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Abstract: In this paper, we tackle the problem of categorizing and identifying cross-depicted
historical motifs using recent deep learning techniques, with aim of developing a content-based
image retrieval system. As cross-depiction, we understand the problem that the same object can
be represented (depicted) in various ways. The objects of interest in this research are watermarks,
which are crucial for dating manuscripts. For watermarks, cross-depiction arises due to two reasons:
(i) there are many similar representations of the same motif, and (ii) there are several ways of
capturing the watermarks, i.e., as the watermarks are not visible on a scan or photograph, the
watermarks are typically retrieved via hand tracing, rubbing, or special photographic techniques.
This leads to different representations of the same (or similar) objects, making it hard for pattern
recognition methods to recognize the watermarks. While this is a simple problem for human experts,
computer vision techniques have problems generalizing from the various depiction possibilities.
In this paper, we present a study where we use deep neural networks for categorization of watermarks
with varying levels of detail. The macro-averaged F1-score on an imbalanced 12 category classification
task is 88.3%, the multi-labelling performance (Jaccard Index) on a 622 label task is 79.5%. To analyze
the usefulness of an image-based system for assisting humanities scholars in cataloguing manuscripts,
we also measure the performance of similarity matching on expert-crafted test sets of varying sizes (50
and 1000 watermark samples). A significant outcome is that all relevant results belonging to the same
super-class are found by our system (Mean Average Precision of 100%), despite the cross-depicted
nature of the motifs. This result has not been achieved in the literature so far.

Keywords: historical document; watermarks; image retrieval; convolutional neural network;
deep learning

1. Introduction

The identification and retrieval of historical watermarks has been an important research field for
codicology and paper history for a long time [1]. The main use of watermark identification is dating
of historical papers, for example when cataloguing non-dated medieval manuscripts [2]. There are
also broader research questions addressed by watermark identification [3,4], e.g., economical history
research. Watermarks are created during the process of handmade paper-making from tissue rags,
as was done in Europe from the Middle Ages (13th century) till the mid-19th century [1]. The paper
making process involved plunging a mould into liquid tissue pulp. On the metal mesh-work of the
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mould, the paper makers fixed a small figurine made of wire which produced the watermark on the
paper. These moulds were typically used for around two years and then replaced. This makes it
possible to use watermarks for dating [2], i.e., if two paper sheets have the same watermark, we can
assume that they were produced within the same two year period. If one of them is dated, we can
infer the origin date of the other with an accuracy of plus or minus two years.

1.1. Problem Statement

A fundamental problem of watermark reproductions in databases is the diversity of acquisition
methods (e.g., hand tracing, rubbing, thermography, digital photography, and radiography). This leads
to depictions of the exact same watermark in radically different ways (see Figure 1). While being of
utmost importance for watermarks, it is a common problem for handwritten historical documents
in general, where other elements (letters, motifs, and decorations) could also be depicted in several
different ways [5-8]. This problem is known as the cross-depiction problem [9], which refers to the
challenges faced by computer vision methods when identifying an object, even when it is depicted in
different visual forms.

eosungen ™" o

(b) (c) (d) (e)

Figure 1. Example of a query (a) with the expert annotated results in order (b—e) where (b) is the most
relevant. Our system retrieves these results among the first six ranks in the order (e,d,b,c). Please note
that the system is not affected by the different reproduction techniques (a: radiography, b/d: rubbing,
c/e: tracing).

Content-based image retrieval methods were used to tackle automatic image retrieval since the
early 1990s [10]. Image retrieval tasks face two general problems: the intention gap, which refers to
the difficulty of formulating a precise query based on the visual information needs of users, and the
semantic gap, which means that users often search for visual information with abstract concepts,
but automatic image retrieval mainly works on concrete properties, often based on raw pixels.
This leads to the problem that two objects can represent the same concept, but be very different
at a visual level, and also, two objects can be very similar on the visual level but belong to completely
different concepts [11].

Previous approaches to automatic watermark identification show that watermarks are a topic that
has been addressed quite early by image retrieval research, but these approaches lack the precision—in
terms of correct class and other fine-grained detail-like size of watermark, exact distance between the
chainlines and the postition of watermark in relation to the chainlines—necessary to facilitate complete
replacement of manual retrieval processes by historians.
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Besides in our own previous work [12], the possibility of applying deep learning on cross-depicted
watermarks (or motifs in general) has not been investigated so far. This is also due to the fact that
neural networks in general often fail at identifying the abstract concept and can therefore easily be
fooled by noise [13] or abstract depictions [14]. In this paper we show that this general statement does
not apply to cross-depicted watermarks, especially when a good training strategy and loss function
is used.

1.2. Contribution

The main contribution of this paper is an in-depth study of deep learning approaches on
classifying and retrieving cross-depicted historical watermarks. With the final goal of developing
a content based image retrieval system for cross-depicted historical watermarks, we first approach
the task of classification (macro-averaged Fl-score of 88.3% on an imbalanced 12-class problem),
followed by fine-grained multi-labelling performance (Jaccard Index [15] of 79.5% on 622 labels).
We then formulate the problem as one of image similarity matching using the weights of the models
trained in the previous two tasks (mean Average Precision score of 0.95). Finally, we assess the
performance on expert-defined similarity-ranking ground-truth for a small dataset (50 items, 5 motif
classes) and a large dataset (1000 items, 10 motif classes). The retrieval rate of our system is perfect
(100% Mean Average Precision) with only the ranking of the retrieved relevant results differing from
the expert’s opinion.

