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Abstract: Person re-identification (Re-ID) is challenging due to host of factors: the variety of human
positions, difficulties in aligning bounding boxes, and complex backgrounds, among other factors.
This paper proposes a new framework called EXAM (EXtreme And Moderate feature embeddings) for
Re-ID tasks. This is done using discriminative feature learning, requiring attention-based guidance
during training. Here “Extreme” refers to salient human features and “Moderate” refers to common
human features. In this framework, these types of embeddings are calculated by global max-pooling
and average-pooling operations respectively; and then, jointly supervised by multiple triplet and
cross-entropy loss functions. The processes of deducing attention from learned embeddings and
discriminative feature learning are incorporated, and benefit from each other in this end-to-end
framework. From the comparative experiments and ablation studies, it is shown that the proposed
EXAM is effective, and its learned feature representation reaches state-of-the-art performance.

Keywords: person Re-ID; deep learning; loss function

1. Introduction

Person re-identification (Re-ID) has been widely studied to determine whether a
person-of-interest has appeared elsewhere, captured by different cameras [1–3]. With the
widespread use of surveillance systems, finding a match of an image for a particular person
in large-scale image and video repositories is difficult because of a myriad of environmental
and technical factors, such as variations in illumination, pose, viewpoint, detection and
tracking errors, bounding box misalignment, and unpredictable occlusions.

The key component of a Re-ID system is feature representation construction. Most
early approaches relied on hand-crafted features whose performance is limited due to the
gap between the low-level features and high-level semantics [4–6]. Recently, deep network-
based feature learning has become a common practice in person Re-ID tasks. Deep neural
network is originally developed for image classification [7], and its successful global feature
learning strategy for classification was directly adopted for the person Re-ID approaches.
The learned global representation pays less attention to local details [8], and often suf-
fers weak discriminative ability in identifying targets with similar inter-class common
properties or large intra-class differences [9]. For example, the following difficulties are
encountered: (1) imprecise pedestrian detection affects global feature learning, e.g., shown
in Figure 1a; (2) body posture changes make the learning more difficult, e.g., Figure 1b;
(3) unexpected occlusion makes the learned features irrelevant to the human bodies, e.g.,
Figure 1c; (4) cluttered background or multiple pedestrians with highly similar appearances
make the model difficult to distinguish, e.g., Figure 1d,e; (5) Misaligned bounding boxes
make the model scale-variant, e.g., Figure 1f.
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Figure 1. Examples to illustrate the challenges in person RE-ID caused by (a) imprecise detection,
(b) different pedestrian postures, (c) occlusion, (d) messy background, (e) analogous appearance,
(f) misalignment.

As a data-driven approach, it is possible for a deep network to learn features from
local saliency regions, i.e., guided by some attention-based regularizer during the learning
process. At present, one of mainstream Re-ID approaches combines global features with
local part-based attention to make the model robust to variations [9,10], in which local
features are learned under the visual attentions deduced from the predefined body parts.
However, attention derived from partitioned parts alone is not strong enough to supervise
the feature learning process. Some alternatives [11] use foreground masks to impose the
focus explicitly, but often result in a high risk of having misguided attention at the lower
layers due to the poor resolution of input images.

To alleviate this problem, it is better to incorporate the discriminative feature learning
and salient attention deducing in an end-to-end network, because they can benefit from
each other in the training process [12–14]. Thus, in this paper we propose a framework
to learn EXtreme And Moderate (EXAM) feature embeddings to deduce the attention at
both global and local levels for Re-ID. It may sound oxymoronic to group the two terms
“extreme” and “moderate” together. But in fact, they are two inherent aspects of human
body appearance: saliency and commonality. Saliency features that are from the most
attention attractive visual cues reflect the “extreme” aspects of the body appearance, while
“moderate” refers to the common features associated with the concepts of smoothness and
consistency without the influence of noise and outliers. If the network can capture both
types of attentive information from a person image, the discriminative ability of the learned
model would be significantly increased.

