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Abstract: Fractal’s spatially nonuniform phenomena and chaotic nature highlight the function
utilization in fractal cryptographic applications. This paper proposes a new composite fractal function
(CFF) that combines two different Mandelbrot set (MS) functions with one control parameter. The CFF
simulation results demonstrate that the given map has high initial value sensitivity, complex structure,
wider chaotic region, and more complicated dynamical behavior. By considering the chaotic properties
of a fractal, an image encryption algorithm using a fractal-based pixel permutation and substitution is
proposed. The process starts by scrambling the plain image pixel positions using the Henon map so
that an intruder fails to obtain the original image even after deducing the standard confusion-diffusion
process. The permutation phase uses a Z-scanned random fractal matrix to shuffle the scrambled
image pixel. Further, two different fractal sequences of complex numbers are generated using the
same function i.e., CFF. The complex sequences are thus modified to a double datatype matrix and
used to diffuse the scrambled pixels in a row-wise and column-wise manner, separately. Security
and performance analysis results confirm the reliability, high-security level, and robustness of the
proposed algorithm against various attacks, including brute-force attack, known/chosen-plaintext
attack, differential attack, and occlusion attack.
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1. Introduction

A new digital world has increased the transmission demand of multimedia content at large scale.
At the same time, excessive use of digital media such as social networking sites and instant messaging
brings about the risk of invading to the personal privacy of its owner. Sometimes, this is required to
be more conscious about the secure receiving of image contents like in military security documents,
medical diagnostic images, bank account-related information from financial institutions, government
offices, etc. Thus, it is of the utmost concern to protect the system from the serious risk of confidential
data leakage [1].

The image encryption technique was introduced to secure the images transmitted through the
smartphone, IPAD, computer, laptop, and other electronic devices over the internet or outsourced to
the cloud storage. As compared to text and binary data, image encryption is more critical due to its
additional characteristics such as highly correlated adjacent pixels in different directions, excessive
redundancy, and greater data volume. Although many conventional encryption algorithms such as
Data Encryption Standard [2], RSA [3], Advanced Encryption Standard [4], and International Data
Encryption Algorithm [5] with high data transmission security have been proposed. However, these
ciphers proved inappropriate and time consuming for image information encryption. The foremost
concern of implementing image-specific cryptosystem to resolute image information protection includes
the consideration of all necessary image characteristics. Over the years, various cryptosystem design
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techniques have been developed, comprising a chaotic system, DNA structure, fractal function, wavelet
transform, cellular automata [6–11], and many more.

The author in [12] suggested that a cryptosystem having two fundamental structures, i.e.,
confusion-diffusion, exhibits resilient performance against cyber-attacks. The confusion phase deals
with the pixel shuffling or pixel permutation to reduce the relationship between the adjacent image
pixels. Whereas pixel diffusion ensures that the small change in plain image information should affect
at least half of the cipher image information. Pixel shuffling is achieved by changing the pixel positions
within the image, and the pixel diffusion is performed by changing the pixel values. Both phases can
be repeated as many times as needed to attain the desired security level. However, it costs the total
execution time.

Over the last decade, many image encryption ideas have been proposed using the same
structure [10,13–18]. An image encryption algorithm can perform permutation in two ways: (1).
Bit-level permutation [19–21], and (2). Pixel-based permutation [22–24]. A bit is considered as the
smallest operating element. To perform a bit-level permutation, an image needs to be transformed into
the binary form. A bit-plane scrambling shuffles the bits itself, and hence, is considered more secure.
However, it requires more execution time compared to the pixel-plane scrambling. For example, the
author in [25] proposed a bit-level permutation by generating a new sequence dynamically on every
small change in the plain image to ensure the robustness of the system against the chosen-plaintext
and known-plaintext attacks. Shouliang Li et al. pointed out that by implementing bit-plane and
pixel-plane scrambling jointly can have better performance in terms of security as well as a speedy
outcome [26]. A bit-plane scrambling plus diffusion (SPD) operation was proposed based on the
card trick method to change the pixel position and value at the same time [14]. Before performing
it, a pixel-level scrambling is also done to randomize the plain image pixels. Another example of
simultaneous pixel confusion and diffusion was proposed in [13]. Both processes were implemented
through horizontal confusion-diffusion followed by vertical confusion-diffusion with the help of a
newly proposed chaotic map, i.e., tent delay-sine cascade with the logistic map.

A high-efficient pixel scrambling was implemented in a block-based square matrix. The method
used a chaotic sequence to shuffle the pixels among the different blocks, following which the pixel
positions were changed again within the block itself using another chaotic sequence [23]. A simple yet
difficult to breach cryptosystem was designed by the author [24], in which pixel-based scrambling was
implemented using the Arnold method and Lucas series. A total of nine rounds of pixel permutation
were executed to enhance the efficiency and uniformity of the pixels. Xuncai Zhang et al. came up
with a concept of local pixel scrambling and global pixel scrambling, which was executed multiple
times using a Hilbert curve and piecewise linear chaotic map (PWLCM) respectively [22]. The overall
encryption process performed by executing multiple rounds of pixel scrambling and pixel diffusion
alternatively. A two-pass method of pixel permutation introduces the utilization of the first half-pixel
values to permute the other second half and vice-versa [27]. The author proposed a simple and fast
one-round-based dynamic diffusion operation in which the sum of the plain image pixels plays an
important role to have an extremely sensitive and secure cryptosystem. At each pixel diffusion step, the
sum of the pixels will be updated to significantly increase the resistivity against the known-plaintext,
chosen-plaintext, and differential attacks [28]. Recently, a two-steps diffusion process was proposed
in [29]. In the method, a new two-dimensional chaotic infinite collapse map generates two matrices X
and Y to perform pixel substitution. In the first step, scrambled image pixel values were rearranged
according to the sorting index generated through a one-dimensional chaotic sequence X. Further,
perform the diffusion operation on a previously generated sequence using another chaotic matrix Y.

A fractal is a self-similar image that is infinitely scalable in all directions and encompasses
striking features to study and explore. The fractal function works in a complex domain and generates
complex patterns using complex numbers upon execution. The chaotic nature of the fractal function
exhibits extremely random behavior and excellent sensitivity towards its initial condition, which makes
eavesdroppers inefficient to replicate the secret key to retrieve the confidential information [30–33].
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Moreover, a complicated structure of a fractal function leads to a reliable cryptosystem design that is
capable of secure digital information transmission. A fractal possesses a small footprint, which means
only a few parameters are required to produce a unique fractal image. The image instantly reacts to
even a tiny changed input, resulting in a completely different fractal image. At an early stage, the USA
navy published a patent describing the use of fractal function as a secret key in an image encryption
method [34]. However, a fractal function can be used in any phase of a cryptosystem design, i.e., key
design or encryption/decryption. The author utilized a superior fractal function to generate three initial
values, which were further inputted to a newly proposed chaotic map to produce three secret key
sequences in [35]. The Mandelbrot set, a most famous fractal function introduced by B.B. Mandelbrot
in 1979 [33], has a wide exploration history due to its interesting and complex structure. In the last
decade, many image encryption methods have been proposed using the Mandelbrot set and a Julia
set [36–40]. A set of four Julia images was used in the secret key design, which was further modified
by the Chen hyper-chaotic sequence. The same chaotic sequence was also used to select a different
fractal image to be further applied at each diffusion phase [36]. The real values of a Julia set function
have applied to substitute the scrambled pixels by multiplying the values together [37]. The author
suggested an image encryption method in which an H-fractal was utilized to diffuse the scrambled
image pixels [22,41]. The author in [42] proposed a fractal function-based cryptosystem, in which three
sets of initial values are derived by iterating a conjugate transcendental fractal function using Picard,
Mann, and Ishikawa iteration methods. An image encryption algorithm was proposed by utilizing the
RSA algorithm elements with the fractal quadratic transformation system, best suited to the images
that allow clearly distinguishing the contours [40]. A hybrid method including fractal-image addition
along with binary encoding has been proposed to encrypt the digital images [39]. A finite field cosine
transformation-based multiphase symmetry key encryption algorithm was designed by utilizing the
fractal as a source of randomness to generate a one-time pad keystream [43]. A burning ship fractal
function was employed to generate a secret key sequence, which uses Hilbert transformation to enhance
the sequence randomness [44].