Please note that we reported early indications that deep learning-based approaches can tackle the
cross-depiction problem in [12]. This current article, however, is a completely new study, where we
(i) introduce the dataset and discuss the problem of the existing classification systems in detail,
(ii) investigate multiple advanced deep learning architectures to tackle the problem, (iii) perform novel
experiments on a more fine-grained multi-labelling task (622 labels), (iv) design a similarity matching
system which perfectly retrieves relevant motifs out of a new 50-item dataset and 91.4% of the relevant
symbols out of a 1000-item dataset (created and validated by a domain expert).

2. Related Work

In this section we summarize the most relevant related work for our case.

2.1. Cross-Depiction

A lot of work has been done in the context of object classification, object detection and image
similarity but very few of them specifically address the problem of depicting an object in different
ways. The most relevant work in our context is Hall et al. [9] who raised awareness of the difficulty of
the problem and how both traditional methods and deep learning methods fail to solve it. Recent work
that used deep learning include Shen et al. [16] who used spatially consistent feature learning to
identify near-duplicate works in art collections and Fei et al. [17] who used a deep visual semantic
descriptor fusing low and high level features for sketch-based image retrieval.

Other works mainly employ hand-crafted methods, including Crowley and Zisserman [18]
who attempted object retrieval in paintings, Hu and Collomosse [19] used HOG descriptor for
sketch-based image retrieval, Rakthanmanon et al. [20] introduced a motif discovery algorithm that
allows for detecting similar sub-images across documents using the Generalized Hough Transform.
En et al. [21] proposed a local descriptor-based algorithm for spotting patterns in historical documents
and Ginosar et al. [22] used four methods for detecting People in Cubist Art using a deformable
part model.

2.2. Automatic Image Retrieval Applied to Watermarks

Automatic image retrieval has been identified as an interesting technology for historical document
research quite early. Watermark retrieval has been addressed as a use case for Content-Based Image
Retrival (CBIR) methods in the late 1990s by Rauber et al. [23] and Belov et al. [24]. In the Northumbria
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watermarks archive project [25] a CBIR system originally developed for trademark retrieval has been
applied to tracings and radiographies of historical watermarks. The system worked much better on
tracings than on radiographies [26]. However, there were no experiments conducted on datasets with
mixed reproductions.

Brunner [27] also conducted experiments on a homogeneous dataset of around 1800 watermarks
(all scanned with the same method) belonging to 14 different motif classes with a CBIR system using
local and global features. He observed that the performance of the retrieval system varied significantly
depending on the motif classes. According to Brunner, two problems lead to the poor performance:
high visual variance within one class and overlap between motifs of different classes. He also attempted
classification using a Support Vector Machine, but only achieved a true positive rate of 87.41%.

Otal and van der Lubbe [28] address the problem of isolation and identification of identical
watermarks. While they achieve a result of 91% correctly identified watermarks, it should be considered
that their test-case involved a simple task with only 170 watermarks and one motif class. Additionally,
all of their watermark reproductions were created with a uniform method.

Picard et al. [29] propose a retrieval system for watermark classification that works with local
features and a dictionary trained on a large amount of data. Their tests are performed on a
homogeneous set of 658 watermarks tracings. These watermarks are divided into groups labelled as
relevant results for query images, but it remains unclear how many motif classes are used and how the
relevant results are determined. The evaluation measure is the rank of the first relevant result which
would be at 168 in a random ranking. In the tests they achieve a average rank of the first relevant result
between 30.6 and 61.7 depending on the parameters used. This however, is not particularly helpful for
watermark researchers who would have to look at 30-60 results for each query to find a relevant hit.

Another project on image retrieval for watermarks is currently being conducted at the Ecole
nationale des chartes, the Institut National de Recherche en Informatique et en Automatique (INRIA)
and the Institut de Recherche et d’Histoire des Textes (IRHT) [30]. In this project, they aim to identify
only identical watermarks, with each class consisting of multiple images (in the same or in different
reproduction techniques) of the a single watermark. Opposed to this, our work aims at finding similar
(not only identical) watermarks. While it is interesting to identify the exact watermark for the precise
dating of manuscripts, it is also important to be able to retrieve the class membership of a watermark
in the broader classification system and to find similar watermarks as this can facilitate the work of
scholars in the humanities. The retrieval of similar watermarks is particularly helpful in scenarios
where the scholars are not very familiar with a particular classification system, or when there exists no
identical watermark to a given query.

There are many commercial and non-commercial CBIR systems available and there have been
several initiatives to test and evaluate different systems [31,32], but due to the velocity of technical
developments in this area, these lists often become rapidly outdated. For our experiments, we chose
the IOSB image retrieval system and LIRE because these systems are non-commercial, still being
maintained, and equipped with a Graphical User Interface (GUI) that allows for a simple query
by image process. The last point was important because in our interdisciplinary work, some of
the experiments were conducted by a Humanities scholar. These systems are described in the
following sections.