The proposed EXAM framework consists of global and local branches sharing a
common backbone network based on ResNet-50. Different from conventional global ap-
proaches [15,16] learning full body features directly, we apply global max-pooling (GMP)
and average-pooling (GAP) operations on feature maps. As shown in Figure 2, conceptu-
ally, the extreme and moderate embeddings capture major aspects of body appearance and
are integrated to further provide global attentional cues. In the local branch, the entire body
is horizontally partitioned into six uniform strips [17], in which the learned local moderate
embeddings can provide regional attention cues with suppressed noise caused by target
misalignment and background clutter. Finally, in this end-to-end network, a discriminative
feature representation is jointly learned under the guidance from both global and local
attentions with multiple loss functions. In summary, our contributions are threefold:



J. Imaging 2021, 7, 6 3 of 16

Figure 2. Both Extreme and Moderate features are derived to learn EXAM embeddings.

1. We propose an extreme and moderate embedding learning framework EXAM for
person Re-ID. This is an end-to-end network, providing attention cues to construct
discriminative body representations.

2. EXAM has global and local branches. The global extreme and moderate embeddings
reflect the saliency and commonality of full human body appearance, while the local
moderate embeddings capture the concepts of smoothness and local consistence.

3. By integrating multiple loss functions, the process of deducing attention from EXAM
embeddings provides deep supervision for discriminative feature learning. Both
procedures are incorporated and benefit from each other.

The rest of this article is organized as follows. Section 2 introduces some related
work. The detailed structure of the proposed framework is explained in Section 3. The
experimental results are presented and analyzed in Section 4. Finally, the conclusion is
drawn in Section 5.

2. Related Work
2.1. Feature Representation Learning

Conventional methods [4–6] use hand-crafted features in person re-ID task, such
as color histogram, HOG (Histogram of oriented gradient) and SIFT (Scale invariant
feature transform) [4–6]. Their performance is limited due to the gap between the low-
level features and high-level semantics. Recently, deep learning-based methods have
become mainstream in the field of Re-ID. The first deep network approaches for Re-ID
were introduced in 2014 [15,16]. Since deep neural networks are originally developed
for image classification, its global feature learning strategy for classification was directly
adopted in the earlier person Re-ID approaches. For example, Tao et al. [18] proposed
a deep multi-view feature learning (DMVFL) scheme to collaborate both hand-crafted
and deep features in a simple manner. Zheng et al. [19] proposed an ID-discriminative
Embedding (IDE) model, which views the training process of person Re-ID as a multi-
class classification problem where each identity is a distinct class. IDE models have been
widely adopted in Re-ID community. Compared with hand-crafted methods, deep learning
approaches achieved a great improvement in recognition accuracy. However, these learned
global representations mainly focuses on full body semantic and pays less attention to
local details [8]. It naturally lacks flexible granularity for feature description and often
suffers weak discriminative ability in identifying targets with similar inter-class common
properties or large intra-class differences [9].

Besides global features, more methods also used human body part information to
extract the local feature descriptor for Re-ID performance improvement [20]. There are
several ways of obtaining body part information. One is to perform body part estimation
by human parsing techniques to find meaningful body parts, such as head, torso, limbs etc.,
in which well-aligned part features can be extracted. This method usually requires an
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additional pose detector which may be prone to detection errors due to the gap between
the person Re-ID and human pose estimation datasets [10,21]. Alternatively, in [22], a
pedestrian image is divided into three regions according to four estimated body key points,
and then the local features can be learned from individual regions. Furthermore, some
methods directly divide the image into several horizontal partitions as the parts without
relying on error-prone estimation algorithms. Part-based Convolutional Baseline (PCB) [17]
is a typical approach in this category. It horizontally partitions a person bounding box into
several uniform stripes, each of which represents a certain body part. The local features are
learned from individual strips and input into its corresponding classifier. The performance
of a PCB approach is further improved with a refined part pooling (RPP) strategy to
enhance within-part consistency. The experimental results show that the PCB + RPP is
effective. How the system integrates multiple parts is essential for organizing local features.
Aggregating multiple part-level local features by multiple loss functions [23,24] can guide
the network to learn a robust representation for unseen persons.

According to the experimental results, local feature descriptors usually perform better,
but valuable global feature information is completely ignored. At present, one of main-
stream Re-ID approaches combines global features with local part-based attention to make
the model robust to variations [9,10], in which local features are learned under the visual
attentions deduced from the predefined body parts.

