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Abstract: Vegetation indices are commonly used techniques for the retrieval of biophysical and
chemical attributes of vegetation. This paper presents the potential of an Autoencoders (AEs) and
Convolutional Autoencoders (CAEs)-based self-supervised learning approach for the decorrela-
tion and dimensionality reduction of high-dimensional vegetation indices derived from satellite
observations. This research was implemented in Mt. Zao and its base in northeast Japan with
a cool temperate climate by collecting the ground truth points belonging to 16 vegetation types
(including some non-vegetation classes) in 2018. Monthly median composites of 16 vegetation indices
were generated by processing all Sentinel-2 scenes available for the study area from 2017 to 2019.
The performance of AEs and CAEs-based compressed images for the clustering and visualization of
vegetation types was quantitatively assessed by computing the bootstrap resampling-based confi-
dence interval. The AEs and CAEs-based compressed images with three features showed around 4%
and 9% improvements in the confidence intervals respectively over the classical method. CAEs us-
ing convolutional neural networks showed better feature extraction and dimensionality reduction
capacity than the AEs. The class-wise performance analysis also showed the superiority of the
CAEs. This research highlights the potential of AEs and CAEs for attaining a fine clustering and
visualization of vegetation types.

Keywords: vegetation types; clustering; visualization; Sentinel-2; self-supervised; Autoencoders;
convolutional; vegetation indices

1. Introduction

Vegetation is an integral component of life, and identification and classification of
vegetation types provides valuable information for understanding the distribution and
dynamics of vegetation as for environmental changes. Spectral reflectance measured from
remote sensing platforms provides crucial information on identification and discrimination
of vegetation types.

The reflectance measured from remote sensors vary with specific biophysical and
chemical attributes such as plant type, leaf pigments, water content, and morphological
characteristics of the plant canopy concerned [1,2]. Vegetation indices, arithmetic combina-
tion of reflectance in multiple wavelengths, have been derived for detecting the biophysical
and chemical attributes of vegetation [3]. The vegetation indices are commonly utilized
for monitoring and evaluation of extent and coverage of vegetation types [4,5]. However,
a large number of vegetation indices exist in the literature, and large numbers of input
variables complicate modelling and prediction, and impairs accuracy, known as the “curse
of dimensionality” [6,7]. To cope with this problem, dimensionality reduction techniques,
which transform high-dimensional dataset into lower-dimensional representations have
been proposed [8,9].

Machine learning is a commonly used technique for interpreting remote sensing
images into vegetation parameters. There are a number of machine learning algorithms
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available for dimensionality reductions. The Random Forests (RFs)—an ensemble of
decision trees built by splitting the attributes of the data and averaging the output value
of all trees—is one of the effective machine learning algorithms for learning non-linear
data interactions [10,11]. The RF algorithm also provides an effective statistical measure
for determining variable importance [12–14]. Researchers have utilized the RFs-based
retrieval of important variables as a measure of reducing the dimensions of data [15–18]
and classification of land cover and vegetation types [19–21].

Some other classical techniques of dimensionality reductions are principal compo-
nent analysis [22–24], t-distributed stochastic neighbor embedding [25,26], and modified
stochastic neighbor embedding [27] as some examples. Oliveira et al. [28] assessed the
performance of classical techniques and proposed fractal-based algorithm to remove the
redundant attributes accurately.

Artificial neural networks (ANNs) has demonstrated effectiveness in a number of
climate change and ecological studies, such as change detection [29], plant identifica-
tion [30,31], modeling the distribution of vegetation in past, present, and future cli-
mates [32], estimation of standing crop and fuel moisture content [33], and mixture estima-
tion for vegetation mapping [34] as some examples.

In recent years, the use of Autoencoders (AEs) has attracted increasing attention to
create low-dimensional projections of high-dimensional data. AEs are artificial neural
networks (ANNs) designed for learning self-supervised latent representations of multi-
dimensional data [35–37].The AEs provides a latent-space representation with a reduced
dimensionality through the process of compressing (encoding) and decompressing (decod-
ing) of the multi-dimensional data [38,39].

