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Abstract: This paper presents an edge-based color image segmentation approach, derived from
the method of particle motion in a vector image field, which could previously be applied only to
monochrome images. Rather than using an edge vector field derived from a gradient vector field and a
normal compressive vector field derived from a Laplacian-gradient vector field, two novel orthogonal
vector fields were directly computed from a color image, one parallel and another orthogonal to
the edges. These were then used in the model to force a particle to move along the object edges.
The normal compressive vector field is created from the collection of the center-to-centroid vectors
of local color distance images. The edge vector field is later derived from the normal compressive
vector field so as to obtain a vector field analogous to a Hamiltonian gradient vector field. Using the
PASCAL Visual Object Classes Challenge 2012 (VOC2012), the Berkeley Segmentation Data Set, and
Benchmarks 500 (BSDS500), the benchmark score of the proposed method is provided in comparison
to those of the traditional particle motion in a vector image field (PMVIF), Watershed, simple linear
iterative clustering (SLIC), K-means, mean shift, and J-value segmentation (JSEG). The proposed
method yields better Rand index (RI), global consistency error (GCE), normalized variation of
information (NVI), boundary displacement error (BDE), Dice coefficients, faster computation time,
and noise resistance.

Keywords: color image segmentation; particle motion; local color distance images; normal compressive
vector field; edge vector field

1. Introduction

In digital image processing, image segmentation that reduces the amount of unnecessary data
and preserves the important information needed for analysis plays an important role in image
analysis. In general, image segmentation gathers pixels displaying similar characteristics within
the same areas and converts them into regions. Among the various techniques, image segmentation
methods can be divided into two main groups: machine learning image segmentation and classical
image segmentation. First, machine learning image segmentation is a method by which a program
can learn and segment an object by itself, without adjusting the program further. There are three
types of machining approaches: supervised, unsupervised, and reinforcement learning methods.
Supervised methods use a training dataset containing ground truth data to train artificial neural
networks to map between input images and segmented results (see the survey [1]). However, the
training process is computationally intensive and the ground truth construction that requires manual
labeling by experts is labor-intensive. Additionally, when a new object class is added, the whole
training dataset must be thoroughly reconstructed and the time-consuming training process must

J. Imaging 2020, 6, 72; doi:10.3390/jimaging6070072 www.mdpi.com/journal/jimaging

http://www.mdpi.com/journal/jimaging
http://www.mdpi.com
https://orcid.org/0000-0003-1727-2339
http://dx.doi.org/10.3390/jimaging6070072
http://www.mdpi.com/journal/jimaging
https://www.mdpi.com/2313-433X/6/7/72?type=check_update&version=2


J. Imaging 2020, 6, 72 2 of 19

be repeated. In contrast, the unsupervised method does not require a dataset for training. Instead,
the result of each iteration is recursively input to the program to adjust its parameters. This type of
approach, such as K-means [2,3], mean shift [4,5], and JSEG [6,7], etc., is often more effective and
more tolerant of unusual or unpredictable situations. However, the unsupervised methods are usually
time-consuming due to its iterative processes embedded in the methods. Finally, the reinforcement
learning method uses the reward and punishment techniques from environmental analysis for learning
to drive the agent to the target. This method requires a large number of iterations for training of the
agent to get a reward [8–10]. Second, classical image segmentation is a low-level image processing
approach that tries to extract information without knowing the truth. Although, nowadays, machine
learning image segmentation is state-of-the-art [11], classical image segmentation is still necessary
in cases in which segmentation does not have ground truth images or there is a time constraint.
Classical image segmentation also helps to create ground truth data in training datasets for machine
learning techniques. Classical image segmentation techniques are comprised of thresholding-based,
edge-based, region-based, and graph-based techniques. Thresholding-based techniques are divided
into three types [12]: global thresholding, local thresholding, and adaptive thresholding. First, global
thresholding weighs the distribution of intensity in the histogram to determine the threshold for
separating objects from the background [13–15]. Second, local thresholding is used when a single
threshold is not possible for images with uneven illumination or shadows. In such a case, it is necessary
to use a sub-image to select the threshold [16]. Third, adaptive thresholding makes a calculation of the
threshold by a window to find the intensity from the neighbor pixel [17,18]. The edge-based techniques,
such as zero-crossing [19], Active Canny [20], PMVIF [21–23], EdgeFlow [24], and PointFlow [25],
extract object boundaries in the image by creating contours around the objects. The region-based
techniques, such as watershed [26,27], are based on the principle of grouping pixels with similar
properties into the same regions or the same objects. Finally, the graph-based techniques, such as graph
cuts [28,29], normalized cuts [30,31], Superpixel [32,33], and SLIC [34,35] proceed by grouping pixels
according to graph theory. The methods mentioned above have various strengths and weaknesses, such
as segmentation accuracy, processing time, flexibility, ease of use, and robustness to noise. For example,
some algorithms can be applied only to grayscale images while some are only available in the RGB
color space. Some methods are not suitable for real-time use or have to adjust too many parameters.

This paper introduces an edge-based classical image segmentation algorithm for a color image
using particle motion in a vector image field derived from local color distance images (PMLCD).
It is developed from the PMVIF algorithm that is known to have a fast computation time and yields
closed boundaries but can be applied only to grayscale images. In the PMVIF algorithm, two vector
fields, namely, the normal compressive vector field and the edge vector field, derived from derivatives
of grayscale images, are used to force the particle to move along the object edges, which results in
closed particle trajectories that resemble the object boundaries. In order to extend this principle to a
color image segmentation task, the new formulae for computing the normal compressive vector field
and the edge vector field, derived from the local color distance images, are introduced. The method
proposed in this paper can be used not only with color images but also multichannel images such as
hyperspectral images.