2.2. Attention Cues

Attention information is beneficial for discriminative Re-ID model learning. Its ex-
traction schemes have been widely studied to enhance body appearance representation
learning. Usually, attention can be derived from spatial space and different convolutional
channels. Within a person image, Harmonious Attention CNN (HA-CNN) model [25]
jointly learns the local pixel attention and global regional attention to enhance the ro-
bustness of feature representation against misalignment. In [26], a channel-wise Fully
Attentional Block (FAB) is designed to adjust the feature response to improve the model
discriminability. By introducing both spatial- and channel-wise attention, SCAL [27], a
self-critical reinforcement learning framework, achieved state-of-the-art performance on
benchmark datasets.

Attention cues can be deduced from local parts feature learning as well. Unlike
other spatial and channel-based attention schemas, Chen et al. [28] deploy a high-order
polynomial predictor to produce scale maps that contain the high-order statistics (at-
tentions) of convolutional activations. In this way it can capture subtle discriminative
features. Similarly, second-order non-local attention is introduced in SONA [12] to directly
model long-range relationships. An Interaction-and-Aggregation (IA) [29] models the inter-
dependencies between spatial features and aggregates the correlated body part features.
However, attention derived from partitioned parts alone is not strong enough to supervise
the feature learning process. To eliminate the impact of background clutter, a Mask-Guided
Contrastive Attention Model (MGCAM) [11] is designed to use foreground masks to im-
pose the focus explicitly. MGCAM is trained with a region-level triplet loss. However, this
approach often results in a high risk of having misguided attention at the lower layers due
to the poor resolution of input images. Zhou et al. [30] designed a consistent attention
regularizer (CAR) in a feedforward attention network to learn discriminative features from
the foreground regions. As a result, the network will focus on the foreground regions at
the lower layers, and the network can effectively deal with the target misalignment and
background clutter at the higher layers.

From the literature, attention is derived from discriminative [14], diverse [13], low-
level [30] and high-order [28] properties of the feature maps. But at least two important
inherit aspects of body appearance are missing: saliency and commonality, which are
visually attractive to human vision [31]. In this work, we utilize the extreme (saliency) and
moderate (commonality) embeddings for attention deducing.
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3. The Proposed Method
3.1. Network Architecture

We propose a Re-ID framework EXAM that learns extreme and moderate embeddings
to deduce attention cues for discriminative human appearance feature learning. The
overall network structure is depicted in Figure 3. It consists of four major components: a
backbone network for low-level feature extraction, a global branch for learning saliency and
commonality embeddings from full body appearance, a local branch for learning part-based
attention embeddings, and finally, a joint multi-loss deep supervision for simultaneously
discovering attention cues and optimizing discriminative feature representation.
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Figure 3. EXAM Network Architecture. It includes four parts: Backbone Network, Global Branch, Local Branch, and
Loss fusion. Both global branch and local branch share the same backbone network ResNet-50 to extract the feature
maps. The whole network is trained with two triplet losses with batch hard mining and seven cross-entropy losses with
label smoothing.

Backbone Network: The backbone network learns and extracts the feature maps
of pedestrian images. ResNet-50 has demonstrated competitive performance in many
vision systems, and has been widely used as the backbone for Re-ID [9,32]. We also adopt
ResNet-50 with the pretrained parameters on ImageNet [7] in our approach, with some
modifications. Specifically, we remove the last fully connected layer, and add a dimension
reduction module and a classification layer for multi-loss training. Since a large spatial view
can provide rich feature details, we remove the last down-sampling layer in res_conv5_1
block and change the stride of the last convolutional layer from 2 to 1 to get larger size
feature maps. For example, given the input image size 256× 128 and the stride value
2, the size of the output feature map is 8× 4. If the stride is changed to 1, we can get a
feature map with size 16× 8. In all of the following experiments, the size of the input
image is 288× 144. With stride = 1, the spatial size of the output feature map is 18× 9.
This modification improves the model performance, while only adding a small amount of
computation cost without introducing an extra burden for parameter training.