The major objective of this paper is to present an Autoencoders (AEs) and Convolu-
tional Autoencoders (CAEs)-based self-supervised learning approach for the decorrelation
and dimensionality reduction of high-dimensional vegetation indices derived from satellite
observations. The compressed images are utilized for the clustering and visualization
of vegetation types, and they were compared over the Random Forests-based important
features. The potential of this approach for the classification of vegetation types is also
assessed using the Random Forests (RFs) classifier.

2. Materials and Methods
2.1. Study Area

This research was implemented in Mt. Zao, which is located on the border between
Yamagata and Miyagi prefectures in Japan. This region is characterized by a cool temperate
climate with snowfall during winter. It represents a typical mountainous ecosystem in
northeastern Japan. The location of the study area is shown in Figure 1.

2.2. Collection of Ground Truth Data

The performance of Autoencoders (AEs) and Convolutional Autoencoders (CAEs)
for the clustering and classification of vegetation types was assessed with the support of
ground truth data. The ground truth data were collected through a field survey, which was
conducted in 2018. The field survey was assisted by time-lapse images available in
Google Earth. For each vegetation type, 107–300 sample points (longitudes and latitudes),
representing a homogenous area of at least 30 × 30 m, were collected. This research dealt
with the following list of vegetation types (Table 1) present in the study region.

2.3. Processing of Satellite Data

Sentinel-2 scenes available for the study area from 2017 to 2019 (total 343 scenes) were
processed. All images were processed for cloud removal and atmospherically corrected
to obtain top of canopy reflectance using the Sen2Cor software (v2.8). For each Sentinel-2
scene, 16 vegetation indices (as shown in Table 2) were calculated, and the resulting vegeta-
tion index images were composited by computing monthly median values. In this manner,
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we obtained a monthly stack of vegetation index images, consisting of 192 (16 vegetation
indices × 12 months) layers.
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Figure 1. Location of the study area, Mt. Zao, and its surrounding base, shown by a true-color
composite image, generated from Sentinel-2 data.

Table 1. List of vegetation types (including some non-vegetation classes) and size of ground truth
data collected.

Vegetation Types Ground Truth Data Size

(1) Abies Evergreen Conifer Forest (ECF) 300
(2) Alnus Deciduous Broadleaf Forest (DBF) 300
(3) Alpine Herb 300
(4) Alpine Shrub 300
(5) Barren-Built-up area 300
(6) Cryptomeria-Chamaecyparis Evergreen Conifer Forest (ECF) 300
(7) Fagus-Quercus Deciduous Broadleaf Forest (DBF) 300
(8) Hydrangea Shrub 165
(9) Miscanthus Herb 300
(10) Pinus Shrub 300
(11) Quercus Shrub 300
(12) Salix Shrub 108
(13) Sasa Shrub 300
(14) Tsuga Evergreen Conifer Forest (ECF) 107
(15) Water 300
(16) Wetland Herb 300

2.4. Dimensionality Reduction

We employed densely connected Autoencoders (AEs) and Convolutional Autoen-
coders (CAEs) for the decorrelation of high-dimensional vegetation indices. The model
architectures utilized in this research are illustrated in Figure 2. The 192-dimensional stack
of vegetation indices was fed into AEs and CAEs models. The AEs were composed of
three dense layers; whereas the CAEs were composed of three convolutional layers, and a
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fully connected (dense) layer was used to collect the outputs from the final convolutional
layer. Finally, multiple (3, 5, and 10) low-dimensional latent vectors were obtained from the
final dense layer. For the self-supervised learning, we split the dataset into training (95%)
and testing (5%) to tune the parameters and hyper-parameters of the models such as the
learning rate, number of epochs, and batch size through a repeated trial and error process.

Table 2. List of vegetation indices calculated based on reflectance at Blue (B, Band 2), Green (G, Band 3), Red (R, Band 4),
Red edge1 (RE1, Band 5), Red edge3 (RE3, Band 7), and Near infrared (N, Band 8).

