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Abstract: Seeing is not believing anymore. Different techniques have brought to our fingertips
the ability to modify an image. As the difficulty of using such techniques decreases, lowering the
necessity of specialized knowledge has been the focus for companies who create and sell these tools.
Furthermore, image forgeries are presently so realistic that it becomes difficult for the naked eye to
differentiate between fake and real media. This can bring different problems, from misleading public
opinion to the usage of doctored proof in court. For these reasons, it is important to have tools that
can help us discern the truth. This paper presents a comprehensive literature review of the image
forensics techniques with a special focus on deep-learning-based methods. In this review, we cover a
broad range of image forensics problems including the detection of routine image manipulations,
detection of intentional image falsifications, camera identification, classification of computer graphics
images and detection of emerging Deepfake images. With this review it can be observed that even if
image forgeries are becoming easy to create, there are several options to detect each kind of them. A
review of different image databases and an overview of anti-forensic methods are also presented.
Finally, we suggest some future working directions that the research community could consider to
tackle in a more effective way the spread of doctored images.

Keywords: image forensics; fake image detection; deep learning; neural network; Deepfake

1. Introduction

Given our era of advanced technology and the high availability of image-editing tools
that make it extremely easy and fast to alter and create fake but realistic images, the trust of
digital images has diminished. We can no longer easily accept an image as proof of an event
without asking ourselves if the image has been modified. This has been in a continuous
development together with the easy accessibility of tools used to create tampered-with
content and with the deep-learning advancements which have led to an increase in the
realism of fake images or videos [1].

During recent years, an evolution of disinformation has appeared to manipulate and
disrupt public opinion. This disinformation comprises sophisticated campaigns aided by
doctored images with the goal of influencing economic and societal events around the
world. Different kinds of problems related to the usage of tampered-with images have
appeared in different fields and will get worse as both digital cameras and software editing
tools become more and more sophisticated.

In July 2010, British Petroleum (BP) came under public outcry over several doctored
images of its Gulf of Mexico oil spill response, as images were tampered with to indicate
that BP staff were busier than they actually were. Figure 1 shows two pairs of the original
(first column) and the tampered-with (second column) images. A spokesperson for the
company eventually admitted that in one image (first row of Figure 1) two screens were
actually blank in the original picture. On the second row of Figure 1, we see a photo taken
inside a company helicopter which appeared to show it flying off the coast. It was later
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shown to be fake after Internet bloggers identified several problems, which suggested that
the helicopter was not even flying. The problems included part of a control tower appearing
in the top left of the picture, its pilot holding a pre-flight checklist, and the control gauges
showing the helicopter’s door and ramp open and its parking brake engaged (Please
refer to details presented at the following webpage: https://metro.co.uk/2010/07/22/bp-
admits-to-doctoring-another-deepwater-horizon-oil-spill-image-456246/ accessed on 2
April 2021).

Figure 1. Examples of image forgery during the BP oil spill. First row shows how the original image
was modified by copying some screens over the initially blank ones. On the second row, the helipad
was removed in the tampered-with version. Images were obtained from the following webpage: https:
/ /www.cbsnews.com/news/bp-and-the-gulf-oil-spill-misadventures-in-photoshop/ accessed on 2
April 2021 .

From this context, it is necessary to develop strategies and methods to allow the
verification of the authenticity of digital images. Image forensics [2] is the science that can
help us to know if the image was acquired by the claimed device or if the current state
corresponds to the original captured image, with the objective of detecting and locating
image forgeries. Image forensics techniques depend on the assumption that each stage
of the image acquiring and processing, from the raw image to its compression, storage
and post-processing, holds some inherent statistics and leaves a particular trace. It is then
possible to infer the source of the image or decide whether it is authentic or tampered with
by identifying the existence, lack or inconsistency of forensic traces that are inherent to the
image itself.

The research on this field started around 20 years ago and has recently seen a boost
with the latest deep-learning tools. The deep-learning framework [3] usually uses a hi-
erarchical structure of artificial neural networks, which are built in a similar way to the
neural structure of the human brain, with the neuron nodes connected to simulate a neural
network. This architecture can approach data analysis in a non-linear way. The strik-
ing advantage of deep learning is its ability to automatically learn useful features from
available data, allowing us to bypass the tedious procedure of handcrafted feature design.
Regardless of the big progress in the computer vision field using deep-learning tools,
the same strategies cannot be applied directly to the image forensics domain as the traces
or fingerprints that we are looking for are normally not present in the visible domain. Most
of the traces that we search are hardly perceptible by the human eyes. Therefore, as we can
see later in this paper certain strategies have been proposed to cope with this difference.

Early surveys on image forensics [2,4-7] naturally focused mainly on conventional
feature-based methods. Recent surveys [8,9] consider both conventional and deep-learning
methods yet with a different focus or coverage from ours. For instance, ref. [8] mainly
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considers the detection of copy-move, splicing and inpainting, while we cover more image
forensics problems including also the detection of routine image processing operations,
the detection of synthetic images, etc.; Ref. [9] classifies existing methods from a machine
learning perspective (e.g., supervised, unsupervised and anomaly detection) with a special
and timely focus on Deepfake detection, while we classify with a rather comprehensive list
of image forensics problems and focus on the particularities of deep network design for
different problems. Other existing surveys have dedicated their reviews to presenting and
analyzing the methods for one or several specific issues such as copy-move (and splicing)
detection [10,11], computer-generated image detection [12], camera identification [13] and
image source identification [14], while we attempt to have a broader coverage.