A generalized M-J set was introduced to generate a secret key by using environmental noise and
the SHA-512 method. The indefinite nature of environmental noise ensures key security at every use.
The author also succeded to achieve a quite large keyspace i.e., 23250 [45]. The chaotic nature of inverse
fractal interpolation function was used to generate a pseudo-random key sequence, which was further
utilized in plain image pixel scrambling [46]. A symmetric key encryption algorithm was proposed
by the author in which an encryption key was generated using the Mandelbrot set functions [47].
Later the author in [48] pointed out that the method is not resistant to the chosen-plaintext attack,
chosen-ciphertext attack, and known-plaintext attack, under the assumption of direct use of the
plain image. Similarly, cryptanalysis was carried out on secure fractal image coding based on fractal
parameter encryption method. The basic idea of the paper is to encrypt few fractal parameters using
fractal encoding [49], but the intruder can reconstruct the image by comparing multiple cipher images of
the same original image encrypted using different secret keys [50]. By analyzing the above-mentioned
algorithms, and considering the chaotic nature of a fractal function, it is inferred that a non-linear
iterative fractal function is a well-suited structure of a cryptosystem design. Though many researchers
have already applied fractal theory in the image encryption method, it was mostly aligned with other
elements such as a chaotic map.

In this study, a new composite fractal function (CFF) is proposed which is a combined form
of two different standard Mandelbrot set functions to achieve high sensitivity and strong security.
The resulting CFF has better chaotic complexity in terms of trajectory in large space, a self-similar
structure at each scale, fractional dimension, and positive Lyapunov exponent. The main idea of this
paper is to utilize the same function in pixel confusion as well as in the pixel diffusion process using
different fractal-based key sequences that are generated by varying the control parameter value.

The rest of the paper is organized in the following sections: In Section 2, the structure of newly
proposed CFF along with its dynamic characteristics is discussed. Section 3 focuses on the proposed
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image encryption algorithm. The simulation result and performance analysis are discussed in Section 4.
At last, the paper is concluded.

2. A New Composite Fractal Function (CFF)

A Mandelbrot fractal function was invented by B.B. Mandelbrot in 1982 [33] while analyzing the
topology of the famous Julia set function. According to him, a simple mathematical function can create
the theory of self-similarity and roughness by generating the complex fractal images. The Mandelbrot
set (MS) can be defined as a set of c values in the complex plane for which the orbit of 0 remains
bounded under iteration of the given function.

zn+1 = z2
n + c (1)

The other modified form of the MS function can be defined as:

zn+1 = z4
n + c (2)

Figure 1 shows the fractal images generated by implementing both functions in MATLAB.
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Figure 1. Fractal images generated from MS: (a) Equation (1); (b) Equation (2).

The below section demonstrates the proposed composite fractal function (CFF) by combining
the discussed Mandelbrot set function and its modified version.The characteristics of the function are
investigated using the parameters given in Section 2.2.

2.1. The Mathematical Definition of CFF

A combined form of a Mandelbrot function and its variant, including an additional parameter,
i.e., β enhances the nonlinear dynamics of the MS function. Mathematically, the CFF is defined by
Equation (1).

zn+1 = z2
n + c + β ∗

(
z4

n + c
)

(3)

where c ∈ C and 0 < β < 1 with z0 = 0. The fractal image is the set of complex points for which
the orbit of zn does not tend to infinity while n approaches to infinity. The paper uses three chaotic
sequences that are generated by varying the parameter β value. Figure 2 shows the fractal images
generated from Equation (3) by putting β = 0.2, β = 0.3, and β = 0.5.
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Figure 2. Fractal images generated from CFF: (a) β = 0.2; (b) β = 0.3; (c) β = 0.5.

2.2. Dynamical Properties of the Proposed CFF

The chaotic properties of the proposed fractal function are evaluated using a self-similar structure,
fractal dimension, trajectory, and Lyapunov exponent.

2.2.1. Self-Similar Structure of CFF

The self-similarity feature displays the look-alike object upon scaling the object as the whole
or a part. A Mandelbrot set image falls under the category of escape time fractal. It means that
the image can be unequally scaled in different directions. The same mechanism of scaling has been
applied here because the Mandelbrot set is used as a seed map to construct the proposed CFF structure.
The implementation result shows the self-similar structure displayed by both CFF functions on various
scaling factors. Few of them are shown in Figure 3.
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2.2.2. Fractal Dimension

A fractal function is known to have a fractional dimension because of its complex fractal geometry.
The concept of the ’in-between’ dimension was introduced by a mathematician Felix Hausdorff in
1918 [51]. According to him, a quantitative measurement of perimeter roughness is calculated as a
fractal dimension. Since in the classical geometric world, the dimension of a smooth line is one, a plane
has a dimension of two and so on, which implies that the Hausdorff dimension of a two-dimensional
irregular fractal image must lie between one and two.

Here the fractional dimension is calculated using a box-counting method. Recently, Murat Erhan
Çimen et al. developed a user-friendly interface to calculate the fractal dimension using a box-counting
method [52]. Mathematically, the process starts by superimposing the complex and irregular fractal
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image with the grid of squares N over the edge. If the number of squares occupied by the fractal image
edge is E, then the formula to calculate the dimension is given as:

dim =
log N
log E

(4)

According to the above-discussed method, the fractal dimensions of the proposed CFF for β = 0.2,
0.3, and 0.5 have the values 1.3479, 1.3197, and 1.2776, respectively.