2.2.1. IOSB Image Retrieval System

The IOSB image retrieval system was developed between 2010 and 2013 as part of the European
research project “FAST and efficient international disaster victim IDentification” (FASTID) at the
Fraunhofer-Institut fiir Optronik, Systemtechnik und Bildauswertung (IOSB) in Karlsruhe with the
goal of identifying missing persons and disaster victims using images of their tattoos [33]. Tattoos
are usually classified in motif classes, but there is a broad variation of motifs inside the classes and
there are overlaps between the classes. In that regard, the task is similar to the classification of
historical watermarks. The IOSB system works with local features such as the Scale Invariant Feature
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Transforms (SIFT) which proved to be more effective at tattoo retrieval than global features. However,
there was no optimization of the software for the specific case of watermark retrieval.

2.2.2. LIRE Image Retrieval System

The Lucene Image REtrival (LIRE) system is a Java-based open source application first released in
2006 [34]. It is based on the search engine Lucene and it uses global as well as local features. The global
features are low level features concerning color and texture and some combined features. The results
presented in this paper were obtained with the freely available demo version of LIRE, using only
global features (Fuzzy Color, Texture Histogram and MPEG? color layout).

2.3. Deep Learning

The developments of modern deep learning techniques have led to remarkable improvements in
the field of computer vision. When the ImageNet [35] challenge for object recognition was released
in 2009, the top ranks were dominated by traditional heuristic-based methods. Only few years
later, the well-known model AlexNet [36] opened the road to what would be a cascade of deep
learning models which would perform increasingly better every year. In fact, soon afterward the first
deep neural networks surpassed human-level performance [37] and yet these results continue to be
outperformed by the latest models [38].

Despite these outstanding results, we know that neural networks do not perform vision in the
same way as humans. There are many situations in which this difference is very clear. For example,
one can look at the diversity in the inherent nature of adversarial examples for humans and computers.
While humans can be fooled by simple optical illusions [39], they would never be fooled by synthetic
adversarial images, which are extremely effective at deceiving neural networks [13,40]. Another way
to analyse the difference is to look into what types of error humans and networks are more susceptible
to when performing object recognition.

Deep learning models tend to make mistakes with abstract representations whereas humans are
very robust towards this type of error [14]. Successfully identifying an abstract representation—such
as drawings, paintings, plush toys, statues, signs or silhouettes—is a very simple and very common
task for humans, yet machines still struggle to cope with it.

3. Dataset

To identify similar or identical watermarks, many printed collections of watermarks were
assembled [1,41,42], and during the last two decades, several online databases were created [1,43,44].
One of the most popular databases—especially for medieval paper from the Middle and Western
Europe—is the Wasserzeichen-Informationssystem (WZIS) (https:/ /www.wasserzeichen-online.de/
wzis/struktur.php) [44—46]. In this work we use a dataset derived from the WZIS database. Our dataset
contains around 105,000 watermark reproductions stored as RGB images of size 1500 x 720 pixels
(Not all images have the same size. The numbers reported are the average over the whole dataset).
The different image characteristics between tracings (pen strokes, black and white) and the other
reproduction methods (less distinct shapes, grayscale) makes the task of watermark classification and
recognition more difficult (see Figure 1).

Our dataset contains mainly hand tracings (around 90%), and the remaining images are rubbings
and radiography images. In the WZIS database, other reproduction techniques such as thermography
images and digital photographies can be found, which are not included in our dataset but have similar
characteristics as rubbings or radiography (grayscale, noisy background).

3.1. Source of the Cross-Depiction: Data Acquisition

In contrast with handwriting and other types of historical documents, the standard digitization
process is not sufficient to get a useful reproduction of a watermark. In fact, the watermarks are
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invisible to humans under normal conditions. Therefore, special techniques need to be used and this
greatly influences the degree of automation achievable in the acquisition of watermark reproductions.

To localize the watermark, the page is held against a light. Depending on the format of the
manuscript, the watermark may be fragmented due to the folding of the paper to obtain the quires
(see Figure 2). This significantly increases the difficulty of recognizing it, and in certain cases makes it
even impossible.

(©)

Figure 2. An example of positioning of a watermark on the page. It was common practice to produce

big sheets of paper and fold them in order to achieve the desired page size. The amount of folds directly
influences the possible locations of the watermarks on the final product. The location of the watermark
with three different possible folds are shown in the diagram—one fold in (a), two folds in (b) and three
folds in (c).

For automatic watermark retrieval and identification, the reproduction techniques are very
important because of their different visual features. Several reproduction techniques were
established, such as tracing (see Figure 1c), rubbing (see Figure 1b), radiography (see Figure la)
and thermography [1,47,48]. Tracing is the simplest and cheapest, but also the least precise technique
since it is subject to human interpretation. In the tracing process, the watermark and surrounding
chainlines are traced by hand with a pencil on a sheet of tracing paper. Out of the mechanical
reproduction techniques, rubbing is the simplest technique, where tracing paper is placed above the
watermark and gently hatched (shaded) using a soft pencil. However, it does not work with all kinds
of paper and it can be hampered by fragmented watermarks and tight bindings in smaller manuscripts,
such as those shown in Figure 2b,c. The more sophisticated techniques such as radiography and
thermography [48] serve better results at the expense of being more expensive and time-consuming.
Thermography reproductions are digital photographs produced by a thermographic (infrared) camera,
and radiographic reproductions require the usage of X-rays to create a negative image of the watermark
on an underlying film. Nowadays radiography is no longer used because of its elevated costs and
health risks associated with the procedure [1,24,47].