Vegetation Indices Formula References

(1) Atmospherically Resistant Vegetation Index (ARVI) N−R−(R−B)
N+R−(R−B) Kaufman and Tanre [40]

(2) Enhanced Vegetation Index (EVI) 2.5 × N−R
(N+6×R−7.5×B)+1 Huete et al. [41]

(3) Green Atmospherically Resistant Index (GARI) N−(G−1.7×(B−R))
N+(G−1.7×(B−R)) Gitelson et al. [42]

(4) Green Chlorophyll Index (GCI) N
R − 1 Gitelson et al. [43]

(5) Green Leaf Index (GLI) (G−R)+(G−B)
(2∗G)+R+B Louhaichi et al. [44]

(6) Green Normalized Difference Vegetation Index (GNDVI) N−G
N+G Gitelson and Merzlyak [45]

(7) Green Red Vegetation Index (GRVI) G−R
G+R Falkowski et al. [46]

(8) Modified Red Edge Normalized Difference Vegetation Index
(MRENDVI)

RE3−RE1
RE3+RE1−2×B Sims and Gamon [47]

(9) Modified Red Edge Simple Ratio (MRESR) RE3−B
RE1−B Sims and Gamon [47]

(10) Modified Soil Adjusted Vegetation Index (MSAVI) 2N+1−
√
(2N+1)2−8(N−R)

2
Qi et al., 1994 [48]

(11) Normalized Difference Vegetation Index (NDVI) N−R
N+R Rouse et al. [49]

(12) Optimized Soil Adjusted Vegetation Index (OSAVI) (NIR−Red)
(NIR+Red+0.16) Rondeaux et al. [50]

(13) Red Edge Normalized Difference Vegetation Index (RENDVI) RE3−RE1
RE3+RE1 Gitelson and Merzlyak [51]

(14) Soil-Adjusted Vegetation Index (SAVI) 1.5×(N−R)
N+R+0.5 Huete [52]

(15) Structure Insensitive Pigment Index (SIPI) N−B
N−R Penuelas et al. [53]

(16) Visible Atmospherically Resistant Index (VARI) G−R
G+R−B Gitelson, et al. [54]J. Imaging 2021, 7, x FOR PEER REVIEW 5 of 14 
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employed in the research.
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2.5. Quantitative Evaluation

The performance of AEs and CAEs-based compressed images for the clustering
and visualization was compared to the classical RFs-based retrieval of the important
features. The RFs algorithm has been employed as a classical approach for deriving
variable importance [55]. The pixel values, corresponding to the ground truth (geolocation
points) data, for each vegetation type were extracted from the compressed images (AEs,
CAEs, and RFs) and utilized for the visualization and classification of vegetation types.
We used 3D scatter plots to visualize the clusters of vegetation types and employed the
RFs classifier for the classification of vegetation types.

Furthermore, performance of the compressed images (AEs, CAEs, and RFs) in different
dimensions (3, 5, and 10) in terms of classification of vegetation types was also assessed
quantitatively. For the supervised classification, Random Forests (RFs) classifier was
employed on a 75% training set and validated on a 25% test set. For the quantitative
evaluation, we computed the confidence interval by implementing bootstrap resampling of
the dataset at 1000 times. The bootstrap resampling technique involves drawing of sample
data repeatedly with replacement from a data source and reduces a biased estimation of
the accuracy. The research procedure has been illustrated in Figure 3.
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3. Results
3.1. Clustering and Visualization

The discriminative ability of the lower dimensional features can be visualized by
plotting their distribution in a three-dimensional space. A three-dimensional scatter plot
of the RFs algorithm-based retrieval of the most important features is shown in Figure 4.
As seen in the figure, most of the inter-class clusters are closed to each other. Therefore,
it indicates shortcomings of the RFs-based important features on distinguishing most of
the vegetation types.

