework produces comparable results to its multi-stage variant. It is because the attention
of the second encoder–decoder network is guided by the features learned in the first network.
Both approaches exploit the benefit of intermediate localization of the LA, resulting in improved
segmentation accuracy, relative to the other approaches investigated, which lack this component.
For the ACDC dataset, the multi-stage method substantially outperformed the end-to-end network
across all three structures. It is because the LA is relatively easy to segment in the provided LGE-MRI
dataset due to the high resolution of the images. Consequently, the advantage offered by the multi-stage
approach (i.e., segmenting at a higher resolution) is less apparent than in the ACDC dataset (where the
spatial resolution of the images is lower). We believe that the proposed framework is useful for a variety
of clinical applications requiring cardiac MRI segmentation, by providing high-quality segmentation for
images acquired from a wide age demographic of patients, with varying degrees of pathology-induced
morphological changes, and at different centers, using different scanners and protocols.
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Even though the segmentation accuracy of our approach was high for the LV blood pool, RV and
LA, there is still room for improvement, especially for the myocardium and LA borders. For future
work, we aim to test and verify the robustness and generalizability of our method by evaluating the
performance on a more diverse and motion included clinical MR images. The challenge datasets
are typically collected carefully to have better results reproducibility. However, in the real clinical
scenario, clinicians acquire many low and high-quality cardiac MR images under different settings and
configurations. On the other hand, deep learning-based models are sensitive to domain shift and data
acquisition change. Therefore, a comprehensive evaluation of the proposed model will be performed
using the UK BioBank dataset, which includes a large number of subjects, with different pathologies
and artifacts.

6. Conclusions

In this paper, we introduced two strategies for training a segmentation network, namely,
multi-stage and end-to-end, for automatic cardiac MRI localization and segmentation. Accurate heart
chamber localization directly enables faster data navigation and visualization of target structures,
which can undoubtedly save the radiologist times. The objective was to facilitate the generation of
accurate, high-resolution segmentation with limited training samples. Our approach does not require
significant pre-processing of the MR images or post-processing operations and utilizes the entire
3D volume, to explicitly use spatial information in three dimensions. The proposed method first
estimates a coarse density map localizing the structure of interest. It acts as an attention map focusing
the second (segmentation) stage of the network within the region of interest (ROI). Finding ROIs
with high precision allows us to build a deeper network, and also segment cardiac structures at a
higher resolution. Compared to existing CNN-based segmentation approaches, the proposed scheme
has shown its superiority in terms of segmentation robustness and accuracy, for images exhibiting
substantial variations in morphology and appearance due to pathology.
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