Other techniques include multi-spectral and digital photography, but unlike radiography, they are
sensitive to the source text which is sampled along with the watermark [47]. Therefore, in datasets
built from medieval books, the most common techniques are still rubbing and hand tracing.

3.2. Classification System

In watermark research, there exist very complex classification systems for the motifs depicted by
the watermarks. For watermark researchers, the classification system plays a major role for both the
manual retrieval and the label-assignment of a watermark. The user must be able to determine the
singular correct class for a given watermark. This is not always easy because of ordering issues arising
from the classification systems used in the humanities (see Section 3.2.1).

Over the years, very complex and differentiated watermark classification systems were
developed [43,45,49]. For this work we use the WZIS classification system as it is a widespread
standard in the considered domain [45]. It is partially based on the Bernstein classification system [43]
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and it is built in a mono-hierarchical (In practice, this means that regardless of the level of depth
for class specification, there can be only one unique parent class) structure [49,50]. It contains 12
super-classes (Anthropomorphic figures, Fauna, Fabulous Creature, Flora, Mountains/Luminaries,
Artefacts, Symbols/Insignia, Geometrical figures, Coat of Arms, Marks, Letters/Digits, Undefined
marks) with around 5 to 20 sub-classes each [45]. The super-classes are purposely abstract and are only
useful as entry point for classifying an instance of a watermark. For example, the following hierarchy
applies for the watermark represented in Figure 3a:

Fauna
Bull "s head
detached, with sign above

with rod consisting of two lines

serpent (snake) (upright)

on rod with latin cross

circle
enclosed

with eyes and nostrils

Es men R
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Figure 3. Representation of the class motifs for all 10 classes of TestSet1000. A motif class contains
watermarks with similar motifs, but their shape and/or size can vary considerably. Thus, sacrificing
precision in the definition for the sake of intuition, one can interpret it as the average class representative.
(a) Bull’s Head; (b) Letter P; (c) Crown; (d) Unicorn; (e) Triple Mount; (f) Horn; (g) Stag; (h) Tower;
(i) Circle; (j) Grape.

The actual definition is complete only at the ninth level. This kind of terminology is not trivial to
be dealt with. Moreover, the user needs special knowledge not only about the single terms but also
about their usage in the different scenarios (see Section 3.2.1 for details).
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3.2.1. Limitations of the Classification System

The mono-hierarchical tree structure mentioned in Section 3.2 often leads to classification problems
due to its inflexibility. As the hierarchy forces discriminative decisions in fixed positions, it causes
an ordering issue, and that might not be desirable especially from an historical point of view.
Such decisions could be acceptable for practical purposes, but lead to issues as the one depicted
in Figure 4.

SA SR
{mgm-ﬁ
T e T R I
Wenrme w5 DT
B - N 4 .qrn A = - ‘ SN i rilng. 455:;-'!
| |
{
:r| o 2 [+ s
@) (b) () (d)

Figure 4. Two examples of an issue caused by the mono-hierarchical tree structure used for classification
of the different watermarks (see Section 3.2). Note how sample (a) is classified in the superclass “Coat
of Arms” and sample (b) is classified in the superclass “Fauna” despite looking very similar. This effect
can also be observed between samples (c¢,d) which despite their similarity, get assigned to two different
super-classes. (a) Fish on coat of arms. Assigned to coat of arms superclass; (b) Fish in a circle. Assigned
to fauna superclass; (c) Horn in a circle with a cross. Assigned to artefacts superclass; (d) Horn in circle.
Assigned to geometrical figures superclass.

From a computer science point of view, this problem could be interpreted as strong noise in the
class labels. However, the pitfall of the classification system is deeper and it greatly affects users
who want to retrieve all images which look alike. For example, let’s say that we are interested all
watermarks with a fish on it. Since there is the hierarchy “Fauna — Fish”, we would expect to find
all relevant images under “Fish”. However, this is not the case. One of the super classes in the WZIS
classification system is “Coat of arms”. It includes all images with a coat of arms on them. The catch is
that in these “Coat of arms” watermarks there could be several independent motifs, which are also
stand alone classes somewhere in the hierarchy, such as “Fish”. Thus, Figure 4a is classified as “Coat
of arms — Common charges — Fauna — Fish” which is not where we initially expected to find it.

Unfortunately, the assumption that the frame of the image (e.g., the coat of arms) is the entry point
in the hierarchy does not hold, as the different entry points are not consistent. Indeed, one counter
example is Figure 4b where there is a fish-motif which is inscribed in a circle. This is classified as
“Fauna — Fish — in Circle” instead of the expected “Geometrical Figure — Circle — Fauna — Fish”.
It is then counter intuitive that the motif fish is once accessed as content (e.g., in fauna) and once per
container (e.g., in coat of arms). To deal with this issue the users need to have a lot of experience with
the classification system.