Extreme and Moderate Features: Extreme and Moderate embeddings are derived from
global max-pooling (GMP) and average-pooling (GAP) respectively. Global Max-pooling
performs the feature selection from the 2D feature map, and captures the strongest signal
(body saliency) while making the embedding translate-invariant [33]. Average-pooling
considers all signals from the feature map, and calculates the mean value, in which noise
and outliers can be suppressed, which makes the embeddings robust to pose variation and
cluttered backgrounds. Equations (1) and (2) are their formula respectively, where fch is
the feature map of a certain channel, i and j are the indexes of width w and height h on the
feature map.

GMPch = max
0≤i<w,0≤j<h

fch(xi, yj) (1)
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GAPch =
∑w−1

i=0 ∑h−1
j=0 fch(xi, yj)

w× h
(2)

Global Branch: The global branch is connected after the backbone network to learn
the extreme and moderate embeddings from full body images. It takes the feature map
with the size [1, 2048, 18, 9] from the backbone network. The first dimension 1 represents
the number of images; the second value 2048 is total number of channels of the feature map
from ResNet-50; the third and fourth values are the spatial height and width of the feature
map, representing 18× 9. The global branch generates two feature embeddings (vectors)
against the full body feature map. The global average pooling (GAP) and global max
pooling (GMP) operations are performed on [1, 2048, 18, 9] feature map, to produce two
[1, 2048, 1, 1] vectors respectively.During testing phases, both GAP and GMP embeddings
are concatenated into a 4096-dimensional vector as the feature representation. This long
vector would be followed by a feature reduction module containing a batch normalization
layer, a LeakyReLU layer, a fully connected layer to reduce the dimension to 512, and
a second set of batch normalization and fully connected layers as the third compact
embeddings. Extreme (GMP), moderate (GAP) and the mixture embedding vectors provide
meaningful visual attention for discriminative feature learning.

Local Branch: Similar to the PCB approach [17], the entire feature map with the
size of [1, 2048, 18, 9] from the backbone network is horizontally partitioned into six
uniform strips. The size of each is [1, 2048, 3, 9]. Different from the global branch using
two pooling operations on the feature map, only the average-pooling (GAP) operation
is applied on individual partitions to get 6 part-based embedding vectors [1, 2048, 1, 1].
After being processed by the dimension reduction module, the final six local part-based
256-dimension embeddings are produced. The local branch extracts moderate embeddings
with suppressed noisy information or outliers and deduces the attention cues that bring
smoothness and consistence semantics into the feature training process.

3.2. Multiple Loss Supervision

In EXAM, multiple cross-entropy loss and triplet loss are combined for embedding
and feature representation training, which are mutually beneficial for Re-ID tasks.

Cross-Entropy Loss with Label Smoothing: Cross-entropy loss is commonly used in
multi-classification tasks. It is usually placed in the last layer of the classification network
to measure the dissatisfaction with the prediction from the current model given the training
data. Here, the loss value is calculated by the softmax-based cross-entropy function:

Lso f t max = −∑N
i=1 log e

WT
yi

fi

∑M
c=1 eWT

c fi
(3)

where, N and M respectively represent the total number of samples and the number of
classes in the dataset; Wc represents the weight vector for class c ; and fi refers to an input
feature map. Since the data samples of existing Re-ID datasets are not enough, directly
using the cross-entropy loss can easily lead the model to over-fitting. So, Label smoothing
Regulation (LSR) [34] is used to ease the problem. Thus, the cross-entropy loss with label
smoothing is shown in Formula (4):

LCE =

{
(1− N−1

N ε)× Lso f t max , i f (i = y)
ε/N × Lso f t max , i f (i 6= y)

(4)

Where ε is a small constant hyperparameter, combined with the dataset size N to
adjust the loss value during training. When the dataset is small, cross-entropy loss with
LSR can significantly inhibit the over-fitting phenomenon of the model.

Triplet Loss with Batch Hard Mining: Essentially, Re-ID can be treated as a retrieval
ranking problem, since its goal is to find a target in a dataset which is the best match against
a query sample. A triplet loss function can be used for ranking metric learning. The basic
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idea is that the distance between a positive pair should be smaller than a negative pair by
a pre-defined margin. Specifically, the network uses three pictures

〈
Da

i , Dp
i , Dn

i

〉
as the

input to the triple loss, where Da
i is the anchor sample, Dp

i and Dn
i are the positive (with

the same label as the anchor) and the negative samples (with the different label). Then the
triplet loss is expressed as:

Ltriplet =
1
N

a,p,n

∑
ya=yp 6=yn

[
t + da,p − da,n

]
+

(5)

where t indicates a margin between the positive and negative pairs. N represents the total
number of triples in the whole network, and d is the metric distance between two samples.