The rest of the paper is organized as follows: Section 2 describes the principle of the PMVIF
algorithm; Section 3 describes the developed color image segmentation using particle motion in a
vector image field derived from local color distance images; Section 4 presents the experimental
validations and benchmarking of the proposed algorithm; finally, conclusions are drawn in Section 5.

2. Background to Particle Motion in a Vector Image Field

This section describes the principle of a traditional boundary extraction algorithm based on
particle motion in a vector image field (PMVIF), which is an edge-based classical image segmentation
approach. In general, in an N-dimensional space, a boundary can be explicitly represented by a
manifold of dimension N-1 interfacing between regions of different attributes; for example, a close
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curve in a two-dimensional space. However, in a discretized image where a set of pixels or voxels is
the only class that can exist, explicit representations of region boundaries, such as a curve or a surface,
are difficult to encode. In this case, a normal compressive vector field [21–23], where all vectors are
normal and point to the nearest interface, providing information about the direction to the nearest
boundary, is more suitable to be used as an implicit boundary representation. Nevertheless, the normal
compressive vector field itself only provides information about the location of the boundary but cannot
offer any clues regarding the direction for tracking edges. In order to be able to locate and track a
boundary simultaneously, another vector field containing vectors parallel to edges—namely an edge
vector field—combined with the normal compressive vector field is required. The concept of using
two such orthogonal vector fields for boundary extraction in a grayscale image was introduced in the
PMVIF algorithm, where the gradient–Laplacian vector field used as a normal compressive vector
field and the Hamiltonian gradient vector field used as an edge vector field are given as follows:

~n =
1
c
∇P · ∇2P (1)

and
~e = −∂P

∂y
î +

∂P
∂x

ĵ, (2)

where c is a normalization factor, and î , ĵ are unit vectors in x and y directions, respectively.
In general, in Equations (1) and (2), partial derivatives can be approximated using difference

operators such as Sobel operators. Figure 1 illustrates examples of the gradient ∇P, Laplacian ∇2P,
edge vector field~e, and the gradient–Laplacian vector field ~n. In order to extract object boundaries,
sequences of boundary points were obtained from trajectories of a particle driven by the combined
force field α~e + β~n, computed as follows:

~Pk+1 = ~Pk + α~ek + β~nk, (3)

where ~Pk is the kth particle position vector;~ek is the edge vector, interpolated at the kth particle position;
~nk is the normal compressive vector, interpolated at the kth particle position; α is a tangential stepping
factor, with α > 0 for a particle moving in a clockwise direction and α < 0 for a particle moving in
a counter-clockwise direction; and β, β > 0 is a normal stepping factor allowing the trajectory to
converge to a boundary line.

(b)(a)

(d)(c)

Figure 1. (a) ∇P, (b) ∇2P, (c) an edge vector field~e, and (d) a normal compressive vector field~n.
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Figure 2 demonstrates a combined vector field, α~e + β~n, α = 0.5, β = 0.5, and a boundary
extraction result obtained from a particle trajectory, according to Equation (3), as applied to the image
in Figure 1. The PMVIF works well in extracting boundaries of regions with a constant intensity in
grayscale images, providing subpixel resolution results. Nevertheless, the limitation of the PMVIF
method is that the edge and normal compressive vector fields are derived from partial derivative
operations that can only be applied to a scalar or intensity image. In the case of color or multispectral
images in which each pixel is considered as a vector, there is no exact definition of gradient and
Laplacian operators, limiting the application of the PMVIF method to color images. To overcome this
limitation, a new scheme to generate a normal compressive vector field and an edge vector field for
the vector image is required.

(b)(a)

Particle

Figure 2. (a) a combined vector field, α~e + β~n, α = 0.5, β = 0.5, and (b) a boundary extraction result.

3. Methodology

The PMVIF algorithm requires both normal compressive and edge vector fields as particle driving
forces. Due to the gradient definition that is applied only to a scalar image, the original PMVIF method
can be applied only to intensity images. In this paper, the PMLCD method for finding the normal
compressive and edge vector fields for color images using the center to centroid vectors of local color
distance images is presented below.

3.1. Image Moments

For a discrete image I(x, y), a two-dimensional moment of order (p, q) [36] is defined as

Mpq = ∑
x

∑
y

xpyq I(x, y) (4)

Analogous to a center of gravity in classical mechanics, the centroid (x̄, ȳ) of an image I(x, y) can
be calculated as follows:

(x̄, ȳ) =
(

M10

M00
,

M01

M00

)
=

(
∑x ∑y xI(x, y)

∑x ∑y I(x, y)
,

∑x ∑y yI(x, y)

∑x ∑y I(x, y)

) (5)

The displacement between a center and a centroid of an image indicates an unbalanced pixel
intensity distribution in a spatial domain.