In this paper, we review existing deep-learning-based methods for a variety of image
forensics problems. The research works presented in this survey are classified into three
large groups: the detection of image manipulations (i.e., routine image processing operations
such as median filtering and contrast enhancement), the detection of image falsifications
which intentionally alter the semantic meaning of the image (e.g., copy-move, splicing
and inpainting) and other specific forensic problems. We pay attention to special designs
of the deep models and special features used on the network input. Considering the
rapid advancement in the image forensics field and the difference between our review and
existing ones as discussed in the last paragraph, we believe that our survey can be helpful
for the research community and is complementary to previous reviews. Our classification
of research works on image forensics is illustrated in Figure 2.

Image Forensics
research works

Image manipulation

Figure 2. Classification diagram for deep-learning-based image forensics works. “CGI” means
computer graphics image.

The remainder of this paper is organized as follows. We first present in Section 2
the datasets used for image forensics research which are vital for data-driven methods
based on deep learning. Sections 3-5 are dedicated respectively to the presentation of deep-
learning-based methods for the detection of routine image manipulations, the detection of
intentional image falsifications and other specific forensic problems, in accordance with
the classification mentioned above and shown in Figure 2. We present in Section 6 a brief
review of anti-forensic methods which aim at defeating the analysis of forensic detectors.
We conclude and suggest some future working directions in Section 7.

2. Datasets

Aside from the different models and different approaches, the access to a proper
dataset is the first step and has a crucial role in the deep-learning paradigm to make it
work properly. This means using a dataset that corresponds to the results a researcher
wants to predict. The dataset should match the problem context including the acquiring
and any processing steps. Constructing a dataset is a time-consuming task which requires
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problem and context knowledge of the procedure to collect compatible data. If the dataset
contains sufficient and adequate data and information, problems such as overfitting and
underfitting could be mitigated. Furthermore, the usage of multiple available datasets
is of paramount importance to obtain a more reliable benchmarking of existing and new
methods. In this section, the publicly available datasets for different categories of image
forensics tasks will be introduced. Different datasets are grouped according to the different
image forensics categories for which they are used.

2.1. Original Data

Datasets of pristine data used in the image forensics field (e.g., in the manipulation
detection area) often contain original uncompressed image data. In this way, researchers
can recreate different manipulation operations and conduct experiments on an adequate
and customized dataset. Some of these databases were originally designed for the purpose
of benchmarking camera identification techniques.

One of the first works in this field is the UCID dataset [15] with 1338 uncompressed
images (version 2) in TIFF format stemming from a single camera. The BOSSBase 1.01
dataset [16] contains 10,000 grayscale uncompressed images, originally designed for re-
search in the steganalysis field. In the Dresden image dataset [17], 73 digital cameras with
25 different models were used to create 14,000 Joint Photographic Experts Group (JPEG)
images. The RAISE dataset [18] contains 8156 uncompressed high-resolution images of
different categories such as landscape or indoor scenes. It comprises 4 subsets called
RAISE-1K, RAISE-2K, RAISE-3K and RAISE-4K.

Some recent datasets introduced cell phone cameras to their catalogue. A small num-
ber of devices was considered in the MICHE-I dataset [19] comprising 3732 iris images from
3 different smartphones using both front and back cameras. The IEEE and Kaggle [20] or-
ganized a camera identification challenge in 2018 with a dataset captured from 10 different
camera models (9 of 10 being smartphone cameras) with 275 images from each device.

The Vision dataset [21] also purposed for camera model identification and contained
34,427 images and 1914 videos from 35 portable devices of 11 major brands, both in
the native format and in their social platform version including Facebook, YouTube and
WhatsApp. Some datasets like [22,23] are designed for a specific domain. For instance [23]
is an ongoing collection of satellite images of all land on Earth produced by the LandSat
8 satellite. Other proposals like [24-28], initially designed for object and scene detection,
segmentation and recognition, were used in the image forensics field to create synthetic
data. For example, the Microsoft COCO dataset [25], originally constructed for object and
scene analysis and comprising more than 300,000 images in JPEG format, has been used to
create different image forgeries. Another example is the SUN2012 dataset [28], composed
of 130,519 images of different outdoor and indoor scenes, has been employed to create
synthetic data for image forensics purposes.

Regarding the creation of Deepfakes (i.e., fake images generated by deep neural
networks), some well-known datasets of human faces have been used for network training,
for instance the CelebA dataset [29] which contains around 200,000 faces with different
annotations originally designed for facial image analysis. Stemming from CelebA dataset,
CelebAHQ [30] is a set of high-resolution face images and is one of the first datasets used
for training and evaluation of Generative Adversarial Network (GAN) models for face
generation and editing.

2.2. Falsified Data

To our knowledge, the first public datasets for detection of splicing (i.e., a common
image falsification in which one copies a part of an image and pastes it to another image)
were the Columbia gray DVMM dataset [31] and the Columbia color splicing dataset [32].
The two datasets comprise respectively 1845 grayscale images for the first one and 180 color
spliced images for the second one, both with rather non-realistic random-like splicing
falsifications. Two other well-known splicing datasets are the CASIA V1 and V2 [33]
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with more realistic forgeries and post-processing operations on the V2 to cover the traces
of splicing. In 2013, the IEEE Information Forensics and Security Technical Committee
(IFS-TC) organized an image forensics challenge and released a dataset of pristine and
forged images [34] with a set of different falsification techniques such as splicing and
copy-move (i.e., another common falsification in which one copies a part of an image and
pastes it in the same image). Each fake image had an associated ground-truth binary map
showing the regions that were falsified. As a small sub-dataset from the IFS-TC proposal,
the DS0-1 dataset (also known as Carvalho dataset) [35] contains forgeries created in a
careful and realistic manner.