An improvement on the clustering of vegetation types by the AEs-based compressed
features over the RFs algorithm can be seen with a wider inter-class variation of the clusters
in Figure 5.

Further improvement by the CAEs-based compressed features can be seen in Figure 6.
The 3D cluster shows its ability to distinguish vegetation types that were not distinguished
by RFs-based important features.
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The RGB color composites of the AEs and CAEs-based three-dimensional compressed
images in Figure 7 demonstrate a variation of color shades over different vegetation types.
Generating distinct color shades for different vegetation types under the study is crucial
for the improved discrimination and classification with the least number of input features.

J. Imaging 2021, 7, x FOR PEER REVIEW 8 of 14 
 

 

Generating distinct color shades for different vegetation types under the study is crucial for 
the improved discrimination and classification with the least number of input features. 

 
Figure 7. A variation of color shades over different vegetation types (including non‐vegetation types): (a) Sentinel‐2 based 
true‐color composite image, (b) Autoencoders (AEs)‐based three‐dimensional compressed image, (c) Convolutional Au‐
toencoders (CAEs)‐based three‐dimensional compressed image. 

3.2. Confidence Intervals 
We employed the bootstrap resampling method to report the confidence interval of 

the CAEs‐based classification approach. The bootstrap resampling was done for 1000 
times with 75% training and 25% testing data. The accuracy obtained with the test data 
was collected for each bootstrap resampling, and the frequency of models yielding the 
test accuracies has been plotted in Figure 8. We also computed the accuracy at a 95% 
confidence interval. The CAEs‐based three features provided test accuracy between 
88.7% and 89.9% with a 95.0% confidence interval. 

 
Figure 8. Distribution of test accuracies with bootstrap resampling of CAEs‐based three features. 

The distribution of feature importance obtained from bootstrap resampling of the 
CAEs‐based three features has been shown in Figure 9. For each bootstrap resampling, 
the features distribution showed positive contribution to the model. 

Figure 7. A variation of color shades over different vegetation types (including non-vegetation types):
(a) Sentinel-2 based true-color composite image, (b) Autoencoders (AEs)-based three-dimensional
compressed image, (c) Convolutional Autoencoders (CAEs)-based three-dimensional compressed image.

3.2. Confidence Intervals

We employed the bootstrap resampling method to report the confidence interval of
the CAEs-based classification approach. The bootstrap resampling was done for 1000 times
with 75% training and 25% testing data. The accuracy obtained with the test data was
collected for each bootstrap resampling, and the frequency of models yielding the test
accuracies has been plotted in Figure 8. We also computed the accuracy at a 95% confidence
interval. The CAEs-based three features provided test accuracy between 88.7% and 89.9%
with a 95.0% confidence interval.
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The distribution of feature importance obtained from bootstrap resampling of the
CAEs-based three features has been shown in Figure 9. For each bootstrap resampling,
the features distribution showed positive contribution to the model.
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Similarly, we calculated the test accuracy using ten features obtained from the CAEs,
and the frequency of models yielding the test accuracies has been plotted in Figure 10.
The CAEs-based ten features provided test accuracy between 95.0% and 96.2% with a 95.0%
confidence interval. In addition, for each bootstrap resampling, the features distribution
(10 features) showed positive contribution to the model (Figure 11).
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Furthermore, we summarized the significance of the Autoencoders (AEs) and Con-
volutional Autoencoders (CAEs) over the Random Forests (RFs) by employing bootstrap
resampling at 1000 times with 75% training and 25% testing data. Table 3 shows test
accuracies computed with a 0.95 confidence interval.

Table 3. Test accuracies obtained from bootstrap resampling with 0.95 confidence interval.