Additionally, it can be that similar watermarks end up in totally different places. While Figure 4c
is classified as “Artefacts — Music instruments — Horn — In circle — With additional motif — Cross
— Consisting in one line”, Figure 4d is classified as “Geometrical figure — One element — Circle
— With additional motif — Horn — Circle with transverse and longitudinal line”. The two figures
not only look similar, but they also share a similar size (29 mm and 30 mm) and time stamp (1546
and 1550). Please note that because of the difficulties of reproducing watermarks from manuscripts it
cannot be excluded that the cross is not really missing but it has not been captured in the reproduction
phase, or that the watermark figurine has deteriorated during the paper making process and the cross
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part broke away. To make this kind of consideration a user would need to be able to retrieve all images
which are similar to a given one, but this is hard because of the classification system. A solution to this
problem might be a faceted classification [49], which takes into account all motifs parts of a watermark
on an equal level. This could be achieved by modelling the classification schema in more flexible data
models such as ontologies.

In addition to the problems induced by the hierarchical structure, there is another problem related
to the terminology being used. To have a standard classification system it is first necessary to reach an
agreement in terms of terminology to employ. Such an agreement does not exist yet and is difficult to
reach because of linguistic and domain specific traditions in the humanities.

On the other hand, even if such an agreement were to be found, a user would then need a
significant amount of experience with the terminology and the classification system to navigate it with
ease and efficiency. For this reason, there are icons in the WZIS dataset representing the class motifs
which help the user and provide basic orientation through the data. In this context, content based
image retrieval is a solution which could deal with this serious problem in the field.

3.3. Test Sets Description

In this work we present the results obtained on two expert-defined test sets: “TestSet50” and
“TestSet1000”, where the number in their name denotes their size. TestSet1000 is composed of images
sampled from 10 sub-classes: bull’s head, letter P, crown, unicorn, triple mount, horn, stag, tower,
circle, and grape. Examples of these motif classes can be seen in Figure 3. TestSet50 is composed of
images sampled from 5 sub-classes: bull’s head, letter P, crown, unicorn, and grape. The choice of
these classes is either motivated by how often they appear in the database (e.g., bull’s head, letter P),
or by their complexity (e.g., grape, triple mount). The reproduction techniques in these test sets are
mixed (hand tracing, rubbing, radiography). It is important to note here that these test sets contain
watermarks that are not used in any of the splits used in the three experimental formulations explained
in Section 4.

Annotating a dataset for image retrieval is challenging due to the nature of the annotations;
for each query in the dataset, it is necessary to rank the images in the dataset in order of their
relevance to the query. This makes it more expensive to annotate a dataset for retrieval as compared
to classification.

Additionally, it requires a very high level of expertise with both the watermarks and the
classification system to produce such queries. Considering these factors, we have a relatively large set
of queries for our data. For TestSet50 we have 50 expert-annotated queries—one for each image in the
set. For the TestSet1000 we have 10 expert-annotated queries—one for each motif class in the set. In a
practical usage scenario, automatic classification of watermarks with regard to their motif classes can be
a first step to facilitate entry into the complex classification system. However, the desideratum would be
not only to automatically assign the correct class, but also to retrieve the best results on a more precise
level. In watermark research, it is usual to assign different relevance/similarity levels to the retrieved
samples with regard to the query watermark, such as “identical” (which means originating from the
same watermark mould at about the same time), “variant” (which means originating from the same
mould but with slight differences due to the mechanical deterioration of the mould); “type” (which
means the motifs are the same, but other features such as divergent size prove that the watermarks do
not originate from the same mould); “motif group” (which means that the watermarks have the same
motifs but their shape and/or size are considerably different), and “class” (which designates motif
similarity on a more abstract level).

The relevance level is crucial for the precision of the dating. “Identical” and “variant” samples can
usually be dated with a precision of around 5 years, whereas for “type” and “motif group” the dating
range must be extended to 10-20 years or more, depending on the retrieved samples. To assess the
precision of the similarity ranking, we created Ground Truth at 5 relevance levels (with 4 the highest
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and 0 the lowest) for the TestSet50: Identical/variant = 4, type = 3, motif group = 2, class = 1, and
irrelevant = 0.

4. Experimental Setting

Our goal is to develop a content-based image retrieval system for historical watermarks that can
help researchers in the humanities. The challenges are numerous and include the cross depiction
problem (see Sections 3 and 3.1) and the lack of a robust classification system (see Section 3.2.1).
In this work, we want to leverage the additional information provided by the hierarchical structure
present in the WZIS dataset in order to improve retrieval performance. Due to the lack of consistency
and flexibility in the labelling system, we try different approaches to train a deep learning system
that produces useful embeddings for later use in an image retrieval setting. We formulate the
problem in three different ways explained hereafter and perform all experiments using the DeepDIVA
experimental framework [51].

4.1. Architecture

Deep neural networks are known to be difficult to train because of multiple reasons. One of the
major issues is the gradient vanishing problem. In recent years, different solutions were proposed
to address this issue, e.g., Long Short-Term Memory (LSTM) [52] networks and Residual Networks
(ResNet) [53]. The former is a type of recurrent neural network that is best suited to dealing with
sequential data (e.g., timeseries) and is not the most suitable to work with images. The latter is
a variant of a Convolutional Neural Network (CNN) which uses skip connections to prevent the
gradient from vanishing even in extremely deep networks. This approach was further developed and
combined with dense connections (DenseNet) which connects each layer to every other layer in a
feed-forward fashion [54]. These two architectural paradigms—namely skip-connections for ResNet
and dense-connections for DenseNet—are the state-of-the-art for computer vision tasks. In our work
we chose to run our experiments with two different networks, one for each paradigm. Specifically, we
use the vanilla implementation of ResNet-18 (~11.5 million parameters) and DenseNet-121 (~8 million
parameters) from the PyTorch vision package (https://github.com/pytorch/vision/).