The National Institute of Standards and Technology (NIST) developed the Nimble [36]
and MFC [37] datasets. The first one, often called NIST Nimble 2016, included three types
of falsifications including splicing, copy-move and inpainting (i.e., a third type of common
falsification in which a part of an image is replaced and filled with realistic synthetic
content), with different levels of compression and post-processing. Figure 3 shows some
example images from this dataset. The NIST MFC17 dataset [37] included more challenging
image forgeries but did not contain the different compressed versions.

A ‘\

Figure 3. Sample images from the NIST Nimble 2016 Dataset [36]. Top row shows the original
images, and bottom row shows from left to right falsifications of inpainting-based removal, copy-
move and splicing.

The Realistic Tampered Dataset [38], also known as Korus dataset, comprises 220 splic-
ing and copy-move forgeries of a realistic level. The authors included PRNU signatures
and ground-truth maps. Other datasets have been created with a specific purpose in mind.
Regarding the double compression scenario, the VIPP dataset [39] was created to evaluate
the detection of double JPEG compression artifacts which may be present for instance in
the splicing falsification.

The use of datasets specific for copy-move falsification, such as [40,41], is not very
common for the deep-learning-based detection methods. The main reason is that existing
datasets are relatively small. Therefore, majority of research on deep-learning-based copy-
move detection has created customized synthetic datasets which are derived from dataset
of original images and which contain much more samples.

Table 1 shows a list of popular datasets for image forensics research including datasets
of original data and falsified data. In the case of falsified data, we provide the number ratio
of pristine and tampered-with images. Regarding the “Operations” columns we mention
the main operations (mostly falsifications) contained in the dataset and the “Others” case
mainly includes double JPEG compression.
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the number of pristine/tampered-with images.

Table 1. Summary of datasets of original image data and falsified image data. In the “Format” column we show the
compression type of images by using the first character, with “U” for uncompressed, “C” for lossless compression, and “L”
for lossy compression. “Grayscale/color and bit depth” is color coded as follows: @ grayscale, @ color, followed by the
number of bits of the grayscale or color information. “GT” stands for “Ground-truth”. The “Content ratio” column shows

Operations l\g Ik
. Grayscale/Color . 13 o
Type Name Size Format and Bit Depth Content Ratio § o &
E £
L -g £ g
& , =S £
V] %) 5 o
BossBase [16] 512 x 512 U-PGM © s-bit 10K N/A
UCID [15] gﬁ ; 35%' U-TIFF @ 24-bit 1338 N/A
Landsat [23] 5251% >><< 6259%;8 C-TIFF @ 48-bit Ongoing N/A
MIT SUN [28] 200 x 200 L-JPEG @ 24-bit 130,519 N/A
NRCS [42] 1500 x 2100 E]TPIIEE 82;—;;1: 11,036 N/A
MS COCO [25] Various L-JPEG @ 24-bit 328K N/A
<
< .
i CelebA [29] 56é . (;i'z LJPEG @ 24-bit 200K N/A
<
5
2 CelebAHQ [30] 512 x 512 L-JPEG ® 24-bit 30K N/A
© C-TIFF, .
RAISE [18] 4288 x 2848 U.NEF @ 36-bit 8156 N/A
3039 x 2014; LJPEG, 24-bit,
Dresden [17] 3900 x 2616 U-NEF ©36-bit 14K N/A
MICHE-I [19] 263‘2 XX ﬁg’g L-JPEG @ 24-bit 3732 N/A
Kaggle Camera [20] 1020 2088, it @ 24-bit 2750 N/A
Vision [21] 592?1% XX 7326%;6 L-JPEG ® 24-bit 34427 N/A
Columbia gray [31] 128 x 128 U-BMP @© s-bit 1845/912 No
IEEE IFS-TC [34] 31853 o 275636 C-PNG @ 24-bit 1050/1150 Yes
CASIA v1 [33] 384 x 256 L-JPEG ® 24-bit 1725/925 No
] LJPEG,
CASIA v2 [33] 240 x 160; U-BMP, @ 24-bit 7491/5123 No
900 x 600 UTIEF
NIST 500 x 500; .
Nimble 16 [36] 5616 x 3744 LJPEG © 24-bit 560/564 No
s U-NEF,
]
3 C-PNG )
NIST 60 x 120; ’ 36-bit,
ol ’ _ "
g Nimble 17 [37] 8000 x 5320 ILJ ‘f}g’g ©24-bit 2667/1410 No
£ -] ,
| U-TIFF
o
Coverage [40] 400 x 486 C-TIFF @ 24-bit 100/100 Yes
Columbia color [32] 17 15572XX5762; U-TIFF @ 24-bit 183/180 Yes
Carvalho [35] 2048 x 1536 C-PNG @ 24-bit 100/100 Yes
Realistic :
(Korus) [38] 1920 x 1080 C-TIFF @ 24-bit 220/220 Yes
CoMoFoD [41] 3%& X %%;0 C-PNG @ 24-bit 260/260 Yes
300 x 300; .
VIPP [39] 3456 x 5184 U-TIFF @ 24-bit 68/69 Yes
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2.3. Artificially Generated Data

In the case of artificially generated data, it is important to use datasets that contain
realistic examples. Existing datasets considered different scenes of authentic images taken
by a camera and artificially generated fake images either with conventional Computer-
Generated Image (CGI) creation algorithms or recent GAN architectures.