2.2.3. Trajectory

The trajectory of a function is obtained by evaluating the mapping orbit for a set of initial values.
This is a visual method to analyze the randomness and ergodicity of a chaotic map. For better chaotic
performance, the outcome of each iterated point should occupy the large phase space and also possesses
a complicated geometrical structure. To demonstrate the orbit structure of the proposed CFF, the
function is iterated 1600 times for each β value and the values are plotted in a 2D phase space. From
Figure 4, it can be seen that the given CFF exhibits complex behavior in all parameter ranges, and its
trajectory is distributed in the entire phase space. According to the trajectory diagram of MS function
shown in Figure 4a, it can be concluded that the chaotic range of CFF is expanded in larger phase
space as compared to the MS function. The visual representation of function outcome indicates that
the proposed fractal function has strong randomness and ergodicity property.
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2.2.4. Lyapunov Exponent

A sensitiveness property of the chaotic system exhibits two exponentially diverted trajectories of
an extremely closed initial point over time. It indicates that the system’s orbit is unpredictable. For a
function f (x), the feature is quantitatively estimated using the Lyapunov exponent. The formula can
be defined as:

LE f (x) = lim
n→∞

{
1
n

ln

∣∣∣∣∣∣ f n(x0 + ε) − f n(x0)

ε

∣∣∣∣∣∣
}

(5)

where ε denotes the difference between two initial points to be considered. A positive LE value
indicates that the orbits of two initial points will be completely separated over the successive iterations.
It proved that the system is in a chaotic state. A system having more than two positive Lyapunov
exponent values is considered as a hyperchaotic map.

The Lyapunov exponents of MS and CFF are calculated for both β values, i.e., 0.3 and 0.5, and
plotted in Figure 5a–c, respectively. From these diagrams, it is evident that as compared to MS function,
the proposed function has high Lyapunov exponent values in a large continuous interval. It means
that the system has a wider chaotic range with no periodic window. The largest LE value of MS is 1.44
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whereas the CFF has a maximum LE value close to 5.89 in both cases. Thus, the result signifies the
strong, unpredictable behavior of the new fractal data sequence.
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3. A Cryptosystem Design Using Composite Fractal Function

The paper focuses on designing image encryption & decryption method using a new proposed
CFF. An important point about the role of fractal image in the cryptosystem design includes its
utilization at the various stages. The method executes the CFF three times to extract three different
fractal data sequences used to confuse and diffuse the plain image, respectively. To achieve a higher
level of security and computation efficiency, two rounds of pixel scrambling and substitution are
implemented to generate a noise-like cipher image. Figure 6 shows the block diagram of the proposed
image encryption method.
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3.1. Secret Key Sequence Generation

An integral component of an image encryption algorithm is the secret key used to encrypt
and decrypt the image that is supposed to be strong enough to resist the Brute-force attack. A
secret key is derived by iterating the fractal function and has a direct impact on pixel shuffling and
substitution processes. Therefore, the randomness and chaotic behavior of the key sequence must be
complex enough to provide a highly secure cryptosystem. The proposed method uses three different
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fractal-based key sequences. The first one-dimensional key stream is used to generate a random
two-dimensional matrix, which will be further applied in the plain image pixel scrambling process. In
the process to generate a one-dimensional fractal data vector, two steps need to be implemented.

(1) Generate a fractal data matrix F1 using CFF by considering β = 0.2 given in Equation (3). For
example, if the method is encrypting an image of size 256 × 256, then execute the CFF to generate
a 100 × 100 fractal data matrix.

(2) Apply Z-scan to F1 and select any 256 values to get a one-dimensional fractal data vector ZF1 of
size 1 × 256. The Z-scan process can be described using a sample matrix of size 4 × 4 as shown in
Figure 7.
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The other two fractal key streams (F2 and F3) are generated using the same Equation (3) but
for two different β values i.e., 0.3 and 0.5. Both the key sequences (F2 and F3) are modified before
applying to the row-wise and column-wise pixel substitution process, respectively. The obtained
complex number sequences F2 and F3 are converted into double datatype key sequences, i.e., ModF2
and ModF3 according to the given mathematical function as:

temp(i) = mod
(
((abs(F(i))) − f loor(abs(F(i)))) × 108, 256

)
(6)

ModF(i) = mod(abs(F(i)) + temp(i), 256) (7)

where i ∈ [1, 2]. A control parameter β provides the flexibility to generate different fractal data
sequences. Even a researcher has the option to analyze the randomness of composite fractal function
by considering other power values of the Mandelbrot set [53,54]. All generated fractal key sequences
exhibit the capability to be used in the cryptosystem design because of its rough structure and irregular
scalability in addition to the chaotic properties.

3.2. Permutation Phase

An image pixel permutation method deals with the shuffling of pixels within the image.
The objective to execute this process is to ensure the reduced adjacent pixel correlation in all directions.
The proposed image encryption scheme applied a fast pixel shuffling method to change the position of
row and column pixels simultaneously.

3.2.1. Preliminary Steps

Before performing the shuffling process, (1) A Henon map-based pixel scrambling of a plain image
P is performed to have more random output upon pixel permutation process execution. The steps of
an image pixel scrambling start by executing the Henon map function for M×N times and obtained
x and y sequences. Next, apply sorting to the obtained sequences separately and then merge their
corresponding sorting indexes. At last, swap the plain image pixels with the merged sorting index
sequences and get the scrambled plain image P1.

xn+1 = 1−
(
a× x2

n

)
+ yn

yn+1 = b× xn
(8)
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[x_index] = sort(x)
[y_index] = sort(y)

(9)

[index] = mod(x_index + y_index, 255) + 1 (10)

P1 = swap(P, index) (11)

Further, (2) To permute image pixel, produce a two-dimensional random fractal matrix S using
Z-scanned fractal data array ZF1 and a random array R of the same size. Let us suppose a plain image
(M×N) needs to be encrypted, then the size of each random array R and ZF1 should be 1×M. Start
the process by sorting the array R and ZF1 and stores their index values in R_index and ZF1_index
respectively. Now, identify the index value of S using the sorted index of ZF1_index. According to the
obtained index value, place the data value of S using the sorted index of random array i.e., R_index. A
procedural description is given below:

R = randi(1, M) (12)

[R_index] = sort(R) (13)

[ZF1_index] = sort(ZF1) (14)

S_index = mod(n + ZF1_index(m) − 1, N) + 1 (15)

S(m, n) = R_index(S_index) (16)

where m = {1, 2, . . . , M} and n = {1, 2, . . . , N}. For example, assume ZF1 = {5, 2, 9, 7} and R = {4, 1, 3, 8}.
After applying to sort, the obtained ZF1_index and R_index will be {2, 1, 4, 3} and {2, 3, 1, 4} respectively.
Now set the value of m to 1 and calculate S_index for all columns using Equation (15). Assign the
R_index = {2, 3, 1, 4} value to S(1, 1), S(1, 2), S(1, 3), S(1, 4) according to obtained S_index = {3, 4, 1, 2}
at the first iteration. As a result, the output of S will be {1, 4, 2, 3}. Repeat the process by executing
Equations (15) and (16) for M number of rows and get a two-dimensional random fractal matrix S to
do the pixel scrambling in the next step.

3.2.2. Image Permutation Using Random Fractal Matrix

A fast pixel permutation method is proposed to change the pixel position in the row and column
simultaneously and reduced the adjacent pixel correlation close to zero. The pixel position shuffling
of the previously scrambled plain image P1 takes place with the help of a random fractal matrix S.
Identify the row and column index value (x, y) of newly constructed scrambled matrix SP so that the
pixel values of P1 can be shuffled accordingly. The detailed steps are discussed as follows:

x = mod(S(m, n) − (m− 1), M) + 1 (17)

y = S(x, :) = S(m, n) (18)

The function is repeated for M ×N times to get all updated indexes of SP. Now shuffle the
elements of P1 according to the modified index values.