3.2. Local Color Distance Images

In general, image segmentation can be viewed as a process to determine in which region each
pixel should be located. For a multispectral image I, one feature that is widely used to determine
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whether or not pixels should belong to the same region is the color distance between two pixels,
defined as

Dc
(
(x, y), (i, j)

)
=

√(
I1(x, y)− I1(i, j)

)2
+
(

I2(x, y)− I2(i, j)
)2

+ . . . +
(

In(x, y)− In(i, j)
)2 (6)

where In(x, y) and In(i, j) are the nth color components of pixels (x, y) and (i, j), respectively. In
the data classification aspect, the color distance functions as a dissimilarity measurement between
two pixels. Using the concept of a moving window, a local color distance image (LCD) of the pixels
surrounding pixel (i, j) can be computed as

LCD(x− i, y− j) = Dc
(
(x, y), (i, j)

)
(x,y)∈N(i,j)

(7)

where N(i, j) is a neighbor area of a center pixel (i, j).
Each pixel in LCD(x− i, y− j) represents a color distance between a neighboring pixel (x, y) and

the center pixel (i, j). Figure 3a illustrates examples of RGB local color distance images (i)–(v), obtained
using a circular moving window computed at various places in a simple two-object image. As seen in
the (i) and (v) cases, if a circular window is placed entirely inside one region, a local color distance
image contains all zero pixels. Conversely, if a circular window is located at the border between two
regions, the obtained local color distance image comprises pixels, with large values packed to one side
of the image, as shown in cases (ii)–(iv) in Figure 3a. As a result, the centroid CT of the local color
distance image computed using Equation (5) is shifted from the center C toward a high color distance
area belonging to an adjacent region. Thus, for a local color distance image located in the proximity of
a boundary, a vector from center C to a centroid CT points in the direction of the nearest boundary,
independent of the side of the center of the local color distance on which the image is; for example,
cases (iii) and (iv) in Figure 3a.

RGB=(0,1,0)

RGB=(1,1,0)

0

0

0

0

C

CT

C
CT

C

CT

C
CT

C

CT
RGB=(1,1,1)

1

0

2

(a)

(i)(ii)

(iii)

(iv)

(v)

2

(b)

Figure 3. (a) local color distance images and (b) a normal compressive vector field obtained from
(C-to-CT) vectors.



J. Imaging 2020, 6, 72 6 of 19

3.3. The Normal Compressive Vector Field

By gathering (C-to-CT) vectors of local color distance images obtained at all valid positions in an
original image, a normal compressive vector field~n can be computed as

~n(i, j) =
1
C

[
x̄(i,j) − i
ȳ(i,j) − j

]
(8)

where C is a normalization factor making max |~n(i, j)| = 1, and (x̄(i,j), ȳ(i,j)) is a centroid, computed
using Equation (5), of LCD(x− i, y− j) computed using Equation (7). Figure 3b demonstrates the~n of
the image in Figure 3a. By combining Equations (5)–(7),~n(i, j) can be directly computed as

~n(i, j) =
1
C

 ∑
(x,y)∈N(i,j)

(x− i)Dc
(
(x, y), (i, j)

)
/ ∑
(x,y)∈N(i,j)

Dc
(
(x, y), (i, j)

)
∑

(x,y)∈N(i,j)
(y− j)Dc

(
(x, y), (i, j)

)
/ ∑
(x,y)∈N(i,j)

Dc
(
(x, y), (i, j)

)
 (9)

It is worth noting that, in this vector field, the phenomenon that a vector on one side always points
in the opposite direction to a vector on another side is called the normal compressive property. In the
PMVIF technique, the normal compressive property of the vector field causes a particle to cling to the
object boundary. The difference in the ~n from Equations (1) and (9) is that the vector size obtained
from Equation (1) is smaller than Equation (9), as shown in Figure 4. As Equation (9) uses the principle
of LCD while Equation (1) only uses grayscale images that include intensity for each band collapsed
together and using a gradient, resulting in a smaller vector size, Equation (9) is more suitable when
used with color images.

(b)(a) (c)

Figure 4. (a) original color image, (b)~n obtained from Equation (1), and (c)~n obtained from Equation (9).

3.4. The Edge Vector Field

The edge vector field in the original PMVIF method, used to drive a particle to move in a direction
parallel to object edges in a grayscale image, is derived from a Hamiltonian gradient vector field.
However, such a vector field cannot be generated in the case of vector images such as color images
where each pixel is represented by a color vector. In order to create a vector field analogous to the edge
vector field, firstly, a vector-to-scalar conversion scheme must be applied to a color image to achieve a
unique condition, ensuring that different colors, normally represented by vectors, are represented by
different scalar values. The linearization technique used to convert a color image into a scalar auxiliary
image, based on the number base system, is proposed in this paper as follows:

Aux(x, y) = m(n−1) In(x, y) + m(n−2) In−1(x, y) + . . . + m2 I3(x, y) + mI2(x, y) + I1(x, y) (10)
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where m is the maximum intensity level of each color component. The auxiliary image is created to
determine whether a neighbor pixel (x, y) has the same color as the center pixel (i, j).

Thus, only a difference between Aux(x, y) and Aux(i, j) is sufficient to determine whether both
pixels (x, y) and (i, j) have the same color.

To obtain a gradient-like vector field, in a normal compressive vector field, as demonstrated
in Figure 3b, vectors outside objects must be reverted while vectors inside objects retain the same
direction. Thus, Equation (9) is modified by multiplying the local color distance with the sign of a
difference between auxiliary image pixels as follows:

~G(i, j) =

[
Gx

Gy

]

=
1
C

 ∑
(x,y)∈N(i,j)

(x− i)sign(Aux(x, y)− Aux(i, j))Dc((x, y), (i, j))

∑
(x,y)∈N(i,j)

(y− i)sign(Aux(x, y)− Aux(i, j))Dc((x, y), (i, j))

 (11)

where C is a normalization factor so that max
∣∣∣~G(i, j)

∣∣∣ = 1 and sign(A) =

{
1 A ≥ 0
−1 A < 0

.