One of the first popular dataset of CGls is the Columbia dataset [43] with 1600 pho-
torealistic computer graphics images. Afchar et al. [44] created a dataset with 5100 fake
images generated from videos downloaded from the Internet. Rahmouni et al. created a
dataset of CGIs coming from high-resolution video game screenshots. There are several
online repositories for CGI [45-48] that have been used as datasets for different detec-
tion approaches.

A small dataset of 49 Deepfake and 49 original videos was created by Yang et al. [49]
using the FakeApp application. A bigger one is the FaceForensics dataset [50] comprising
about 1000 videos and their corresponding forged versions focused on expression swap
created with the Face2Face model. The same authors extended the dataset [51] with
4000 forged videos. Li et al. [52] created a dataset of 590 original videos and 5639 Deepfake
videos. In comparison to other face datasets [29,30], the diversity among genders, ages and
ethnic groups is bigger. The IDIAP institute created DeepfakeTIMIT [53] also known as
DF-TIMIT containing 620 videos where faces were swapped. This dataset was generated
using the faceswap-GAN [54] with 32 subjects and 2 subsets of different resolutions: low
quality with 64 x 64 and high quality with 128 x 128.

Recently, Google in collaboration with Jigsaw and Facebook have created a Deep-
fake dataset to contribute to the relevant research. In 2019, Facebook created the DFDC
dataset [55] for the Deepfake detection challenge with 4113 Deepfake and 1131 original
videos from 66 subjects of diverse origins who gave their consent for the relevant data.
Finally, the DFD dataset [56] contains 3068 Deepfake videos and 363 original ones from
28 individuals who consented to the data.

Table 2 summarizes the artificially generated datasets presented above. The “Content
ratio” column shows the number of pristine/fake images.

Table 2. Datasets of artificially generated data.

. . Media
Type Name Size Format Codec Content Ratio
Video Image
. 700 x 500;
Columbia [43] 3000 x 2000 JPEG - 1600/1600
ccl 1920 x 1080
. X ;
Rahmouni [57] 4900 x 3200 JPEG - 1800/1800
CGI and .
Deepfakes Faceforensics [50] 480p MP4 H.264 1000/1000
UADFV [49] 294 x 500 MP4 H.264 49/49
Faceforensics++ [51] 480p,720p, MP4 H.264 1000/4000
1080p
Afchar [44] 854 x 480 JPEG - 7250/5100
64 X 64;
PGGAN [30] 1024 x 1024 JPEG - -/100 K
Deepfakes
Deepfake TIMIT [53] 64 > 64; AVI H.264 -/620
ceptake - 128 x 128 '
CelebDF [52] Various MP4 H.264 509/5639
180p;

DFDC [55] 2160p MP4 H.264 1131/4113

DFD [56] 1080p MP4 H.264 363/3068
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From the next section, we present different kinds of deep-learning-based image foren-
sics methods, starting by the detection of routine image manipulations.

3. Manipulation Detection

We consider image manipulation as routine operations modifying or improving digital
images with basic and benign image processing such as median filtering, JPEG compression
or contrast enhancement. These operations may be used to enhance the visual quality
of tampered-with images or to hide the traces of falsification operations that may leave
an apparent fingerprint if used alone. In this subsection we introduce the most relevant
strategies to detect some of the most common manipulation operations using deep learning
as the core technique. We present both fargeted (i.e., aiming at a specific manipulation
operation) and general-purpose (i.e., aiming at various operations) detectors.

3.1. Median Filtering Detection

The early deep-learning proposals in the literature of image forensics were focused on
designing a specific strategy to cope with each forensic challenge individually. The goal
of one of the first methods proposed in 2015 by Chen et al. [58] was to detect median
filtering manipulation.

In their paper, Chen et al. [58] used a tailored Convolutional Neural Network (CNN)
to detect median filtering with JPEG post-processing. The JPEG compression after me-
dian filtering made the forensic problem more challenging because the compression can
partially remove the forensic traces of medial filtering. The tailored CNN took the Me-
dian Filtering Residual (MFR) rather than the raw pixel values as input for the first layer
in the CNN. The MFR is the difference between a given image and its median filtered
version. The authors found that using this special input, the network achieved a better
forensic classification performance, with a better detection accuracy when compared with
handcrafted-feature-based strategies on small patches of 64 x 64 and 32 x 32.

More recently, Tang et al. [59] proposed to upscale the input with nearest neighbor
interpolation in an attempt to enlarge the difference between manipulated and original
patches. After this upscaling, the first two layers in the network are mlpconv layers
introduced in [60]. An mlpconv consists of a special layer for deep-learning architectures
that defines a group of convolutional layers with activation functions that can enhance
the non-linear ability of the network. Specifically, it proposes to replace a traditional
convolutional layer followed by a Rectified Linear Unit (ReLU) activation function with
a convolutional layer, ReLU activation function, convolutional layer with filters of shape
1 x 1 and a final ReLU activation function. In the case of median filtering detection,
Tang et al. [59] made use of mlpconv to enhance the network’s non-linearity to deal with
the detection of median filtering non-linearity.