The regular triplet loss randomly selects a group of triplets from the training data.
Usually a random selection consists of easy triplets which would result in the model with
weak discriminative ability. To alleviate this issue, batch hard mining [35] is applied to
select sample pairs that are hard for the model to discriminate. Specifically, it randomly
picks P identities and K samples from each identity to form a mini-batch set with the size
P×K. For each anchor sample Da

i in a batch, a positive sample Dp
i with the largest distance

from Da
i , and a negative sample Dn

i with the smallest distance from Da
i are selected. Then

the formula of triplet loss with batch hard mining is as follows:

Lhardtriplet =
1

P× K

P×K

∑
i=1

[
t + max D+

a,p −min D−a,n

]
+

(6)

Compared with the traditional triplet loss, the triplet loss with batch hard mining
focuses on more indistinguishable samples in the dataset during training, and can bring
better performance for the Re-ID task.

Total Loss Function of Network: In this framework, multiple loss functions are inte-
grated to complete the network training (Figure 4).
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Figure 4. Total Loss Function in the Network.

The global extreme and moderate embeddings carry the global attention cues about
saliency and generality from the full body respectively. We employ two triplet losses LG

triplet1

, LG
triplet2 with batch hard mining for both. Additionally, the long vector (GMP+GAP) from

the global branch and six moderate embeddings of body partitions are trained by seven
Softmax-based cross-entropy loss functions: LG

CE, LP
CE1
∼ LP

CE6
respectively. Thus, we have

a total of nine losses, and perform a weighted linear sum to fuse them as the total loss value:

Ltotal = ∑9
i=1 wiLi (7)
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where Li refers to one of the nine losses, either the triple or cross-entropy value, and wi
is its corresponding weight for fusion. In this work, we used a fixed weighting strategy,
empirically set w = 0.5 for each triplet function, and w = 0.143 for each cross-entropy loss
function.

This aggregated loss plays the role of deep supervision to deduce better attention cues,
which are incorporated to support the discriminative feature representation learning.

4. Experiments
4.1. Platform Settings

Implementation details: We resized the input image to 288 × 144, and used the
pre-trained parameters on ImageNet [7] to initialize the backbone network. For data
augmentation, training images were horizontally flipped and erased randomly (REA) [36].
For the triplet loss in Equation (6), we set the margin t = 0.3 , identity size P = 8, and
samples per identity K = 4 respectively for batch hard mining. Therefore, the size of a
mini-batch is P× K = 32 . For the cross-entropy loss with label smoothing in Equation (4),
the ε value was set to 0.1. We chose SGD as the optimizer, and set the momentum to 0.9, and
the weight decay factor for L2 regularization to 0.0005. In order to improve the learning
effectiveness, a warm-up strategy was adopted to start over the network. The total training
process has 250 epochs. We set the initial learning rate to 3 × 10−4 and set it to 3 × 10−2 in
the first 10 epochs. After 60, 130 and 220 epochs of training, the learning rate was reduced
to 3 × 10−3, 3 × 10−4 and 3 × 10−5 respectively. All the experiments in this work followed
the same settings described above. We trained and tested the model on a PC (Intel® Xeon®

CPU E5-2667, 256 GB RAM) with one Nvidia Tesla P100 16 GB GPU. It took about 24 h to
train the EXAM model.

Evaluation metrics: To compare the Re-ID performance with other methods, we
evaluated all approaches following standard protocols on benchmark datasets, and used
the Cumulative Matching Characteristics (CMC) at Rank-1, Rank-5 and Rank-10 and
mean Average Precision (mAP) on the testing datasets. All the results were obtained in a
single-query setting, and the re-ranking optimization algorithm was not used.