SP(x, y) = P1(m, n) (19)

Figure 8 gives a numerical description of how actual plain image pixels will be distributed to
its scrambled result. Row-1 of Figure 8a shows the actual index value which will be changed to the
index values given in row-2 of the Figure 8a only. In the given example of the 4 × 4 matrix, it can be
seen that no row and column number of an index matches with its equivalent modified index, except
one index in each matrix row. Figure 8b displays the one-to-one position mapping between the P1
and SP. The color-coded cells help to locate the dispersed cell value of P1 in SP after replacement.
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Finally Figure 8c represents a matrix view of scrambling process using the sample matrices S, and
P1. A simultaneous row and column-wise P1 pixel position change occurs using S and produces a
completely random and revised shuffled matrix SP.
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3.3. Diffusion Phase

A cipher image must be sufficiently sensitive to the slight change in the plain image. A strong
diffused system is assumed to have more than 50% change impact on cipher image pixels in the case of
plain image pixel change. The proposed diffusion strategy includes pixel-by-pixel substitution in two
phases, i.e., row-wise and column-wise.

The process utilizes the two fractal key streams (ModF2 & ModF3) generated in the previous
section to perform the non-linear substitution of the scrambled image pixels SP. The image pixel
diffusion is achieved by considering the current SP pixel, same indexed ModF2/ModF3 pixel, and
previously diffused pixel (either SP or cipher image). Before using the fractal keystream, shift the
key by m or n number of bits at each iteration depending upon the row-wise or column-wise pixel
substitution, respectively.

Row-wise pixel substitution: Let us assume m = {1, 2, . . . , M} and n = {1, 2, . . . , N}, a row-wise
pixel substitution starts by initializing m = 1 and varying n until it reaches the end of the columns. For
each m value, shift the ModF2 bits m times before utilizing it in the diffusion process. The mathematical
description of the proposed diffusion method is defined as:

C1(m, n) =

{
SP(m, n) + shi f tF2(m, n) + SP(m, N) mod F, i f n = = 1
SP(m, n) + shi f tF2(m, n) + C1(m, n− 1) mod F, i f n , 1

(20)
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Column-wise pixel substitution: In the next step, a column-wise pixel substitution takes place by
using the result of the previous section and a new fractal keystream i.e., ModF3. As discussed in the
previous section, the diffusion process utilizes an updated ModF3, which will be obtained by shifting
the bits n times at each iteration. The diffusion function in this step will work as follows:

C2(m, n) =

{
C1(m, n) + shi f tF3(m, n) + C1(M, n) mod F, i f m = = 1
C1(m, n) + shi f tF3(m, n) + C2(m− 1, n) mod F, i f m , 1

(21)

Here shi f tF2 and shi f tF3 denotes the updated ModF2 and ModF3 after bit shifting, respectively.
F represents the intensity level of an image pixel such as F = 2 in the case of a binary plain image, and
F = 256 if the image pixels are represented by eight bits. A cipher image C will be obtained by repeating
the pixel scrambling and pixel diffusion process one more time with the generated sequence C2.

3.4. Algorithm

So far, the paper has discussed all the methodologies in detail used to design the proposed
cryptosystem. A step-by-step description of the conversion of a plain image to the cipher image and
vice-versa can be explained as below.

3.4.1. Encryption Process

Input: A plain image P of size M×N and a composite fractal function CFF

1. Generate a fractal data matrix F1 of size 100 × 100 by executing CFF for β = 0.2, assuming
M = N = 256.

2. Apply the Z-scan method to F1 and obtain a one-dimensional array ZF1 of size 1 × 256.
3. Generate two more fractal data matrices F2 and F3 of size M×N for two different β values, i.e.,

0.3 and 0.5 using the same CFF.
4. Modify F2 and F3 by implementing an arithmetic operation and obtain ModF2 and ModF3.
5. Obtain P1 by applying the Henon map-based pixel scrambling to P.
6. Generate a two-dimensional random matrix S with the help of ZF1 and a random array R of the

same size (1 × 256).
7. Perform image permutation operation on P1 using S and obtain SP.
8. Shift the bits of ModF2 on each row change in row-wise pixel substitution and ModF3 on each

column change in column-wise pixel substitution.
9. Execute row-wise pixel diffusion using current pixel of SP, shi f tF2, and previously diffused image

pixel and get C1.
10. Execute column-wise pixel diffusion using current pixel of C1, shi f tF3, and previously diffused

image pixel and get C2.
11. Repeat steps (7)–(10) using C2 one more time to get the final cipher image C.
12. Output: An encrypted unintelligible image cipher image C.

3.4.2. Decryption Process

Input: A cipher image C and a composite fractal function CFF

1. Execute steps (1)–(4) to get initial data matrices to be used in the decryption process as it was in
the encryption process.

2. The cipher image C will undergo the pixel diffusion process stated in steps (8)–(10).
3. Perform pixel shuffling of an obtained image using SP.
4. Repeat steps (13) & (14) one more time to get the initial scrambled plain image P1.
5. Finally, to produce the original plain image P, apply the inverse of a Henon map-based pixel

scramble operation to P1.
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Output: An original plain image P.

3.5. Discussion

A secure cryptosystem requires a strong and unidentifiable secret key to protect the information
from being hacked while in transmission. The proposed cryptosystem utilized the new composite
fractal function to generate the key sequence. Here, three important points justify the effective use
of a fractal function-based secret key. (1) A fractal function characterizes a large keyspace in-spite
of having a low number of initial values. Thus, this reduces the possibility of a Brute-force attack.
(2) Three different fractal data sequences have been generated to be used in pixel scrambling and pixel
diffusion separately. (3) The proposed CFF combines the two-generic form of well-known Mandelbrot
sets so it has the flexibility to use another combination as well to generate a secret key. A standard
confusion-diffusion structure has been followed to design the proposed scheme. The discussed
cryptosystem leverages the chaotic characteristics of the fractal function and the randomized plain
image pixels because of an additional pixel permutation operation before the actual pixel scrambling
process. Other advantages that are achieved by implementing the method: (Each statement is verified
in the subsequent simulation results and performance analysis section).

1. All cipher images have a uniform pixel intensity distribution, which proves the applicability of
the method to any type of image representation format.

2. The scheme proposes a two-step diffusion process, i.e., row-wise and column-wise, to get a
complete randomized outcome.

3. The pixel confusion and diffusion processes have been repeated two times so that a single bit
change in a plain image or a cipher image has a great impact on the corresponding encryption or
decryption phase, respectively.

4. A random fractal data matrix will always produce a different shuffled image, thus it can resist the
well-known attacks such as chosen-plaintext, differential, and statistical attacks.

5. All three secret key matrices are derived using the discussed CFF so any slight change in the
function will change the key matrices completely, and correspondingly, the cipher image.

Till now, we have seen the positive side of the given scheme, but it also portrays a drawback
during image recovery from noise and data loss attack. This is due to the impact of repetitive execution
of fractal function-based image permutation and diffusion. Because of the high sensitivity towards its
initial value, a fractal function-based key will result in an entirely changed decrypted image on any
small change in the cipher image (such as noise attack or data loss). Therefore, a legitimate receiver
can face difficulty to recover the original image from a noisy or lost data image. In the future, a robust
cryptosystem based on a fractal function with multiple rounds can be discussed, which would be
secure from the noise and data loss of course.