As a result, the normal compressive property of~n in Equation (9)—i.e., a vector on one side always
points in a direction opposite to a vector on another side, as shown in Figure 3b—is transformed to a
gradient-like property of ~G where vectors on both sides of objects always point in the same direction,
as shown in Figure 5a. Next, by rotating all vectors in ~G by 90◦, an edge vector field, similar to a
Hamiltonian gradient vector field, is obtained as

~e(i, j) =

[
−Gy

Gx

]
(12)

as shown in Figure 5b. Notice that vectors in ~e in the proximity of boundaries are always larger
than areas farther away. Therefore, the magnitude of~e can be used as a measurement for localizing
object edges.

(b)(a)

Figure 5. (a) a gradient-like vector field ~G obtained from Equation (11), and (b) an edge vector field~e
obtained from Equation (12).

3.5. Particle Motion in a Vector Image Field Derived from Local Color Distance Images

The proposed boundary extraction algorithm is based on particle motion in a vector image field
derived from local color distance images (PMLCD), using a normal compressive vector field that is
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calculated using Equation (9) while the edge vector field is calculated using Equation (12) so that
particle trajectories, calculated using Equation (3), can be obtained. The object boundaries can then be
extracted from a collection of these trajectories. The remaining steps of the PMLCD method are the
same as for those of the PMVIF method.

3.6. Appropriate PMLCD Parameter Setting

The PMLCD method has three parameters: T|~e|, α, and β. The T|~e| parameter sets the threshold of
|~e| to determine the starting points of the particle, while α is the strength of the particle moving in the
direction parallel to the object edges, and β is the strength in which the particle attaches to the object
edges. These parameters are difficult to adjust. This article, therefore, suggests methods for adjusting
all three parameters as follows:

T|~e| is determined using the Otsu’s threshold method [14]. α and β are related as follows:

α =
1
2
+ R (13)

β =
1
2
− R (14)

R =| (VcV~e)−V~n | ∗ 100γ (15)

where
Vc is the mean of the normalized variance of the color image.
V~e is the normalized variance of |~e|.
V~n is the normalized variance of |~n|.

γ is the ratio of α and β,


0 < γ < 1 α > β

γ = 0 α = β

−1 < γ < 0 α < β

.

The variance (V) of each channel, converted to a vector A, is made up of scalar observation
defined as

V =
1

N − 1

N

∑
i=1
| Ai − A |2 (16)

3.7. Overall Boundary Extraction Method

The overall segmentation algorithm for color images, as illustrated in Figure 6, is described
here. First, an image is smoothed to remove noise using a Gaussian low pass filter. The normal
compressive vector field ~n and edge vector field~e are then calculated using Equations (9) and (12),
respectively, using a circular moving window of radius R. Local maximum points of |~e| that are
greater than a threshold are chosen as candidates for the starting points of the boundary extraction
process. The suitable threshold value is determined by Otsu’s threshold method of |~e|. Commencing
at each starting point, under the influence of a compressing edge vector field, a particle is forced to
move along object edges, according to Equation (3), in both clockwise (α > 0) and counter-clockwise
directions (α < 0) with a subpixel step size until it reaches a starting point or other previously extracted
paths. Consequently, boundaries are collected from all obtained particle trajectories. Consequently,
a complete edge map is achieved by quantizing the extracted boundaries. Finally, these boundaries are
labeled with the fast region growing algorithm to produce the color image segmentation result.
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Image smoothing
Color

Image

Compute particle 

trajectories

Fast region growing

Compute and n eCompute and n e

Find local maxima of 

e

Find local maxima of 

e

Color image 

segmentation

Collect object 

boundaries

Figure 6. Block diagram of the proposed boundary extraction process.

Figure 7 illustrates image segmentation results obtained using both PMVIF and PMLCD evaluated
using the same grayscale image and the original color image. Parameters used in all cases were
T|~e| = 0.08, α = 0.5, β = 0.2 (for both PMVIF and PMLCD), and the radius of LCD = 1 (for PMLCD).
As seen in Figure 7b,c, PMLCD can be applied to both grayscale and color images. In addition,
when compared to the results evaluated using the grayscale image, PMLCD evaluated using the
original color image provided the best results with least fault contours.

(a) PMVIF with Gray

Source 

images

Edge 

maps

Extracted 

boundaries

(b) PMLCD with Gray (c) PMLCD with Color

Figure 7. Image segmentation results obtained using (a) PMVIF and (b) PMLCD are evaluated using
the same grayscale image and (c) the PMLCD result evaluated using the original color image.

Figure 8 shows the simulation of particle motion in a vector image field derived from Equation (3)
using the following parameters: radius of LCD = 1, T|~e| = 0.25, γ = 0.05 (α = 0.55, β = 0.45).
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(b)(a) (c)

Figure 8. (a) BSDS500 #3096, (b) particle trajectory obtained from Equation (3), and (c) zoom of (b).