Both the above proposals [58,59] rely heavily on having a special input for the net-
work being either the MFR or an upscaled version, regardless of their differences in the
network architecture.

3.2. Double J[PEG Compression Detection

JPEG images are widely used in daily life as one of the most common image formats.
Hence, most of the forensic tasks are related to JPEG images. Typically, inside a normal
forgery creation process, an image is decompressed from JPEG to the spatial domain
for falsification, and later recompressed again in JPEG format for storage and further
use. For this reason, the image forensics community has dedicated important research
efforts to the detection of double JPEG compression through the years. Detection and
localization of double JPEG compression provides valuable information towards image
authenticity assessment.

In double JPEG compression, double quantization of Discrete Cosine Transform (DCT)
coefficients leaves special artifacts in the DCT domain, in particular, on histograms of
block-DCT coefficients [61]. In [62,63] authors proposed to use as input the concatenation
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of DCT histograms for their CNNs. These approaches outperformed non-deep-learning
methods, especially on small-sized images up to 64 x 64 pixels. Afterwards, Barni et al. [64]
found that CNN architectures could detect double JPEG compression with high accuracy
when the input of the network was noise residuals or histogram features; this was tested
on double compression with both different and same quantization matrix.

In [65], Amerini et al. designed a multi-domain convolutional network to detect
and localize double JPEG compression. They proposed to use both DCT coefficients and
spatial features for the localization. The architecture achieved a better detection accuracy
when compared to using only pixel values or DCT coefficients. In their implementation,
two branches were used as inputs for the network, one receiving the image patches and
the other the DCT coefficients. After several convolutional blocks (convolutional layer,
activation function and pooling layer), both outputs are concatenated and fed to a final fully
connected layer followed by the classification layer for detecting different JPEG quality
factors. Figure 4 shows the proposed multi-domain neural network. The architecture of
the sub-network with the frequency-domain input has some similarities to the one in [62],
while the range of the bins in the DCT histogram is augmented.

data 64X64x3

F_‘ data 909x1

Frequency Network

Spatial Network

Fully Connected
256

Fully Connected
256

RELY, ——»~-256 256 - RELU,
DROPOUT —~_ _ DROPOUT
Fully Connected
512
RELU, — | 512
DROPOUT
Fully Connected
SOFTMAX

Output

9 classes
Figure 4. Architecture of the multi-domain convolutional neural network proposed in [65] for double
JPEG compression detection.

The method proposed in [66] extracted block-wise histogram-related statistical fea-
tures under mixed quality factor conditions to achieve better accuracy and localization
capability. The proposed CNN takes a multi-branch approach using histogram features
and quantization tables as inputs. The quantization branch is directly concatenated to
the last max-pooling layer output and two fully connected layers. The authors reported
that the ability of the network to distinguish between single and double JPEG compressed
blocks was dramatically improved by including quantization table branch.

The above presentation suggests that using special features as input for the first layer
of CNN can achieve good detection performance and that in the case of using multiple
inputs the multi-branch approach can combine them properly.

3.3. Contrast Enhancement Detection

Like median filtering, contrast enhancement is one of the routine image manipulations
commonly applied to conceal the traces of tampering. In the case of a falsified image, it is
common to have contrast differences between the background and the forged region, which
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may be caused by different lightning conditions. In this scenario, contrast enhancement
is broadly used to remove or alleviate visual clues that would give away the forgery.
Consequently, detecting the application of this operation has drawn researchers’ attention
in the image forensics field [67].

In [68] authors proposed a 9-layer CNN that is directly fed with 64 x 64 image pixel
values with no special features, making the discriminative features self-learned by the
network. The authors showed good robustness against JPEG compression post-processing
over a wide range of quality factors by training the network with different contrast adjust-
ments. The proposed architecture also generalized well to unseen tonal adjustments.

Sun et al. [69] proposed to use the Gray Level Co-occurrence Matrix (GLCM) which
is computed by accumulating the occurrence of the pixel intensity pairs between each
pixel and its neighboring pixels. The GLCM was used as input for a shallow CNN of
three convolutional groups for detecting contrast enhancement. The authors reported good
results when an image is JPEG compressed after the contrast enhancement on 256 x 256
image patches. The proposed method outperformed the conventional ones in terms of the
manipulation detection accuracy.

Using the GLCM as input of the network in a similar way, Shan et al. [70] also pro-
posed a JPEG-robust forensic technique based on CNN to detect both local and global
contrast enhancement. The adopted network architecture is one convolutional block (4 lay-
ers in one block) deeper than the one proposed in [69]. Experimental results showed that
Shan et al.’s method could efficiently detect both local and global contrast enhancement in
compressed images regardless of the order of contrast enhancement and JPEG compression.

3.4. General-Purpose Manipulations Detection

The manipulation detection methods presented until now focus on the detection
of a specific and targeted manipulation. This limits the application range of such meth-
ods because for creating a doctored image, several different processing operations can
be applied to obtain a visually convincing result. For instance, in the case of splicing
falsification, the forged part of the image can go through one or several basic operations
such as rescaling, contrast enhancement and median filtering. Therefore, it is of great
importance to develop general-purpose strategies that can detect different kinds of image
manipulation operations.