4. Simulation Results and Performance Analysis

The section discusses the simulation results of the proposed image encryption, executed using
MATLAB (2016b) software. The purpose of any image encryption algorithm is to come up with the
strategy to be able to produce a noisy cipher image that completely differs from its corresponding plain
image. It helps to make sure that the hacker would not be succeeded to penetrate the cipher image
through the statistical analysis of it. Further, various suggested performance tests have performed to
verify the security, suitability, and robustness of the new CFF-based image encryption algorithm [55].

To verify the feasibility of the proposed system, few sample images were chosen to test the
performance visually. The method can be applied to any image representation format like 2-bit, 8-bit,
16-bit, and 24-bit. A color image has a 24-bit need to split three channels (R, G, B) of 8-bit each before
applying the image encryption algorithm. Each divided channel is a 2D matrix. Execute the given
image encryption method to each color component separately and get the required encrypted/decrypted
images. At last, merge all the three image channels (R, G, B) to get the desired result at both ends.
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Figure 9 shows the gray, binary, and color plain images and their corresponding cipher and
decrypted images. As can be seen, the cipher image has a noise-like visual, it is hard to identify the
plain image by analyzing it. Similarly, the reconstructed image without any loss of information proved
the efficiency of the decryption algorithm as well. The subsequent section will evaluate the security
level of the proposed scheme to ensure the system’s resistivity against various ciphertext attacks.
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4.1. Histogram Analysis & Chi-Square Test

A histogram depicts the image pixel intensity distribution throughout the axes. A plain image
with highly correlated pixels allowed the hacker to infer the system. That is the reason: a cipher image
must have reduced or almost not correlated image pixels. The condition is achieved by distributing
the image pixel frequency uniformly. The histogram of a plain image and cipher image is shown
in Figure 10. The even distribution of image pixels makes it difficult for the hacker to steal valid
statistical information from the cipher image. Hence, it proved the effectiveness of the system against
the statistical attack.J. Imaging 2020, 6, x FOR PEER REVIEW 15 of 29 
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Besides the visual competency of the system, a quantitative analysis of the randomness is done by
implementing the chi-square test. The mathematical function to compute the chi-square value can be
given as:

χ2 =
∑ (Oi − Ei)

2

Ei
(22)

where (Oi) and (Ei) are observed and expected pixel intensity frequency respectively. According
to [56], a random gray image should have a chi-square value less than the standard value 293.2478 at
significance level 0.05. Table 1 lists all chi-square values computed for the considered sample gray
images and their respective cipher images. The outcome indicates a better uniformity of pixel intensity,
a requirement to design a secure cryptosystem.

Table 1. Chi-square values of sample images.

Images Elaine Lena Clock 5.1.13 5.1.11

Plain Image 36011.91 42101.414 281805.5625 70357.64 220592.7
Cipher Image 246.9 223.35 241.35 253.8 229.36

4.2. Key Space

A cryptosystem must have a sufficiently large keyspace to resist the brute-force attack. According
to [57], a keyspace equal to or larger than 2100 is good enough to make brute-force attack infeasible.
A plain image pixel permutation operation is executed using the Henon map, which requires two
variables a and b. Additionally, the secret key sequences F2 and F3 used in the diffusion process are
derived by executing a new CFF, which requires six parameters, i.e., x, y, initial value z, number
of iterations n, and β (0.3 and 0.5). Similarly, a different key sequence is generated by considering
different n and β (0.2) to shuffle the image pixels. So, a total of 10 double-precision values will be used
in the key sequence generation process. Considering the fact given in IEEE floating-point standard,
the computational precision of a double datatype variable is 10−15. Accordingly, the total available
keyspace will be

(
1015∗10

)
≈ 2495 . The obtained keyspace value is quite greater than the required 2100

to secure the proposed cryptosystem against the brute-force attack.

4.3. Adjacent Pixel Correlation Analysis

A correlation coefficient depicts the relationship strength between the adjacent image pixels.
This test is used to evaluate the encryption quality by relating the pixels of plain and cipher images
horizontally, vertically, and diagonally. An ideal encryption algorithm should be able to produce an
encrypted image with no correlation between the adjacent pixels in all directions. In such a scenario, an
intruder would not get sufficient information about the image structure to recover the original image.
The pixels correlation coefficient of plain image and cipher image can be calculated as:

M(x) =
1
N

N∑
i = 1

xi (23)

var(x) =
1
N

N∑
i = 1

(xi −M(x))2 (24)

cov(x, y) =
1
N

N∑
i = 1

(xi −M(x))(yi −M(y)) (25)

cc =
cov(x, y)√

var(x) ∗
√

var(y)
(26)
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where function M(x) is the mean, var(x) is the variance, and cov(x, y) is the covariance of selected N
pixels. Finally, function cc estimates the correlation coefficient between adjacent pixels x and y of the
plain and cipher image. A cc value of nearly one indicates an excellent similarity, while the value of
zero explicates no correlation between the adjacent image pixels. Therefore, the cc ≈ 0 conferred that
the plain and cipher image contents are highly dissimilar to each other.

The given approach is evaluated for different gray images of size 256 × 256. The association
among neighboring pixels can be measured by plotting pixels distribution of plain and cipher images
in all directions, which are shown in Figure 11. The distribution pattern concludes whether the pixels
are correlated or not. A diagonal line pixel pattern depicts the excessive amount of adjacent pixels
similarity. On the other side, and evenly distributed, cipher image pixel signifies the reduced pixel
correlation in all directions. The quantifiable investigation of the correlation coefficient of each image
is shown in Table 2 in all possible directions. The plain image and a cipher image have the anticipated
cc values in horizontal, vertical, and diagonal directions. The test authorized that the system meets the
requirement of highly non-correlated images before and after encryption.
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Figure 11. Elaine image pixel distribution in a different direction. (a–c) Original image pixel distribution
in horizontal, vertical, and diagonal direction; (d–f) Cipher image pixel distribution in horizontal,
vertical, and diagonal direction.

Table 2. Pixel correlation coefficient values of sample images.

Images
Plain Image Cipher Image

Horizontal Vertical Diagonal Horizontal Vertical Diagonal

Elaine 0.9707 0.9755 0.9509 −0.002 0.0009 −0.0051
Lena 0.9541 0.9778 0.9321 −0.002 0.0017 −0.0027
Clock 0.9564 0.9740 0.9389 −0.0026 0.0021 0.0015
5.1.13 0.8721 0.8667 0.7561 0.0003 −0.0011 −0.0052
5.1.11 0.9570 0.9365 0.8926 −0015 0.0026 −0.0024

4.4. Correlation Between Plain and Cipher Image

The Pearson correlation coefficient (PCC) quantitively describes the linear relationship between
two images. The PCC value is computed by using the given function as:

PCC(x, y) =
N

∑N
i = 1(xiyi) −

∑N
i = 1(xi)

∑N
i = 1(yi)√(

N
∑N

i = 1 (xi)
2
− (

∑n
i = 1 (xi)

2
) (

N
∑N

i = 1 (yi)
2
− (

∑n
i = 1 (yi)

2
) (27)

where x and y are two variables that define two neighboring pixels of an image, and N refers to
the number of pixel pairs. Here, x and y are assumed to be the plain image and cipher image pixel
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respectively. The PCC value varies between [−1, 1]. Here, −1 indicates an inverse relationship between
the variables, whereas +1 shows a direct relationship and highly correlated variables. The value close
to zero indicates that the plain and cipher image are not correlated to each other, which is an expected
outcome of a secure cryptosystem. Table 3 lists the correlation coefficient value of tested sample images.