4. Experimental Results and Discussion

The experimental results of color image segmentation using MATLAB 2019b with a CPU Intel Core
i7-4710HQ, the VOC2012 dataset [37] and the BSDS500 dataset [38] collected to measure the performance
of PMLCD compared with other unsupervised machine learning methods including K-means [2,3],
mean shift [4,5], and JSEG [6,7] and classical methods including the grayscale PMVIF [21–23], grayscale
watershed [26,27], and SLIC [34,35] are given in this section. Benchmarks used in this paper include
the Rand Index (RI) [39], Global Consistency Error (GCE) [39], Normalized Variation of information
(NVI) [40], Boundary Displacement Error (BDE) [39], Dice coefficient [39], computation time, and noise
tolerance. Figure 9 shows the experimental color image segmentation results obtained from all methods
using the image #2007_000063 from VOC2012. Figure 10 shows similarities between the object chosen
from the ground truth image (a dog) and the corresponding segmented regions obtained from all
methods in Figure 9. Figure 11 shows the results of the same experiment as those of Figures 9 and 10
for the images randomly selected from VOC2012 and BSDS500. As shown in Table 1, the parameters
of all methods for each image in the experiment have been adjusted to achieve high RI and high
Dice coefficients. The average benchmarking results show that the method with the highest average
RI is PMLCD, at 0.78 (0.11). The methods with the lowest average GCE are PMLCD, at 0.13 (0.05),
and Watershed, at 0.13 (0.08). The methods with the lowest average NVI are JSEG, at 0.12 (0.01), and
PMLCD, at 0.12 (0.04). The method with the lowest average BDE is SLIC, at 11.82 (4.12). The method
with the fastest average calculation time is Watershed, at 0.06 (0.01) seconds. The method with the
highest average Dice coefficient is PMLCD, at 0.93 (0.03). Briefly, the PMLCD method yields the
four best average values for the RI, GCE, NVI, and Dice coefficient. Figure 12 shows the graphs of
computation times used to segment image #3096 from the BSDS500, interpolated to achieve various
image sizes. As seen, the Watershed, PMVIF, and PMLCD methods are the fastest, respectively, but
the PMLCD is the only true color image segmentation method. Figure 13 demonstrates the result of
the noisy color image segmentation of the image #2007_001289 from VOC2012 with additive white
Gaussian noise (signal-to-noise ratio (SNR) 0 dB (σnoise = 0.21)) obtained using the PMLCD algorithm
with the following parameters: radius of LCD = 3, T|~e| = 0.27 derived from Otsu’s method, γ = −0.14
resulting in α = 0.34 and β = 0.66 obtained from Equations (13) and (14), respectively. The result gives
the following benchmarks: RI = 0.91, GCE = 0.01, NVI = 0.01, BDE = 90.23 and computation time =
0.72 s. Figure 14 shows the SNR-performance graph of the PMLCD applied to this image, reflecting the
high noise tolerance of the PMLCD method.
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Figure 9. Color image segmentation results of the image #2007_000063 from VOC2012.

Figure 10. The ground truth object in Figure 9 and the corresponding segmented regions.
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BSDS500 

#238025

VOC2012 

#2007_001430

VOC2012 

#2010_005626

VOC2012 

#2010_005746

BSDS500 

#2018

BSDS500 

#81095

BSDS500 

#107072

(b)(a) (i)(c) (d) (e) (f) (g) (h)

Figure 11. Color image segmentation results. (a) dataset images, (b) ground truths; results of
(c) PMLCD, (d) PMVIF, (e) watershed, (f) SLIC, (g) K-means, (h) mean shift, and (i) JSEG.
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Table 1. The performance of each method from Figures 9–11.

Dataset Method By Image By Object Parameter
RI GCE NVI BDE Time Dice

V
O

C
20

12
#2

00
7_

00
00

63
PMLCD 0.67 0.09 0.15 16.66 0.21s 0.97 LCD radius 1, T|~e|0.17(Otsu), γ0.06(α0.52,β0.48)
PMVIF 0.63 0.30 0.15 14.87 0.49s 0.87 T|~e|0.16(Otsu), γ0.06(α0.50,β0.50)
Watershed 0.62 0.06 0.34 13.96 0.08s 0.96 Level 0.10
SLIC 0.64 0.15 0.20 13.87 12.99s 0.88 Number of SuperPixels 20
K-means 0.63 0.23 0.24 14.02 12.78s 0.63 Number of clusters 100
Mean shift 0.62 0.29 0.28 13.92 147.71s 0.47 Bandwidth 0.02
JSEG 0.66 0.30 0.12 18.69 84.38s 0.79 Color quantization 20

V
O

C
20

12
#2

00
7_

00
14

30

PMLCD 0.62 0.09 0.17 18.75 0.41s 0.95 LCD radius 2, T|~e|0.22(Otsu), γ0.00(α0.50,β0.50)
PMVIF 0.60 0.14 0.20 16.59 0.75s 0.90 T|~e|0.13(Otsu), γ0.00(α0.50,β0.50)
Watershed 0.60 0.08 0.23 16.85 0.07s 0.90 Level 0.08
SLIC 0.60 0.11 0.18 16.05 3.92s 0.90 Number of SuperPixels 30
K-means 0.58 0.49 0.16 16.98 2.12s 0.41 Number of clusters 8
Mean shift 0.57 0.47 0.18 18.11 53.50s 0.43 Bandwidth 0.07
JSEG 0.62 0.16 0.13 21.92 60.72s 0.83 Color quantization 10