As mentioned in previous subsections, the usage of special features in the CNN input
in general leads to a better performance for image forensics problems. Following this ap-
proach, Bayar and Stamm [71] proposed a new constrained filter for the first layer of a CNN
to suppress the image content for detecting various image processing operations. Their
constrained network is forced to learn a set of high-pass filters by imposing a constraint on
the weights of all the K first-layer filters in each forward pass of the learning process. This
filter constraint enforcement is shown in the following Equation (1) as proposed in Bayar
and Stamm’s original paper [71]:

wM(0,0) = —1,
(1) _ (1)
Zm,n#o Wy (m/ Tl) =1,

(1)

where w,’ (m,n) denotes the weight at position (m,n) of the kth filter in the first layer

(the indices m and n can be negative or positive), and w,((l)(0,0) denotes the weight at
the center of the corresponding filter kernel. In this manner the sum of all filter elements
in each filter is 0, and the constrained first-layer filter operates like a high-pass one by
effectively removing image content. This prediction error layer extracts and highlights the
local dependency of pixels with its neighbors, which is an important piece of information
from the forensics point of view. Experimental results in [71] also showed that the usage
of tanh as activation function outperforms the more common functions such as ReLU.
The reason may be that tanh tends to preserve more information related to the sign of the
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values at the function input, without setting all negative values to be 0 as in ReLU. The sign
information may be important for image forensics tasks.

Recently, Castillo Camacho and Wang [72] proposed a different initialization method
for the first layer of a CNN to cope with a challenging setting of general-purpose image
manipulation detection. It is challenging because the considered manipulations are of small
amplitude. Taking advantage of the milestone work of the famous Xavier initialization [73],
they proposed a way to create random high-pass filters that could operate without con-
strains. The method had a high detection rate for manipulations such as median filtering,
Additive White Gaussian Noise (AWGN) and resampling. Recently, the same authors [74]
proposed a data-dependent scaling approach for first-layer filters initialized by different
algorithms. The proposed approach considered natural image statistics and could ensure
the stability of the amplitude (i.e., the variance) of data flow in a CNN, which was beneficial
for general-purpose image manipulation detection.

3.5. Summary and Comparisons of Manipulation Detection Methods

Besides qualitative comparisons between different forensic methods (in particular
special network design and special input features), we have also made efforts to carry out
quantitative comparisons of forensic performance for each category of methods. In order
to ensure as much as possible a fair comparison, performances are extracted from the
original papers and reported for the most commonly used databases whenever possible.
Concerning the cases where the results for several patch sizes are available, we share the
results for the most common size among the compared methods.

Regarding the metric used for evaluating the forensic performance, we have endeav-
ored to select the most common one among each category of methods. We mention the
metric used for each method when we are forced to use different metrics for different
methods even on a same database. Indeed, given the heterogeneous experimental settings
adopted in the original papers, it is in general difficult to carry out performance comparison
that can cover all methods with a same setting of tested database and used metric.

The most commonly used metrics in this review are accuracy, precision (mainly the
average precision as defined later in this paper), and Area Under the Curve (AUC) score.
Accuracy is the percentage of correctly classified samples among all samples, as calculated
with the following equation:

TP + TN
A= TP T IN T EN T FD/ @)

where TP, TN, FP, and FN stand for respectively true positive, true negative, false positive
and false negative numbers of classified samples.

The precision represents the fraction of correctly classified positive samples among all
samples classified as positive, which is computed as

TP

Prec = — .
= TP FEP

®G)

Theoretically, the AUC score is equal to the probability that a model ranks a randomly
selected positive sample higher than a randomly selected negative one. It is defined by the
following formula

AUC = /0 ' TPR (FPR(x) ) dx, @)

where the true positive rate is defined as TPR = TP/ (TP + EN) and the false positive rate
is defined as FPR = FP/(TN + FP). In practice, in order to obtain the AUC score which
lies between 0 and 1, we first draw the Receiver Operating Characteristic (ROC) curve of
TPR against FPR for a classifier by varying the decision threshold, and then we compute
the area under this curve.
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The choice of metric depends on many factors, including the forensic problem at hand,
experimental setting, a kind of tradition among researchers working on a same problem,
preference of authors of a forensic method, and technical or even legal requirements when
a forensic detector is deployed in real-world applications. For instance, in an experimental
setting with imbalanced data from different classes, the accuracy metric in general results
in biased value and thus is not preferred; in certain application scenarios, we need to
consider a decision threshold corresponding to a certain level of false positive rate; etc.
Nevertheless, in academic papers, authors often consider a simplified and controlled
laboratory experimental setting and accordingly attempt to achieve good performance in
terms of an appropriate metric of their choice. As mentioned earlier, in this review for a
fair comparison we extract and report results from the original papers of forensic methods.
When comparing a category of methods, we try to use the most commonly adopted metric
among different papers and intuitively explain why this metric is used. However, in many
cases we are forced to report results in terms of different metrics as adopted in the original
papers of compared methods. Indeed, it would be important that the research community
could build high-quality benchmarking datasets with a unified metric for each dataset
(e.g., with instructions on how to choose decision threshold).

Table 3 summarizes existing deep-learning-based image manipulation detection meth-
ods, by considering different technical aspects in particular the input feature of the network
and the specificity of CNN design. Listed methods created an ad-hoc dataset of manipu-
lated images/patches from pristine images. We show in the table the original datasets of
pristine images used to create manipulated samples for each method. Meanwhile, every
method may also have its own parameters of manipulation operations, e.g., different JPEG
compression quality factors. Consequently, performance of each method is shown on
an ad-hoc dataset, except for the comparison of general-purpose manipulation detection
methods (i.e., the group of methods named GIPO in Table 3). For the comparison of GIPO
methods, we report the performance results extracted from [74] where a fair comparison
was conducted by using same datasets of pristine and manipulated images/patches and
same manipulation operations with same parameters. We can observe from Table 3 that
the most commonly used metric is the accuracy. This is mainly because of the fact that for
image manipulation detection researchers almost always consider a controlled laboratory
experimental setting with balanced data from each class. Therefore, in this case the accuracy
is a simple and adequate metric that has been widely used by researchers working on
manipulation detection. In the following, we present and analyze each group of methods.