Table 3. Correlation Coefficient value between plain and cipher images.

Images Elaine Lena Clock 5.1.13 5.1.11

PCC −0.0014 0.0013 0.0035 −0.0012 0.0021

4.5. NPCR and UACI Tests

To test the robustness of the proposed system against the differential attack, the measurement
of the impact of the minor alteration in the plain image of its corresponding cipher image is carried
out [58]. The number of pixels changing rate (NPCR) test is implemented to check the influence
capacity of plain image pixel change. An NPCR value illustrates the pixel difference between the two
encrypted images at the same position, whose plain image is differed by only one bit. To evaluate the
probable impact, consider two encrypted images (C1 and C2) obtained before and after the one-pixel
change in plain image. The NPCR can be calculated using the given formula as:

NPCR =
1

M ∗N

M∑
i = 1

N∑
j = 1

D(i, j) × 100% (28)

where D(i, j) is calculated as:

D(i, j) =

{
0, i f C1(i, j) = C2(i, j)
1, i f C1(i, j) , C2(i, j)

(29)

UACI or Unified average changed intensity test calculates the pixel intensity difference between
two images. Here the test is applied to two encrypted images C1 and C2 having size 256 × 256.
The mathematical formula to calculate UACI value as follows:

UACI =
1

M ∗N

M∑
i = 1

N∑
j = 1

C1(i, j) −C2(i, j)
255

× 100% (30)

In the proposed method, a pixel of the plain image P1 is randomly selected and changed to one to
obtain a new plain image P2. Now the NPCR and UACI tests are implemented on the corresponding
encrypted images C1 and C2. The evaluation of the projected technique is done by calculating the NPCR
and UACI values for all test images and listed in Table 4. The accepted critical values of NPCR and
UACI tests are NPCR > 99.5693% and UACI ∈ [33.22–33.70] respectively. The outcome demonstrates
that both test values are approaching the ideal values due to the 1-bit alteration in the plain image.

Table 4. NPCR and UACI values of cipher image.

Images NPCR (%) UACI (%)

Elaine 99.62 33.55
Lena 99.63 33.54
Clock 99.6 33.39
5.1.13 99.62 33.56
5.1.11 99.64 33.47
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4.6. Information Entropy

The term “entropy” was originally used by a scientist named Claude Shannon in 1949 [12] to find
out the degree of chaos. The tool is widely used to test the gray value distribution probability. Here the
global Shannon entropy (GSE) and local Shannon entropy (LSE) of an image are calculated to measure
the unpredictability and randomness of the suggested encryption system. The formula to calculate the
entropy of an image is defined as:

H(s) = −
2n
−1∑

i = 0

p(xi)log2[p(xi)] (31)

where P(xi) is the discrete probability density function for the pixel value ranges (0–255). Both entropies
will be calculated using the same function except that the GSE is calculated for the entire image,
whereas LSE considers randomly selected non-overlapping blocks of an image [59]. An image having
256 possible values will show the maximum entropy equal to eight (i.e., 28 = 256). To calculate
LSE, consider k non-overlapping image blocks and calculate the Shannon entropy of each block using
Equation (31). Now compute the mean entropy value of all k image blocks to get LSE. An accepted
value of LSE falls between the range [7.901516–7.903423] to pass the randomness test. Table 5 lists the
global Shannon entropy and local Shannon entropy of the encrypted images along with plain image
entropy. It is shown that the calculated GSE and LSE values of cipher images are close to the expected
values. Therefore, the proposed scheme has successfully passed the randomness test for a variety of
different test images.

Table 5. GSE and LSE values of sample cipher images.

Images Cipher Image

GSE LSE

Elaine 7.9973 7.9036
Lena 7.9975 7.9027
Clock 7.9972 7.9023
5.1.13 7.9972 7.9017
5.1.11 7.9975 7.9014

4.7. MSE, MAE, PSNR and SSIM Tests

The parameters used to check the encryption quality of an image encryption system using its
pixel’s disparity are mean absolute error (MAE), mean square error (MSE) and peak signal to noise
ratio (PSNR). The MAE value is calculated to check the average absolute pixel difference between a
plain image P and a cipher image C of size M×N. The MAE function can be defined as:

MAE =
1

M ∗N

M∑
i = 1

N∑
j = 1

∣∣∣C(i, j) − P(i, j)
∣∣∣ (32)

The MSE value refers to the cumulative square error measure, which is calculated by measuring
the squared difference between a plain image and a cipher image. Moreover, the PSNR value analyzes
the image fidelity by calculating the ratio between the maximum pixel intensity and the MSE value.
The MSE and PSNR values will be calculated using the following functions:

MSE =
1

M×N

M∑
i = 1

N∑
j = 1

(P(i, j) −C(i, j))2 (33)
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PSNR = 20log10

 (2L
− 1)2

√
MSE

db (34)

where L represents the bit-depth of the used image. Another structural similarity index measurement
(SSIM) test quantifies the perceptual difference between two images. The function to calculate SSIM is
defined as:

SSIM =

(
2PC + S1

)
(2σPC + S2)(

P
2
+ C

2
+ S1

) (
σ2

P + σ2
C + S2

) (35)

where

P =
1

M×N

M∑
i = 1

N∑
j = 1

P(i, j) (36)

C =
1

M×N

M∑
i = 1

N∑
j = 1

C(i, j) (37)

and

σP =
1

M×N

M∑
i = 1

N∑
j = 1

[
P(i, j) − P

]2
(38)

σC =
1

M×N

M∑
i = 1

N∑
j = 1

[
C(i, j) −C

]2
(39)

σPC =
1

M×N

M∑
i = 1

N∑
j = 1

[
P(i, j) − P

] [
C(i, j) −C

]
(40)

where P and C are mean values of plain and cipher image respectively, σP and σC are the standard
deviation of plain and cipher image respectively, and σPC is the cross-correlation of the plain and cipher
image. S1 and S2 are used for stability and can be calculated as S1 = (0.01× L)2 and S2 = (0.03× L)2.
Here, L represents the image intensity value, which is 255 for a gray image.

A PSNR value equal to infinity indicates that both considered images are the same and an SSIM
value close to zero represents two structurally different images. Whereas a higher MAE and MSE value
ensure the robustness of the proposed system against the cyber-attack. This shows that to achieve a
secure cryptosystem, the PSNR and SSIM values should be low, and the MAE and MSE values should
be on the higher side. To prove the validity of the given scheme, all four tests have been conducted on
a few test images and the results are listed in Table 6. The result states that the encryption quality of all
images follows the standards of being a secure cryptosystem.