V
O

C
20

12
#2

01
0_

00
56

26

PMLCD 0.65 0.12 0.17 17.43 0.39s 0.90 LCD radius 2, T|~e|0.16(Otsu), γ0.30(α0.70,β0.30)
PMVIF 0.60 0.24 0.20 16.24 0.64s 0.78 T|~e|0.12(Otsu), γ0.30(α0.50,β0.50)
Watershed 0.60 0.17 0.27 19.33 0.07s 0.83 Level 0.05
SLIC 0.64 0.13 0.17 15.54 4.35s 0.88 Number of SuperPixels 20
K-means 0.63 0.40 0.14 16.73 2.03s 0.78 Number of clusters 8
Mean shift 0.65 0.38 0.09 19.75 1.96s 0.79 Bandwidth 0.25
JSEG 0.64 0.20 0.14 20.19 71.54s 0.85 Color quantization 19

V
O

C
20

12
#2

01
0_

00
57

46

PMLCD 0.82 0.05 0.09 7.65 0.19s 0.93 LCD radius 1, T|~e|0.21(Otsu), γ0.00(α0.50,β0.50)
PMVIF 0.73 0.05 0.12 4.26 0.45s 0.91 T|~e|0.18(Otsu), γ0.00(α0.50,β0.50)
Watershed 0.37 0.11 0.30 19.40 0.07s 0.82 Level 0.01
SLIC 0.46 0.16 0.15 7.59 4.13s 0.75 Number of SuperPixels 5
K-means 0.37 0.16 0.24 9.28 10.62s 0.74 Number of clusters 100
Mean shift 0.41 0.17 0.23 13.43 373.74s 0.71 Bandwidth 0.02
JSEG 0.46 0.14 0.14 14.47 36.85s 0.77 Color quantization 2
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Table 1. Cont.

Dataset Method By Image By Object Parameter
RI GCE NVI BDE Time Dice

BS
D

S5
00

#2
01

8
PMLCD 0.90 0.21 0.09 5.43 0.20s 0.92 LCD radius 1, T|~e|0.24(Otsu), γ0.35(α0.86,β0.14)
PMVIF 0.75 0.46 0.14 4.32 0.49s 0.92 T|~e|0.19(Otsu), γ0.35(α0.52,β0.48)
Watershed 0.84 0.31 0.16 7.88 0.05s 0.83 Level 0.04
SLIC 0.89 0.22 0.10 3.75 3.54s 0.88 Number of SuperPixels 10
K-means 0.82 0.61 0.16 4.14 2.33s 0.69 Number of clusters 10
Mean shift 0.74 0.36 0.12 5.01 8.34s 0.73 Bandwidth 0.10
JSEG 0.81 0.37 0.11 18.94 69.68s 0.59 Color quantization 30

BS
D

S5
00

#8
10

95

PMLCD 0.90 0.17 0.09 9.55 0.35s 0.89 LCD radius 2, T|~e|0.21(Otsu), γ0.12(α0.64,β0.36)
PMVIF 0.81 0.26 0.14 9.64 0.38s 0.86 T|~e|0.18(Otsu), γ0.12(α0.50,β0.50)
Watershed 0.85 0.15 0.18 10.63 0.06s 0.84 Level 0.05
SLIC 0.85 0.20 0.11 9.99 2.50s 0.86 Number of SuperPixels 10
K-means 0.81 0.49 0.16 8.77 2.77s 0.64 Number of clusters 14
Mean shift 0.82 0.50 0.14 10.41 38.64s 0.63 Bandwidth 0.08
JSEG 0.84 0.30 0.11 16.63 47.30s 0.80 Color quantization 12

BS
D

S5
00

#1
07

07
2

PMLCD 0.85 0.18 0.10 12.78 0.16s 0.93 LCD radius 1, T|~e|0.22(Otsu), γ-0.05(α0.47,β0.53)
PMVIF 0.48 0.33 0.13 15.34 0.27s 0.47 T|~e|0.23(Otsu), γ-0.05(α0.50,β0.50)
Watershed 0.75 0.12 0.25 15.50 0.05s 0.92 Level 0.15
SLIC 0.76 0.12 0.16 12.27 3.89s 0.88 Number of SuperPixels 25
K-means 0.75 0.34 0.17 12.33 3.61s 0.43 Number of clusters 20
Mean shift 0.74 0.32 0.27 13.58 79.77s 0.41 Bandwidth 0.02
JSEG 0.82 0.22 0.10 8.99 47.27s 0.73 Color quantization 10

BS
D

S5
00

#2
38

02
5

PMLCD 0.86 0.10 0.09 13.60 0.37s 0.96 LCD radius 2, T|~e|0.19(Otsu), γ0.15(α0.64,β0.36)
PMVIF 0.69 0.31 0.10 15.95 0.28s 0.93 T|~e|0.18(Otsu), γ0.15(α0.50,β0.50)
Watershed 0.65 0.06 0.29 19.30 0.06s 0.94 Level 0.05
SLIC 0.67 0.08 0.17 15.49 3.73s 0.95 Number of SuperPixels 30
K-means 0.68 0.35 0.15 12.80 2.94s 0.67 Number of clusters 16
Mean shift 0.71 0.47 0.12 13.41 50.11s 0.61 Bandwidth 0.05
JSEG 0.73 0.24 0.11 15.27 42.22s 0.61 Color quantization 10
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Table 1. Cont.