4.2. Classification

The first approach is to treat the problem as a object classification task. This task is well established
in the field of computer vision and it involves assigning a given image with a single class label
appropriate to the object in the image [55]. Typically, each image contains only a single object and is
thus assigned a single label. The WZIS watermark dataset uses a complex hierarchical classification
system that exposes 12 super-classes as entry points (see Section 3.2). We discard the rest of the
hierarchical structure and select only these 12 super-classes as labels for the watermarks and train our
network (see Section 4.1) to minimize the cross-entropy loss function shown below:

L(X,y) = —log (;yﬁ) 1
Lige"

where x is a vector of size 12 representing the output of the network and y = {0.11} a scalar,
representing the label for a given watermark.

4.2.1. Setup

We train two deep CNNs, namely the ResNet-18 and the DenseNet-121 as described in Section 4.1
with changes in the final layers. Instead of using randomly initialized versions of these models, we
use variants that were trained for the classification task on the ImageNet dataset from the ImageNet
Large Scale Visual Recognition Challenge [56] (ILSVRC). Studer et al. [57] and Singh et al. [58] have
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previously demonstrated that ImageNet pre-training can be beneficial for several other domains
including document analysis tasks.

All input images are pre-processed by removing the whitespace around the image in an automated
manner, and then resized to a standard input size of 224 x 224. The dataset is then split into subsets of
size 63,626 for training, 7082 for validation and 34,825 for testing. During training, we scale the loss
proportionately to the inverse of the frequency of the class to prevent the network from overfitting
to the imbalanced distribution of data across the classes. The weight updates for the network are
performed using the Stochastic Gradient Descent optimizer with a learning rate of 0.001, momentum 0.9
for 10 epochs.

4.2.2. Results

We evaluate the performance of the systems using the macro-averaged Fl-score metric which
accounts for imbalanced classes in single-label classification tasks. From Table 1, we can see that
the DenseNet outperforms the ResNet by a small margin on all subsets of the dataset (as defined in
Section 4.2.1).

Table 1. Macro-averaged Fl-scores for both architectures on the Classification task. The networks were
initialized using weights obtained after training on the ImageNet dataset.

Training Set  Validation Set  Test Set

ResNet18 99.12% 84.51% 85.46%
DenseNet121 99.33% 88.27% 88.3%

4.3. Multi-Label Tagging

The second approach is to treat the problem as a multi-label tagging task. Differently from
regular classification, in this case each image can be assigned one or more corresponding labels. In our
case, this approach is motivated by hierarchical structure of the labels, which, although very noisy,
could provide additional entropy thus increasing the performance of the network. It must be noted
that—as pointed out in Section 3.2.1—the lower levels of the hierarchy might be inconsistent and not
correct from an historical point of view. We, however, treat each level of the hierarchy as a “tag” thus
addressing the problem of having one label appearing at different levels in the hierarchy (e.g., the fish
class motifs as mentioned above). We train our network to minimize the binary cross-entropy loss
function shown below:

=

L(%,y) = — )_¥i-log(X;) + (1 —¥;) - log(1 — X;) ()
0

where 7 is the number of different labels (or “tags”) being used, x is a vector of size n representing the
output of the network and y is a multi-hot vector of size 1, i.e., it is a vector of values that are 1 when
the corresponding tag is present in the image and 0 when it is not.

4.3.1. Setup

The setup for this task is similar to Section 4.2.1 with a few changes. To prepare the dataset for
multi-label tagging, first we determine the number of unique labels (3064) (see Section 3.2 for examples)
in the dataset and then eliminate all labels which do not have a support of at-least 100 samples in the
dataset, leaving 622 labels in the dataset. Please note that we still use the splits defined in Section 4.2.1,
and only the labels are changed. Additionally, due to the complexity of the task, we train the network
for a longer duration of 50 epochs with an initial learning rate of 0.001 decayed by a factor of 10 every
20 epochs.
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4.3.2. Results

We evaluate the performance of the systems using the Jaccard Index [15] which is also referred to
as the Mean Intersection over Union (IoU). This metric is used to compare the similarity of sets which
makes it suitable for multi-label classification problems. In Table 2, we see that both networks achieve
a high degree of performance on the tagging task, with DenseNet performing significantly better on
all subsets of the dataset (as defined in Section 4.2.1).

Table 2. Multi-label tagging performance (mean IoU).

Training Set  Validation Set  Test Set

ResNet18 91.14% 74.54% 74.86%
DenseNet121 93.30% 79.43% 79.57%

This result is quite significant as the IoU accounts for imbalance in the labels. That is, for a dataset
with n classes, even if a class is significantly over-represented in the dataset, it contributes only 1/n
towards the final score. Please note that # equals 622 in this case.