Table 6. MAE, MSE, and PSNR values of sample cipher images.

Image MAE MSE PSNR SSIM

Elaine 72.49 7641.788 9.2992 0.0091
Lena 76.34 8613.222 8.7766 0.0093
Clock 89.98 12146.04 7.2866 0.0102
5.1.13 124.23 20924.15 4.9271 0.0082
5.1.11 85.31 10899.16 7.7516 0.0096

4.8. Performance Analysis

The proposed method is implemented on a computer with the specifications: MATLAB R2016b
platform and system configuration Intel®Atom™ x7-z8700 CPU @1.60GHz and 4 GB RAM. Various
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parameters such as encryption time (ET), encryption throughput (ETP), and number of cycles per bytes
(NCB) are used to measure the efficiency of the system.

The given method employed two rounds of confusion-diffusion to achieve a secure and reliable
cryptosystem. It is obvious to have longer execution time proportional to the number of rounds to
be taken to execute the system. A trade-off between time and security indicates the acceptance of
long-running time considering the excellent security requirement. Further, the ETP is computed by
estimating the number of bytes executed per second. The mathematical function for ETP and NCB can
be defined as:

ETP =
Image size (bytes)

Encryption time (sec)
(41)

NCB =
CPU speed (Hz)

Encryption throughput (bytes)
(42)

The performance analysis of the anticipated system in terms of ET, ETP, and NCB has been done
for the sample images and the results are listed in Table 7. The efficiency of the given scheme is
comparable with the other fractal-based cryptosystem, where a secure system is more preferable than
the time constraint environment.

Table 7. ET, ETP, and NCB of sample images.

Images Elaine Lena Clock 5.1.13 5.1.11

ET (sec) 1.31 1.34 1.28 1.37 1.45
ETP (Mbps) 0.0477 0.0466 0.0488 0.0456 0.0431

NCB (Hz/bytes) 31982 32714.85 31250 33447.27 35400.39

4.9. Noise and Data Loss Attack Analysis

An information transmission channel is always prone to noise and data loss attacks. It is required
that an efficient encryption algorithm still manages to recover the original image without losing much
information. However, it is impossible to decrypt an errored image into its original form even with the
accurate secret key. Hence, a marginal amount of blurred decrypted image is also acceptable.

The proposed scheme executes two rounds of image pixel confusion and diffusion asymmetrically.
The diffusion process also runs in a row-wise and column-wise manner. An asymmetric way of pixel
substitution includes the encryption of one plain image byte using the current plain image byte along
with the previous ciphered image byte. Whereas in decryption, a cipher image byte will be processed
with its previous ciphered byte but no plain image data. Also, for each row/column, bit shifting of
random fractal data matrix occurred to make the process more complex. The complete diffusion
process illustrates that the impact of one-bit change in the plain image will influence all pixels in the
corresponding cipher image. Further, this impact will be followed in the subsequent second round of
execution. Though the given method succeeded to recover a high-quality image against the data loss
attack, it was not robust enough against the noise attack.

Figure 12 shows the actual cipher image, noisy cipher image with 2% of salt & pepper noise, and
three cipher images with different percentages of data loss along with their corresponding decrypted
images, respectively. It can be observed that the recovered images lost some information but are still
visualized by the human eye.
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Figure 12. (a) Actual cipher image and decrypted image; (b) Noisy cipher image with 2% salt and
pepper noise and its decrypted image; (c–e) Cipher images and their corresponding decrypted images
with different percentages of data loss.

4.10. Key Sensitivity Analysis

In this paper, the key sensitivity is quantitatively analyzed using the number of bits change rate
(NBCR), the number of pixels changing rate (NPCR), and unified average changed intensity (UACI)
tests. The NBCR of two images A and B are computed as:

NBCR =
Ham_dis(A, B)

bit_len
(43)

where Ham_dis calculates the Hamming distance between A and B, and bit_len is the bit length of
an image (either A or B). An NBCR value close to 50% verifies the effectiveness of the key sensitivity
impact on the given scheme.

To test the key sensitiveness, select a pixel of ModF2 and ModF3 randomly and change it to 1. Now
encrypt the plain image:

1. using a correct ModF2 and ModF3 and get C1
2. using a bit changed ModF2 and a correct ModF3 and get C2
3. using a correct ModF2 and a bit changed ModF3 and get C3

Similarly, decrypt the correct cipher image using the same key combinations discussed above and
subsequently get three decrypted images D1, D2, and D3. The next step is to calculate the NBCR value
of (C1, C3) and (C2, C3) to measure the key sensitivity impact on an encryption method. Repeat the
same step on decrypted images and get the NBCR value of (D1, D3) and (D2, D3). The computed
NBCR value in both processes is listed in Table 8.

Table 8. NBCR values of sample images in the encryption and decryption processes.

Images
Encryption Process Decryption Process

NBCR (C1, C3) NBCR (C2, C3) NBCR (D1, D3) NBCR (D2, D3)

Elaine 49.99 49.98 50.05 50
Lena 49.97 50 49.99 50.01
Clock 50.09 49.94 50.08 49.94
5.1.13 49.93 50 50 49.89
5.1.11 49.99 50.02 49.98 49.97

Two tests, NPCR and UACI tests, are also implemented to observe the key sensitivity behavior
in both encryption and decryption processes. The quantitative results of NPCR and UACI tests
are given in Table 9. Figure 13 also represents the key sensitivity exploration results in the form of
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an encrypted/decrypted image, their respective histogram, and the image difference between two
encrypted/decrypted images. It is indicated that a single pixel change in either secret key can produce
a completely unpredictable outcome. This shows the excellent key sensitivity of the proposed scheme.

Table 9. NPCR and UACI values in the key sensitivity analysis.

Images NPCR1 (%) UACI (%) NPCR2 (%) UACI (%)

Elaine 99.61 33.37 99.64 33.49
Lena 99.63 33.49 99.61 33.5
Clock 99.62 33.46 99.61 33.48
5.1.13 99.60 33.43 99.61 33.48
5.1.11 99.60 33.39 99.62 33.46
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chosen-plaintext attack. To achieve it, an encryption algorithm must change the plain image data in 

multiple rounds to get a completely randomized output. The proposed method modifies the plain 

image by shuffling the pixel positions using the Henon map one time. Again, two rounds of pixel 

confusion and diffusion process have been implemented to the shuffled image. As a result, the 

encryption algorithm produces different cipher images on encrypting an identical plain image 

multiple times using the same secret key. To demonstrate the applicability of the concept, the number 

of bit change rate (NBCR) of two cipher mages is calculated, which are obtained by encrypting the 

Figure 13. (a–d) Encryption sensitivity using the image and its histogram, (a) Elaine image; (b) Encrypted
image using correct secret key; (c) Encrypted images using modified secret key; (d) Image difference
between encrypted images using correct and modified secret key (e–h); Decryption sensitivity using an
image and its histogram; (e) Decrypted images using the correct secret key; (f–g) Decrypted images
using two different modified secret keys; (h) Image difference between decrypted images using two
different modified secret keys.