Dataset Method By Image By Object Parameter
RI GCE NVI BDE Time Dice

A
ve

ra
ge

(S
ta

nd
ar

d
D

ev
ia

ti
on

) PMLCD 0.78
(0.11)

0.13
(0.05)

0.12
(0.04)

12.73
(4.52)

0.29s
(0.10)

0.93
(0.03) LCD radius 1.50(0.50), γ0.14(0.15)

PMVIF 0.66
(0.10)

0.26
(0.12)

0.15
(0.03)

12.15
(4.98)

0.47s
(0.16)

0.83
(0.14) γ0.14(0.15)

Watershed 0.66
(0.15)

0.13
(0.08)

0.25
(0.06)

15.36
(4.03)

0.06s
(0.01)

0.88
(0.05) Level 0.0.07(0.04)

SLIC 0.69
(0.13)

0.15
(0.04)

0.16
(0.03)

11.82
(4.12)

4.88s
(3.11)

0.87
(0.05) Number of SuperPixels 18.75(8.93)

K-means 0.66
(0.14)

0.38
(0.14)

0.18
(0.04)

11.88
(4.05)

4.90s
(3.99)

0.62
(0.13) Number of clusters 34.50(38.01)

Mean shift 0.66
(0.13)

0.37
(0.10)

0.18
(0.07)

13.45
(4.21)

94.22s
(113.90)

0.60
(0.14) Bandwidth 0.08(0.07)

JSEG 0.70
(0.12)

0.24
(0.07)

0.12
(0.01)

16.89
(3.78)

57.50s
(15.60)

0.75
(0.09) Color quantization 14.13(8.01)
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Figure 12. The comparison of the computation time of PMLCD and other methods.

(a) (b)

(c) (d)

Figure 13. Noisy image segmentation results: (a) VOC2012 #2007_001289 image with SNR = 0 dB
(σnoise = 0.21), (b) particle trajectories obtained using PMLCD with a radius of LCD = 3, T|~e| = 0.27,
γ = −0.14 (α = 0.34, β = 0.66), (c) extracted boundaries (red lines), and (d) segmented regions.

Figure 14. The benchmarks of the PMLCD method applied to the noisy VOC2012 #2007_001289 image.
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5. Conclusions

The PMLCD color image segmentation algorithm is developed from the traditional method of
particle motion in a vector image field (PMVIF) which uses two vector fields orthogonal to each
other—namely a normal compressive vector field and an edge vector field—to force a particle to travel
along object boundaries. Unlike the formulae previously used in the original PMVIF method, a normal
compressive vector field is derived from the center-to-centroid vectors of local color distant images,
whereas a gradient-like vector field is derived from center-to-centroid vectors of local color distant
images in which each pixel is multiplied by the difference of the auxiliary pixels. An edge vector is
then obtained by rotating each vector in a gradient-like vector field by 90◦ to achieve a Hamiltonian
gradient-like field. In addition, for ease of use, a method for adjusting parameters related to particle
movement, including T|~e|, α, and β, is introduced. Experimental results show that the proposed method
yields promising results, with better RI, GCE, NVI, and Dice measures as well as a faster computation
time and good noise resistance. Since the proposed algorithm is based on color distance measurement,
which can be applied to both scalar and vector images, it outperforms other grayscale-based methods,
especially in regions in which edge information cannot be visualized in the grayscale image domain.
Moreover, the method is not only useful for segmenting color images, but also can be used for all types
of color space and vector images including multispectral and hyperspectral images.
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20. Baştan, M.; Bukhari, S.S.; Breuel, T. Active Canny: Edge detection and recovery with open active contour

models. IET Image Process. 2017, 11, 1325–1332. [CrossRef]
21. Eua-Anant, N.; Udpa, L. A novel boundary extraction algorithm based on a vector image model.

In Proceedings of the 39th Midwest Symposium on Circuits and Systems, Ames, IA, USA, 21 August 1996;
Volume 2, pp. 597–600. [CrossRef]

22. Eua-anant, N.; Lalita, U.; Upda, L. Boundary extraction algorithm based on particle motion in a vector
image field. In Proceedings of the International Conference on Image Processing, Santa Barbara, CA, USA,
26–29 October 1997; Volume 2, pp. 732–735. [CrossRef]

23. Eua-Anant, N.; Udpa, L. Boundary detection using simulation of particle motion in a vector image field.
IEEE Trans. Image Process. 1999, 8, 1560–1571. [CrossRef]

24. Ma, W.Y.; Manjunath, B.S. EdgeFlow: A Technique for Boundary Detection and Image Segmentation.
IEEE Trans. Image Process. 2000, 9, 1375–1388.

25. Yang, F.; Bruckstein, A.M.; Cohen, L.D. PointFlow: A model for automatically tracing object boundaries and
inferring illusory contours. In International Workshop on Energy Minimization Methods in Computer Vision and
Pattern Recognition; Springer: Cham, Switzerland, 2017. [CrossRef]

26. Beucher, S.; Lantuejoul, C. Use of Watersheds in Contour Detection. In Proceedings of the International
Workshop on Image Processing; CCETT/IRISA: Rennes, France, 1979.