4.4. Image Similarity

Lastly, we treat the problem as image similarity task, i.e., given an image produce an embedding
in a high dimensional space where similar images are embedded closer and dissimilar images are
embedded far apart. This is intuitively the closest formulation to our end goal of image retrieval.
There are different approaches to formulate this task in the literature, such as two-channel networks [59],
advanced application of the Siamese approach such as MatchNet [60] or the triplet loss approach [61].
We chose to adopt the triplet loss approach which was shown to outperform the other approaches in
several benchmarks [61,62]. The triplet loss operates on a tuple of three watermarks {a, p, n} where a
is the anchor (reference watermark), p is the positive sample (a watermarks from the same class) and
n is the negative sample (a watermarks from another class). The neural network is then trained to
minimize the loss function defined as:

L(64,0-) = max(6+ —6_ +u,0) 3)

where 51 and J_ are the Euclidean distance between anchor-positive and anchor-negative pairs in the
feature space and y is the margin used.

4.4.1. Setup

The setup for this task is similar to Section 4.2.1 with a few changes. First, we use the same
network architectures as defined in the previous tasks modifying only the final layer. The final
classification/tagging layer is ablated and replaced with a 128-dimensional fully connected layer.
This is done such that the network outputs an embedding of input images in a high-dimensional space
where similar images are closer (by measure of Euclidean distance) to each other than dissimilar images.

Secondly, instead of only comparing the two different network architectures, we use the models
pre-trained for the Classification task (see Section 4.2 and the Multi-Label Tagging task (see Section 4.3).
We hypothesize that the networks that were pre-trained for the other two tasks may have learned
weights/filters specific to the WZIS dataset. These new filters or weights might result in increased
performance on the similarity task as compared to using networks that were initialized with ImageNet
pre-trained weights (The input domain of ImageNet is significantly different than the WZIS dataset).
We still use the splits defined in Section 4.2.1, only using the labels to create appropriate triplets.
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4.4.2. Results

We report the results in terms of mean Average Precision (mAP), which is a well established metric
in the context of similarity matching. The mAP should be interpreted as—higher the better, with an
optimal score of 1.0. Table 3 clearly demonstrates that the Classification and Tagging pre-trained
networks outperform the ImageNet baseline networks by a significant margin on all subsets of the
dataset (as defined in Section 4.2.1). As with the other two tasks, we can see here that the DenseNet
outperforms the ResNet.

Table 3. Similarity matching performance (mAP).

ResNetl8 DenseNet121

Baseline 0.885 0.928
Classification Pre-trained 0.929 0.951
Tagging Pre-trained 0.923 0.952

5. Comparison of Different Approaches

In the previous sections, we evaluated our different approaches on test sets that are appropriate
to the individual approaches. However, in order to evaluate the effectiveness of the various systems
for the use of researchers in the humanities, we need a different evaluation approach. Therefore, we
apply the various trained systems from Section 4 to the task of query-based image retrieval on several
expert-defined test sets (see Section 3.3) that are not part of the splits used in any of the experiments
from Section 4.

For every query in TestSet50, we use the different systems to retrieve an ordered list of results.
The results of the systems are then compared against the expert-defined results using the mean Average
Precision (mAP) metric to determine the best performing system. The best performing system is further
evaluated on the test sets using the Normalized Discounted Cumulative Gain (NDCG) [63,64] metric in
addition to the mAP metric. The NDCG metric can be intuitively understood as measuring the quality
of the returned results in a more fine-grained way compared to the mAP. This is done by assigning
multiple possible relevance levels to each response of a given query. This means that for a given query
and a collection of documents, a system that returns relevant results at a higher rank will have a higher
NDCG score compared to a system that returns the same results but at a lower rank.

In Table 4, we see the mAP scores for the various systems on TestSet 50. While all the systems
achieve over 0.9 mAP, we can clearly see that the DenseNet-121 is better than the ResNet-18 consistently
across all the approaches. However, we see that networks trained exclusively for classification/tagging
and then fine-tuned for similarity matching perform the best, followed by networks trained only for
similarity matching. Networks that were trained for only classification/tagging perform the worst.

Table 4. A comparison of the performance of various models measured on the queries of TestSet50. All
models were used in a similarity matching setting, with Classification and Tagging models used either
with (fine-tuned) or without further training (baseline). For both Classification and Tagging tasks, the
models were modified by removal of the final layer in order to use the activations of the penultimate
layer as an embedding in a high-dimensional space.

Metric: mAP ResNet-18 DenseNet-121
Classification baseline 0.939 0.964
fine-tuned 0.985 0.997
Tacein baseline 0.91 0.921
£8118 fine-tuned 0.953 1.0

Similarity n/a 0.966 0.999
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Figure 5 shows the t-Distributed Stochastic Neighbor Embedding (t-SNE) [65] visualization
of the embeddings for TestSet1000. It is interesting to note here that both the classification and
tagging networks produces multiple sub-clusters per class. We speculate that these sub-clusters could
correspond to the same watermark depicted in different ways. Rauber et al. [66] observed a similar
phenomenon when analyzing networks trained on the Street View House Number Dataset, where the a
cluster of the same digit had sub-clusters based on the color of the image (light text on dark background
or vice-versa).

o L‘-.;‘}R‘- : -t - ‘.*
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Figure 5. t-Distributed Stochastic Neighbor Embedding (t-SNE) [65] visualization of the TestSet1000
in the latent embedding space. Different colors denotes samples belonging to different classes.
(a) Randomly initialized; (b) Trained for classification; (c) Trained for multi-label; (d) Trained
for similarity.