4.11. Chosen-Plaintext Attack Analysis

A chosen-plaintext attack is a kind of threat to the system in which an attacker randomly selects
a plaintext and encrypts it using an arbitrary secret key. By analyzing the system behavior and
corresponding ciphertext, the attacker can infer some secret information to obtain actual plaintext.
A secure cryptosystem must be able to fail the unauthorized access of the information by resisting
the chosen-plaintext attack. To achieve it, an encryption algorithm must change the plain image
data in multiple rounds to get a completely randomized output. The proposed method modifies the
plain image by shuffling the pixel positions using the Henon map one time. Again, two rounds of
pixel confusion and diffusion process have been implemented to the shuffled image. As a result, the
encryption algorithm produces different cipher images on encrypting an identical plain image multiple
times using the same secret key. To demonstrate the applicability of the concept, the number of bit
change rate (NBCR) of two cipher mages is calculated, which are obtained by encrypting the same
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image twice using the same secret key. The test result is listed in Table 10. The NBCR value close
to 50% indicates that both cipher images are completely different from each other. Hence, the given
system can defend the chosen-plaintext attack successfully.

Table 10. Chosen-plaintext attack analysis result.

Images Elaine Lena Clock 5.1.13 5.1.11

NBCR 50.01 50.05 50.02 50.20 49.97

4.12. Image Autocorrelation Analysis

An image correlation test is executed by comparing all possible pixel pairs to compute the
similarity index of both pixels as a function of distance and direction of separation [60]. An efficient
way to measure the image autocorrelation is via a fast Fourier transform using the Weiner–Khinchin
theorem. The image autocorrelation function (ACF) can be defined as:

F−1[ACF(a, b)] = S(i) =
∣∣∣F[i(x, y)]

∣∣∣2 (44)

where i(x, y) represents the image intensity at position (x, y), and a and b show the distance from
the corresponding x and y position. S(i) is a power spectrum and calculated by squaring the
magnitude of the Fourier transform F of an image i. According to the theorem, the Fourier transform
of the autocorrelation of an image is equal to the inverse Fourier transform of S(i). Therefore, the
autocorrelation can also be calculated as:

ACF(a, b) = F−1
{
F[i(M, N)] × F[i(M, N)]

}
(45)

where F is the conjugated Fourier transform of an image of size M×N. The test is implemented to the
original image as well as to the cipher image. A highly correlated original image autocorrelation is
expected to be wavy and spikes at the center of its graphical representation. On the contrary, cipher
image pixels are expected to be minimally correlated with each other, so the graph must have a flat
and uniform image autocorrelation structure. The results of the original image and cipher image
autocorrelation are shown in Figure 14; they verify the expected outcome of an efficient cryptosystem.
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4.13. Decryption Error

The probability of decryption error is mainly influenced by the randomness introduced to generate
a secret key or in the encryption method. A reliable cryptosystem ensures that the received information
will be identical to the sending information irrespective of any kind of random data insertion. This
feature is more crucial in some applications like medical, finance, military, geographical, astrological,
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and many more. For a plain image P and corresponding cipher image C of size M×N, the decryption
error DE can be computed using the given function as:

DE =
100

M×N

M∑
i = 1

N∑
j = 1

Q(i, j) (46)

where

Q(i, j) =

{
0, i f P(i, j) = C(i, j)
1, i f P(i, j) , C(i, j)

(47)

In the case of a fully recovered decrypted image, the decryption error must be equal to zero
percentage. It indicates that the decrypted image is identical to the original plain image. The decryption
error test is successfully executed to the various test images.

4.14. Performance Comparison with Existing Work

To assess the efficiency of the projected encryption method, its performance is compared with
several, mostly fractal-based image encryption methods. A comparative analysis with existing methods
is done by considering the same image, i.e., Lena (256 × 256). The comparison is done by considering
keyspace, few differential attack measures, global Shannon entropy, and adjacent correlation coefficient.

As shown in Table 11, the discussed method has the flexibility to select a key from the available
keyspace that is sufficiently large to resist the brute-force attack. The NPCR and UACI values of the
proposed method are 99.63 and 33.54, respectively, which is the largest among all references. It also
proved the system resistance against the differential attack. An ideal entropy value is expected to
be much closer to eight. The value reported in Table 11 indicates that the obtained entropy value
passed the pixel randomness test. The correlation coefficient value is also compared with the existing
approaches in all three directions. Presented data reveal that the encrypted pixel values are approaching
zero. It signifies the desired result of reduced or no correlation between the adjacent pixels. Therefore,
all the discussed scenarios verify the suitability of the proposed scheme in the secure digital image
transmission over the unsecured network.

Table 11. Comparison of keyspace, NPCR, UACI, GSE, and correlation coefficient values between the
proposed work and the existing methods.

Algorithm Key Space NPCR (%) UACI (%) GSE
Correlation Coefficient

Horizontal Vertical Diagonal

Proposed Method 2495 99.63 33.54 7.9975 −0.0002 0.0017 −0.0027
Ref [22] 3.40 × 1078 99.56 33.44 7.9979 0.0015 −0.0014 −0.0028
Ref [41] 2128 99.63 33.45 7.9974 0.0078 0.0040 −0.0050
Ref [13] 0.81 × 10192 99.61 33.52 7.9972 −0.0040 0.0042 0.0063
Ref [36] 2144

∗ 10126 99.61 33.45 7.9994 0.0205 −0.0128 −0.0298
Ref [42] 2200 99.59 33.44 7.9970 0.0030 0.0029 −0.0004
Ref [44] 2495 99.61 33.35 7.9974 0.0053 0.0011 −0.0038
Ref [46] 10192 99.72 33.51 7.9993 0.0025 0.0019 -

Ref [45]: (Pepper Image) 23250 99.62 33.53 7.9993 −0.0010 −0.0292 −0.0107

5. Conclusions and Future Work

This paper proposed a composite fractal function (CFF) consisting of two different Mandelbrot
set functions as a seed map and a control parameter to enhance the non-linear dynamics. Many
performance tests such as self-similar image structure, fractal dimension, chaotic trajectory, and
Lyapunov exponent were implemented to evaluate the significance of the new fractal function over the
original seed function. Using the newly constructed fractal, a secure, simple yet complex cryptosystem
was designed. The suggested algorithm displayed increased randomness by applying a Henon
map-based plain image pixel scrambling and a random fractal matrix generation using a z-scanned
fractal sequence. Additionally, a fractal key sequence was employed to both pixel-based permutation
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and diffusion phase, but in three different organizations. The simulation result showed the suitability
of the given scheme to the different digital image formats such as color, gray, and binary image.
The fractal function performance analysis demonstrated that the suggested CFF possesses all desired
chaotic properties such as randomness, unpredictability, initial value sensitivity, ergodicity, large
chaotic trajectory, and a complex self-similar structure. Moreover, the experimental results of the
image cipher also indicated a significantly superior performance in terms of the large keyspace, high
key sensitivity, expected global Shannon entropy, local Shannon entropy, adjacent pixel correlation,
expected image autocorrelation, NPCR and UACI value, and zero decryption error. However, the
method is susceptible to noise and data loss attacks due to the two rounds of pixel confusion-diffusion
execution, but it can be considered to some extent to achieve an extremely sensitive cryptosystem.
In the future, the robustness of the system against the noise and data loss attacks will be addressed.
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