4.2. Datasets

Three publicly available benchmark datasets were used for evaluation.
Market-1501: This dataset includes 32,668 outdoor images of 1501 persons. During

dataset collection, a total of six cameras were placed in front of a supermarket. There are 751
identities with 12,936 images in the training set; and 750 identities with 3368 query images
and 19,732 gallery images in the testing set. The pedestrian detection bounding-boxes of
query images are drawn manually, while the bounding-boxes of the gallery images are
detected by a DPM detector [37].

DukeMTMC-reID: This dataset has 36,411 outdoor images of 1404 persons taken by 8
synchronized cameras on the Duke University campus. The training set has 16,522 images
from 702 identities, and the testing set has 19,889 images from other 702 identities. Within
the testing set, there are 2228 query images and 17,661 gallery images. The detection
bounding boxes were semi-automatically generated, i.e. detected by DPM first, and then,
adjusted manually.

CUHK03: This dataset contains 14,097 outdoor images of 1467 identities shot by six
surveillance cameras at the Chinese University of Hong Kong(CUHK) campus, where
767 identities with 7368 images are in the training set. There are two ways to annotate a
bounding-box for this dataset, manually labeled pedestrian bounding boxes and automatic
detections by a DPM detector. We conducted experiments on both types of bounding-boxes.

All images from these datasets are from outdoor scenarios. As compared with indoor
scenarios, the person Re-ID task is usually more challenging in the outdoor environment
because of more diverse pedestrians, a chaotic environment and unstable lighting condi-
tions caused by weather changes, sun directions, and shadow distributions. Thus, these
datasets are commonly used in the Person Re-ID research domain.
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4.3. Comparison with State-of-the-Art Methods

We compared our EXAM with some state-of-the-art approaches. Our approach consis-
tently outperforms the others on three datasets for either Rank 1 or mAP. The details are
given as follows.

Market-1501: The comparison results are shown in Table 1. OSNet [38], a local-feature
based method, achieves 94.8% and 84.9 % for Rank1 and mAP respectively. Our proposed
method outperforms it by increasing 0.3% and 1.0% for Rank1 and mAP respectively.
CAR [30], a state-of-the-arts global feedforward attention network has the best result for
Rank1 result, while EXAM has a 1.2% improvement on mAP. In general, the proposed
method achieved the outstanding performance.

DukeMTMC-reID: In Table 2, Rank1 accuracy and mAP on DukeMTMC-reID are
reported. IANet [29] with a novel Interaction-and-Aggregation (IA) structure has the best
performance of all other methods. In comparison, our method outperforms it by 0.3%.and
2.6% on Rank1 accuracy and mAP respectively. Our approach achieved the best results on
this dataset.

CUHK03: This dataset uses the new protocol and employs two methods to anno-
tate the bounding-boxes. As shown in Table 3, our method achieved Rank1 = 73.9%,
mAP = 68.6% on the labeled dataset and 69.2%, 65.0% on detected dataset, which are better
than all others for both types of annotation methods.

Table 1. Comparison results on Market-1501 dataset.

Method Rank1 Rank2 Rank3 mAP

SVDNet [39] 82.3 92.3 95.2 62.1
MGCAM [11] 83.7 - - 74.3

Triplet Loss [35] 84.9 94.2 69.1
AOS [40] 86.4 - - 70.4
Dual [41] 91.4 - - 76.6

Mancs [26] 93.1 - - 82.3
CAMA [42] 94.7 - - 84.5

MultiRegion [43] 66.4 85.0 90.2 41.2
PAR [44] 81.0 92.0 94.7 63.4
PDC [45] 84.4 92.7 94.9 63.4

AACN [46] 85.9 - - 66.9
HA-CNN [25] 91.2 - - 75.7

PCB [17] 92.3 97.2 98.2 77.4
PCB+RPP [17] 93.8 97.5 98.5 81.6

AANet [47] 93.9 - 98.5 83.4
Auto-ReID [48] 94.5 - - 85.1

OSNet [38] 94.8 - - 84.9
CAR [30] 96.1 - - 84.7

EXAM 95.1 98.0 98.8 85.9

Table 2. Comparison results on DukeMTMC-reID dataset.