Median filtering comparison results were taken for a patch size of 64 x 64 with a
median filter kernel of size 3. Slightly different datasets of pristine images were used in the
two compared methods [58,59]. From the results in Table 3 we can see that Tang et al.’s
method [59] obtained better results, which implies that upscaling can be an effective
pre-processing for the detection of median filtering by using CNN. This pre-processing
would make the traces of median filtering more prominent and easier to be detected by a
neural network.

The double JPEG compression detection methods used different datasets and settings
for their experiments. In some methods the quality factor for each compression was
taken randomly from a uniform distribution while other methods used pre-defined fixed
factors. Additionally, in some cases aligned double JPEG compression was considered
while this point was omitted or not clearly presented in some other methods. Nevertheless,
we present the best case shared by each method when tested on patches of size 64 x 64.
The best case varies for different methods, for example for the method in [65] the best
case was obtained with a first compression with quality factor of 55 followed by a second
compression with quality factor of 85, while for the method of [62] it was achieved with
quality factor of 70 and 80 for respectively the first and the second compression. We are
aware that the results are not directly comparable, and our purpose here is to give a rough
idea on the performance of forensic methods designed to detect double JPEG compression.
From the results in Table 3, we can observe that the performances of all methods in the
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best case are quite satisfactory, all higher than 90%. Interestingly, all methods considered
DCT features as network input. These features appeared to be effective in detecting double
JPEG compression manipulation, and this may intuitively explain the good performance of
all compared methods.

The papers on contrast enhancement detection also used different databases and
experimental settings for the validation of their methods. In Table 3, results are provided
for gamma correction with factor 0.6 and a random value taken from {0.6,0.8,1.2,1.4},
on patches of size 64 x 64 and 256 x 256, respectively for the methods proposed in [68,70].
The experimental setting of [69] was more complicated: the result shown in the table
was obtained on a dataset of 256 x 256 patches manipulated with a combination of three
different contrast enhancement techniques being histogram stretching, gamma correction
(with a factor randomly taken from {0.5,0.8,1.2,1.5}), and S-curve mapping. Though it is
not easy and not our purpose to rank the performance of the three methods mainly due to
different experimental settings, all of them achieved very good results close to a perfect
detection of 100%. This may imply that CNN is able to extract discriminative information
from both pixel values [67] and GLCM features [68,69] for detecting contrast enhancement.

The comparison of general-purpose manipulation detection methods is made for
64 x 64 patches with results taken from [74]. A challenging experimental setting with
five different manipulations (median filtering, Gaussian blurring, additive white Gaussian
noise, resizing, and JPEG compression) was tested for the three methods under compar-
isons [71,72,74]. As mentioned above, same datasets and same manipulations with same
parameters were used for each method to ensure a fair comparison. From the results in
Table 3, we can see that the method in [74] outperforms the two other methods. This is
because [74] attempts to keep a stable data flow for the first convolutional layer which
normally has a special design. This means that a combination of an appropriate design of
first-layer filters (e.g., high-pass filters) and a proper scaling of these filters can lead to a
better performance.

Table 3. Image manipulation detection methods. Network depth describes the number of convolutional blocks with C
for a convolutional layer, or M for mlpconv layer, followed by an activation function and pooling layer, as well as the
number of fully connected blocks denoted by an F (fully connected layer and activation function). MF stands for median
filtering, DJPEG for double JPEG, CE for contrast enhancement, GIPO for general-purpose image processing operations,
and approach is color coded as: detection, G localization. Dataset is color coded as follows: @ UCID [15],

6 BOSSBase [16], @ Dresden [17], @ RAISE [18],6 MS COCO [25], NRCS [42], and e when it is an ad-hoc dataset
created by authors of the original paper. In the column of “Patch performance”, Acc. stands for accuracy, TPR stands for
true positive rate, and AUC stands for area under the curve (all in %).

Network Special CNN . Patch
Problem Method Depth Input Feature Design Input Size Approach Dataset Performance
64 X 64,
[58] 5C-2F MFR N/A 30 % 3 O ® Acc 814
MF
[59] 2M-3C  Upscaled val 1 64 64, Acc. 89.96
- pscaled values mlpconv 0 % 30 @ @ cc. 89.
[63] 4C-3F DCT features N/A 128 x 128 (U] Acc. 99.48
Customized 64 x 64,
[62] 2C-2F DCT features 3% 1 kemels 128128, (U) AUC 100.00
1024 x 1024
Noise residuals 64 x 64,
DJPEG [64] 3C-2F or DCT features N/A 256 x 256 @ Acc. 96.30
2C-2F, DCT features, Two-branch
(631 3C-1F pixel values CNN 64 x 64 o @ Acc. 99.60
4C-3F, DCT features, Two-branch
[66] 3F quantization tables CNN 256 % 256 G 6 Ace. 92.76
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Table 3. Cont.