Finally, we evaluate the best performing network (tagging fine-tuned for similarity) on TestSet50
and compute the NDCG (higher the better, with optimal score of 1.0), which takes into account the
relevance and the position of each result [63]. The result in Table 5 shows that our approach works
perfectly for assigning the correct class on a binary level relevant/irrelevant (represented by the mAP
metric), but the precision of the ranking (represented by the NDCG metrics) can still be improved.
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Table 5. mAP and NDCG scores of the best performing system on TestSet50 broken down by category.

Bull's Head LetterP Crown Unicorn Grape Average
mAP 1.0 1.0 1.0 1.0 1.0 1.0
NDCG 0.96 0.80 0.83 0.93 0.93 0.89

6. Comparison with State-of-the-Art

In this section, we compare the performance of our best system against the LIRE and IOSB systems
(see Sections 2.2.1 and 2.2.2). The evaluation metrics used here include the Precision@35, mAP (see
Section 4.4.2) and the average rank of the first relevant match and the best possible match. Precision@k
is the ratio of the top-k documents that are relevant to the query.

From Tables 6 and 7 we can see that our best performing system outperforms both the other
systems by a significant margin on both TestSet50 and TestSet1000. We achieve a 1.0 mAP score on
TestSet50, which implies that our system retrieves the correct class for every query in the test set.
This can also be seen in Figure 6, where our system retrieves the correct results for the query image
(although in a different order).

Table 6. Performances of the three systems on TestSet1000.

IOSB LIRE Proposed
Precision@35  60% 20% 91.4%

Table 7. mAP scores of the three systems on TestSet50.

Bull’s head LetterP Crown Unicorn Grape Average

10SB 0.45 0.24 0.42 0.34 0.75 0.44
LIRE 0.55 0.24 0.48 0.14 0.48 0.38
Proposed 1 1 1 1 1 1

This is significant as the top results contain images that are represented in different manners.
Our system is able to handle this cross-depiction, while the other systems tend to retrieve images
that are depicted in the same manner as the query image. In Table 8, we see that for a query image,
our system on average returns a relevant image at the first location, and the most appropriate result
for the query image is found around the second or third location.

Table 8. Average rank of the first relevant match measured on TestSet50. The metric is interpreted as
the lower the better with lower bound 1.

IOSB LIRE Our

First relevant match 1.78 1.82 1
Best match 7.75 10.6 244
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Figure 6. The top row shows a query image belonging to class Fabulous Creature/Unicorn and the
first 4 results annotated by an expert (used as ground truth for evaluation). The second row shows
the results (R1 through R4) retrieved by our approach when pre-trained for tagging and fine-tuned
for similarity. Notice that the images all belong to the correct class. The third row shows the results
retrieved by the IOSB system [67] and the last row those of the LIRE system [68]. In these cases,
occasionally some of the retrieved images belong to another class. It is also clear that the IOSB and
LIRE systems are much less robust against different reproduction techniques, since these systems tend
to return similar reproduction techniques (rubbings, radiographies) rather than similar motifs.

7. Conclusions and Future Directions

In this paper, we showed that deep learning-based approaches can be very useful for classifying
and analyzing watermarks in historical documents, despite the fact that the watermarks are depicted
in various manners. Thereby we found evidence supporting two hypotheses:

1. using deep learning for similarity matching is efficient and overcomes the problems of the
standard human-made classification system used for structuring watermarks.

2. the high-level representations learned by deep learning models are useful for classification and
similarity matching of the motifs, despite the fact that they are depicted in different ways in the
original images.

In various experiments, we assessed the performance of two state-of-the-art CNN architectures
in three different experimental settings (classification, tagging and similarity matching) on a large
dataset of cross-depicted watermarks. These deep-learning-based approaches are better than available
similarity-matching tools and reach a perfect retrieval rate of relevant motifs. Such a system can be
very helpful for experts when classifying watermarks and cataloging the corresponding manuscripts
as similar watermarks are found based on their visual appearance and not based on a hierarchical and
inflexible classification system.

Our work (Preliminary work in our paper [12], followed by an in-depth study in this paper) is a
pioneering step in evaluating deep-learning-based methods on a large dataset of cross-depicted motifs.
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It indicates that a promising future direction is the development of an image-based similarity matching
tool which is not only useful for watermarks but could be useful in other settings, such as retrieval of
trademark images [69]. Contrary to indications from previous work regarding the limited effectiveness
of deep learning when dealing with cross-depicted data, our results indicate that deep learning is
effective at dealing with cross-depicted watermarks. This could be in part due to limited variability
of the cross-depictions within the watermarks when compared to cross-depiction in other domains
(e.g., between a photograph and artwork of the same object). An analysis of why deep learning works
in this setting along with a deeper analysis of the classification and multi-labelling results would be
a promising future direction, i.e., it would be interesting to see what an optimal classification rate is
(Please note that the classification system is “noisy”, as discussed in Section 3.2.1 and therefore a 100%
accuracy would be an ill-posed problem).
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