Method Rank1 mAP

SVDNet [39] 76.7 56.8
AOS [40] 79.2 62.1

MLFN [49] 81.0 62.8
DuATM [50] 81.8 64.6

PCB+RPP [17] 83.3 69.2
PSE+ECN [21] 84.5 75.7

GP-reid [51] 85.2 72.8
CAMA [42] 85.8 72.9

CAR [30] 86.3 73.1
IANet [29] 87.1 73.4

EXAM 87.4 76.0
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Table 3. Comparison results on the CUHK03 dataset. Besides the Rank1 accuracy and mAP presented
in this table, our method has 87.0% and 92.6% accuracy for Rank5 and Rank10 on the labeled dataset,
and 85.0% and 90.2% on the detected dataset.

Method Labeled Detected
Rank1 mAP Rank1 mAP

PAN [52] 36.9 35.0 36.3 34.0
SVDNet [39] 40.9 37.8 41.5 37.3

DPFL [53] 43.0 40.5 40.7 37.0
HA-CNN [25] 44.4 41.0 41.7 38.6

MLFN [49] 54.7 49.2 52.8 47.8
DaRe+RE [54] 66.1 61.6 63.3 59.0
PCB+RPP [17] - - 63.7 57.5

Mancs [26] 69.0 63.9 65.5 60.5
DG-Net [55] - - 65.6 61.1

EXAM 73.9 68.6 69.2 65.0

Figure 5 shows Top-10 ranking results for some query images on Market-1501. The
results from first two queries demonstrate the model robustness: with just one back view
query image, our method can find the correct identities with different postures. It is
important to note that, some of the images are not even aligned correctly. Although the
third query image is too vague to provide clear details, our approach can utilize horizontally
partitioned part features, such as length of hair presented in the top parts, or the skin color
of the legs in the bottom parts, to find matches and get satisfactory results. For the fourth
query image, our framework is able to extract both global features: pedestrian’s black
outfits, and local details: white backpack belt. Thus, all query image 4’s top 10 results
contain those discriminative appearance elements.

Figure 5. Top-10 ranking list for the query images on the Market-1501 datasets by our proposed
method. The pictures with green or red frames indicate the same or different identity as the query
image respectively.
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4.4. Ablation Study

To further verify our framework, we conducted ablation studies on several variants
with different combinations of embeddings and loss functions on the Market-1501 dataset.
It should be noted that in each variant we only modified the relevant settings and kept the
rest as the default.

First, we exclusively plugged the local or global embeddings into the model to test its
performance individually. Figure 6 presents the results on mAP and accuracies of Rank 1,
Rank 5 and Rank 10 respectively. We can see that, (1) using only local embeddings is not
as effective as using only global embeddings. It means saliency and generality attentions
derived from global features play more discriminative roles than the local features. (2)
Given the high accuracy rate of only using the global embeddings, the recognition accuracy
can be further improved by fusing both local and global embeddings. It validates the
design of integration of global and local branches in our proposed EXAM framework.

Secondly, eight types of variants of the global branch with different combinations of
embeddings and loss functions are shown in Table 4. Type 1 and Type 2 have the extreme
and moderate embeddings respectively, where the triplet loss is applied for the training
supervision. Type 3 merges both Type 1 and Type 2 and achieved higher accuracy on
Rank 1 and mAP. Differing from Type 3, Type 4 fuses both extreme and moderate into a
mixed embedding, and uses a single Softmax-based Cross-Entropy with Label Smoothing
(defined in Equation (4)) as the loss function. Figure 7 shows the difference between Type 3
and Type 4. Both Rank 1 and mAP accuracies of Type 4 are 1+% better than Type 3. This
set of variants indicates that, (1) using both extreme and moderate embeddings is better
than using one alone; (2) using the fused embedding is more effective than using both
separately. The best accuracy scores are achieved using the default global branch of EXAM
where two separated embeddings and the fused embedding are all utilized. It implies both
extreme and moderate embeddings bring positive attention cues for person Re-ID tasks.

mAP Rank1 Rank5 Rank10
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Figure 6. Performance of different branches on Market-1501 dataset.
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Table 4. Variants of the global branch on the Market-1501 dataset.