27. Kornilov, A.S.; Safonov, I.V. An overview of watershed algorithm implementations in open source libraries.
J. Imaging 2018, 4, 123. [CrossRef]

28. Greig, D.M.; Porteous, B.T.; Seheult, A. Exact Maximum A Posteriori Estimation for Binary Images. J. R. Stat.
Soc. Ser. B 1989, 51, 271–279. [CrossRef]

29. Wang, T.; Ji, Z.; Sun, Q.; Chen, Q.; Ge, Q.; Yang, J. Diffusive likelihood for interactive image segmentation.
Pattern Recognit. 2018, 79, 440–451. [CrossRef]

30. Shi, J.; Malik, J. Normalized cuts and image segmentation. IEEE Trans. Pattern Anal. Mach. Intell. 2000,
22, 888–905. [CrossRef]

31. Xu, J.; Janowczyk, A.; Chandran, S.; Madabhushi, A. A weighted mean shift, normalized cuts initialized
color gradient based geodesic active contour model: Applications to histopathology image segmentation.
In Medical Imaging 2010: Image Processing; International Society for Optics and Photonics: Bellingham, WA,
USA, 2010; Volume 7623, p. 76230Y. [CrossRef]

32. Ren, X.; Malik, J. Learning a classification model for segmentation. Proc. IEEE Int. Conf. Comput. Vis. 2003,
1, 10–17. [CrossRef]

33. Daoud, M.I.; Atallah, A.A.; Awwad, F.; Al-Najjar, M.; Alazrai, R. Automatic superpixel-based segmentation
method for breast ultrasound images. Expert Syst. Appl. 2019, 121, 78–96. [CrossRef]

34. Achanta, R.; Shaji, A.; Smith, K.; Lucchi, A. SLIC Superpixels Compared to State-of-the-Art Superpixel
Methods. IEEE Trans. Pattern Anal. Mach. Intell. 2012, 34, 2274–2282. [CrossRef] [PubMed]

http://dx.doi.org/10.3390/electronics8030292
http://dx.doi.org/10.1145/321119.321123
http://dx.doi.org/10.1109/TSMC.1979.4310076
http://dx.doi.org/10.1155/2017/1735176
http://dx.doi.org/10.1016/0031-3203(79)90006-2
http://dx.doi.org/10.1016/B978-0-12-737140-5.50009-9
http://dx.doi.org/10.1016/0010-4809(72)90070-5
http://dx.doi.org/10.1023/A:1023030907417
http://dx.doi.org/10.1049/iet-ipr.2017.0336
http://dx.doi.org/10.1109/mwscas.1996.587797
http://dx.doi.org/10.1109/ICIP.1997.638600
http://dx.doi.org/10.1109/83.799884
http://dx.doi.org/10.1007/978-3-319-78199-0_32
http://dx.doi.org/10.3390/jimaging4100123
http://dx.doi.org/10.1111/j.2517-6161.1989.tb01764.x
http://dx.doi.org/10.1016/j.patcog.2018.02.023
http://dx.doi.org/10.1109/34.868688
http://dx.doi.org/10.1117/12.845602
http://dx.doi.org/10.1109/iccv.2003.1238308
http://dx.doi.org/10.1016/j.eswa.2018.11.024
http://dx.doi.org/10.1109/TPAMI.2012.120
http://www.ncbi.nlm.nih.gov/pubmed/22641706


J. Imaging 2020, 6, 72 19 of 19

35. Li, Z.; Chen, J. Superpixel segmentation using Linear Spectral Clustering. In Proceedings of the IEEE
Computer Society Conference on Computer Vision and Pattern Recognition, Boston, MA, USA, 7–12 June 2015;
pp. 1356–1363. [CrossRef]

36. Hu, M.K. Visual Pattern Recognition by Moment Invariants. IRE Trans. Inf. Theory 1962, 8, 179–187.
[CrossRef]

37. Everingham, M.; Van Gool, L.; Williams, C.K.; Winn, J.; Zisserman, A. The pascal visual object classes (VOC)
challenge. Int. J. Comput. Vis. 2010, 88, 303–338. [CrossRef]

38. Martin, D.; Fowlkes, C.; Tal, D.; Malik, J. A Database of Human Segmented Natural Images and its
Application to Evaluating Segmentation Algorithms and Measuring Ecological Statistics. In Proceedings
of the Eighth IEEE International Conference on Computer Vision, Vancouver, BC, Canada, 7–14 July 2001;
Volume 2, pp. 416–423. [CrossRef]

39. Majid, H.; Hadi Yazdani, B. Color Image Segmentation Metrics. In Encyclopedia of Image Processing; CRC Press:
Boca Raton, FL, USA, 2019. [CrossRef]

40. Reichart, R.; Rappoport, A. The NVI clustering evaluation measure. In Proceedings of the CoNLL
2009—Proceedings of the Thirteenth Conference on Computational Natural Language Learning, Boulder,
CO, USA, 4–5 June 2009; pp. 165–173. [CrossRef]

c© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1109/CVPR.2015.7298741
http://dx.doi.org/10.1109/TIT.1962.1057692
http://dx.doi.org/10.1007/s11263-009-0275-4
http://dx.doi.org/10.1109/ICCV.2001.937655
http://dx.doi.org/10.1201/9781351032742-140000183
http://dx.doi.org/10.3115/1596374.1596401
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	Background to Particle Motion in a Vector Image Field
	Methodology
	Image Moments
	Local Color Distance Images
	The Normal Compressive Vector Field
	The Edge Vector Field
	Particle Motion in a Vector Image Field Derived from Local Color Distance Images
	Appropriate PMLCD Parameter Setting
	Overall Boundary Extraction Method

	Experimental Results and Discussion
	Conclusions
	References