Features CAEs AEs RFs

3 88.7–89.9% 81.2–85.2% 76.7–81.2%
5 92.7–93.8% 87.9–91.4% 84.4–88.6%
10 95.0–96.2% 91.5–94.6% 90.2–93.7%
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The test accuracies obtained from the bootstrap resampling also showed a higher
performance of the Autoencoders (AEs) and Convolutional Autoencoders (CAEs) over
the Random Forests (RFs). Interestingly, it should be noted that difference between them
(RFs versus AEs or CAEs) started to decrease when number of input features increased.
However, the main objective of this research was to compress the high-dimensional dataset
into least dimension so as to visualize the inter-class variability of the vegetation types.
Therefore, self-supervised learning with the Autoencoders (AEs) and Convolutional Au-
toencoders (CAEs) has met our objective of showing the inter-class variability of vegetation
types at lower dimension. The collection and preparation of ground truth data is very
time-consuming and expensive for the vegetation mapping projects. The ability of such
self-supervised learning and visualization of the satellite images should contribute to the
better interpretation and discrimination of vegetation types (such as collection of ground
truth data) as well as subsequent supervised classification for the operational mapping of
vegetation types at a broad scale.

4. Discussion

We implemented the Autoencoders (AEs) and Convolutional Autoencoders (CAEs)-
based self-supervised learning approach for the decorrelation and dimensionality reduction
of high-dimensional satellite-based features. Deep learning is a versatile technology special-
ized for big datasets. Once the high-dimensional features were compressed into lower ones,
we employed Random Forests (RFs) classifier for the classification of vegetation types.

A significant processing challenge exists with an ever-increasing collection of huge
volumes of remote sensing data with enhanced spatial and spectral resolution. To address
this issue, dimensionality reduction techniques have been recommended for reducing the
complexity of the data while retaining the relevant information for the analysis [56,57].
Therefore, dimensionality reduction of high-dimensional vegetation indices is a relevant
technique, while a large number of vegetation indices exist in the literature.

Spectral vegetation indices have been used by many researchers for the clustering and
classification of vegetation types. For example, Villoslada et al. [58] highlighted the need to
utilize a wide array of vegetation indices for the improved classification of vegetation types
in coastal wetlands. Similarly, Kobayashi et al. [59] utilized spectral indices calculated from
a Sentinel-2 multispectral instrument for crop classification. Wang et al. [60] used Fourier
transforms on multi-temporal vegetation indices for unsupervised clustering of crop types.
These researches motivated us to conduct the clustering and classification of sixteen vege-
tation types (including non-vegetation classes) solely based on vegetation indices.

Previous studies have also attempted dimensionality reduction of remote sensing
data for the classification and mapping of vegetation types. However, most of these
researchers have employed classical dimensionality reduction techniques. For example,
Alaibakhsh et al. [61] used Principal component analysis (PCA) to delineate riparian
vegetation from Landsat multi-temporal imagery. Similarly, Dadon et al. [62] used an
improved PCA-based classification scheme to classify Mediterranean forest types in an
unsupervised way. The t-Distributed Stochastic Neighbor Embedding (t-SNE) algorithm
has been used to strengthen the quality of ground truth data used in the mapping of
heterogeneous vegetation [63]. Some researchers have used self-organizing feature maps
for the classification of crop types [64,65]. In this context, exploring the potential of deep,
self-supervised learning approaches for the clustering and visualization of vegetation types
is a timely and important research.

5. Conclusions

In this research, we showed Autoencoders (AEs)-based self-supervised learning as a
potential approach for the decorrelation and compression of high-dimensional vegetation
indices in a cool temperate mountainous ecosystem in Japan. Compared to the classical
Random Forests (RFs)-based dimensionality reduction method, the Autoencoders (AEs)
and Convolutional Autoencoders (CAEs) showed superior performance on the clustering
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and classification of vegetation types. While the purpose of dimensionality reduction
approaches is to represent the relevant information into the least amount of dimensions,
the three-dimensional compression of vegetation indices using the CAEs method showed
around a 9% increase in the confidence interval over the RFs. The RFs extracts the most
important features out of given features, whereas the AEs and CAEs generate compressed
features through self-supervised learning approach. Therefore, this research highlights the
application of the CAEs method for the clustering and visualization of vegetation types.
In the future, we will assess the efficiency of CAEs in other regions.
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