Variant Extreme Moderate Fusion Accuracy(%)
Triplet CE Triplet CE Triplet CE Rank1 mAP

Type1 X 93.4 82.8
Type2 X 93.2 82.1
Type3 X X 93.5 82.8
Type4 X 94.6 84.4
Type5 X X X 92.6 81.2
Type6 X X X 94.9 85.1
Type7 X X 94.1 84.8
Type8 X X X 94.2 84.0
EXAM X X X 95.1 85.9
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Avg Pooling
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Type Ⅳ

G
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Figure 7. Some variants of the global branch.

Choosing the right loss functions for different embedding learning is crucial. CE loss
is used to determine the feature representation to match the labeled target. Global variant
Type 5 selects the triplet loss for the fused embedding. Without the supervision of CE
loss, the learned feature representation of this variant lacks discriminative ability. Thus,
its performance was deteriorated substantially compared with the default, i.e., decreased
by 2.5%, 4.7% for Rank 1 and mAP respectively. Triplet loss provides an assistive role
for feature representation learning, as it pushes the data from different identities apart in
the feature space, while pulling the data closer if it belongs to the same person. Type 6
does not use any triplet loss, but instead uses CE loss for all three embeddings. Without
the assistance from the triplet loss, the learning burden of the feature representation is
increased. Thus, the performance of Type 6 is also decreased by 0.27% and 0.54% on Rank
1 and mAP respectively.

To further evaluate the effective usage of two types of loss functions, Type 8 switches
positions of loss functions in the default EXAM, i.e. puts CE loss on both separated embed-
dings, and applies triplet loss on the fused embedding. This implies that it uses the fused
embedding to learn the distance metric for data separation, and individual extreme and
moderate embeddings to determine the feature representation learning. From the results,
this variant has relatively poorer accuracy because it is difficult for the triplet loss to assist
in data separation based on the mixed information. Meanwhile, separated extreme and
moderate embeddings give limited information to CE loss for feature learning. Comparing
Type 4 and Type 7, we also see that using more loss functions does not guarantee better
performance, as Type 7 adds CE loss on the fused embedding, but received worse accuracy
(down by −0.36%, −0.34% on Rank 1 and mAP).

Thirdly, similar to the global branch, additional local extreme embeddings are ex-
tracted and fused with the local moderate embeddings in the local branch. Figure 8 shows
the structure of this variant. In the local branch, each partitioned part just contains partial
information. Local extreme embedding only captures the saliency based on the incomplete
features. For example, upper parts of a bounding box might be dominated by partial
head or the background scene, while the middle or lower parts might contain unrelated
occlusions. Figure 9 shows five examples, where the saliency heat maps are derived from
corresponding local extreme embeddings. From the left to the right image, the local ex-
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treme (saliency) captures textbook, backpack, red plastic bag, background, and logo on the
shirt respectively. None of those features are arguably important enough to describe the
appearance. If those local extreme embeddings are brought into training framework, the
feature learning process would be distracted, and often leads to wrong directions, resulting
in worse identification accuracy. The Rank 1 accuracy of the structure in Figure 8 is down
by 0.3% comparing with the proposed EXAM.

Avg Pooling

Max Pooling

Avg Pooling

Fuse

Total

 Loss

Backbone Network
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Figure 8. Variant of the local branch. The local extreme embeddings are brought into the framework.

Figure 9. Saliency heat maps from local extreme embeddings. The second row lists the local salient
heat maps derived from the red box of the bounding box in the first row.

In summary, through the comparison of the above eight models, it is clear that the
EXAM design is effective in person Re-ID.

5. Conclusions

In this paper, we propose an end-to-end EXAM framework learning Extreme and
Moderate embeddings for Re-ID. The network has global and local branches. The global
embeddings reflect the saliency and commonality of full human body appearance respec-
tively. The local moderate embeddings capture the concepts of consistency and smoothness
of body parts which adds robustness to the system to identify in cases of diverse posture
variations. Both Extreme and Moderate embeddings from global and local views bring
visual attention cues for discriminative feature learning under the deep supervision of
multiple cross-entropy loss and triplet loss functions. The processes of attention deducing
and discriminative feature learning are incorporated, and benefit from each other. From
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our comparative experiments and ablation studies, it is shown that EXAM is effective, and
its learned feature representation reaches state-of-the-art performance. In future study, we
plan to refine the weights of multi-loss to make it more effective.
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