[68] 9C-1F Pixel values N/A 64 x 64 (K ) AUC 99.7
CE [69] 3C-2F GLCM N/A 256 x 256 e TPR 99.80
[70] 4C-2F GLCM N/A 256 x 256 @ AUC 99.40

. Constrained 256 x 256,
[71] 5C-2F Pixel values st layer 64 % 64 @ Acc. 94.19

. Special init.

GIPO [72] 5C-2F Pixel values for 1st layer 64 x 64 @ Acc. 93.71
[74] SC2E Pixel values Scaling for 64 x 64 ® Acc. 96.02

6C 1st layer

4. Falsification Detection

We consider image falsification as the creation of fake content in some part of the
image to deceive viewers about the facts happened in the past. In contrast to routine image
manipulation, image falsification is conducted intentionally to change the image’s semantic
meaning, often by inserting or removing certain content.

The most common image falsification techniques can be roughly divided into three
broad categories: copy-move forgery where one part of the image (the source region) is
copied and pasted into the same image as the fake part (the target region); splicing forgery
where the tampered-with region in a host image was originally from a different image; and
inpainting forgery which is sometimes considered to be a subgroup of copy-move with the
difference that the fake region in inpainting falsification is often constructed by using and
combining small motifs at different locations of the same image. It is worth mentioning
that the inpainting technique is traditionally used to reconstruct a lost or corrupted part of
the image and that inpainting falsification is often applied for carrying out object removal
in an image. Research on splicing detection is in general more active than copy-move
and inpainting. This is probably because it is more convenient to create diverse splicing
forgeries from a large pool of publicly available pristine images. Figure 3 shows, from left
to right, examples of inpainting, copy-move and splicing forgeries. In the following, we
will organize the presentation of deep-learning-based falsification detection methods into
two groups: (1) multipurpose detectors which can detect different kinds of image forgeries
among the above three categories and (2) targeted detectors which are focused on the
detection of one specific falsification.

4.1. Multipurpose Detectors

Multipurpose detectors are usually based on the general assumption that any image
falsification introduces statistical deviation with respect to the authentic part, i.e., within
the fake region, around the fake region boundary, or both.

Zhang et al. [75] proposed to use an autoencoder [76] which is a type of neural network
taking an image as input and reconstructing it using fewer number of bits. Wavelet features
were used as input for the network to detect and localize in a patch-wise manner the
tampered-with regions. Besides wavelet features, local noise features originally proposed
for steganalysis, such as Spatial Rich Model (SRM) [77], have been largely used to solve
image forensics problems with encouraging results. In SRM, a group of handcrafted filters
was designed to extract local noise from neighboring pixels, and this often allows us
to obtain disparities between forged and original areas. SRM filters have been used for
creating a special input for CNNs. This is one important difference from CNNs used in
computer vision tasks: it is considered beneficial for CNNs of image forensics tasks to use
SRM filters as initialization for the first layer, instead of the random weights conventionally
used in CNNs from the computer vision community. In [78], Rao and Ni proposed to
use the 30 SRM filters as initialization for the first layer in a CNN to detect splicing and
copy-move forgeries. The results from the pre-trained CNN were used in a Support Vector
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Machine (SVM) classifier for solving a binary problem (authentic/forged). In a similar
approach based on steganalysis features, Cozzolino et al. [79] proposed to use a shallow or
short CNN to detect image forgeries on small patches.

In [80,81], authors made use of a Long Short-Term Memory (LSTM) architecture for
localizing at pixel level the tampered-with regions. An LSTM as proposed in [82] is a
special type of Recurrent Neural Network (RNN) designed for sequences or time series
data. An LSTM layer consists of a set of recurrently connected blocks, known as memory
blocks. Each block contains one or more recurrently connected memory cells and three
multiplicative units—the input (sigmoid and tanh functions), output (sigmoid and tanh
functions) and forget (a sigmoid function) gates—that regulate the flow of information into
and out of the cell. Figure 5 shows an unrolled example of an LSTM block. The core strength
of using LSTM in the image forensics field is to acquire from previous blocks the boundary
information, which is decisive to obtain particular features to classify between original
and tampered-with regions. In [80] experiments showed that both CNNs with Radon
transform as input and LSTM-based strategies were effective in exploiting resampling
features to detect and localize tampered-with regions. Bappy et al. [81] proposed an
LSTM and an encoder—decoder network to semantically segment falsified regions in a
tampered-with image.

ht1

Xt

Figure 5. An LSTM cell. X; is the input, ;1 and h; are the output of the previous and current block,
Ci—1 and C; are the cell state of the previous and current block. An LSTM block can help to correlate
neighboring blocks and search for inconsistencies when a forgery is present. This is achieved via
gates of activation functions to determine if certain data is relevant for forwarding it or forgetting it.

Some researchers suggested that a CNN trained for detecting camera traces could
be used to detect and localize image splicing. If an analyzed image contains patches
of different sources, then the blocks can be clustered in different groups separating the
suspicious area. Works in [83,84] made use of camera-specific features obtained by a CNN
that focuses on them. Both methods analyzed patches and looked for traces of different
cameras in the same image. Bondi et al. [83] used a clustering algorithm to create different
groups of the authentic and suspicious areas. In [84] a noise residual called Noiseprint was
extracted and used to check inconsistencies within a single image.

Yarlagadda et al. [85] used a GAN that included an adversarial feedback loop to learn
how to generate some information in a realistic manner, with the objective to detect satellite
image forgeries. There are two major components within GANs: the generator that takes a
noise vector as input and outputs an image improved at each step with the knowledge of
what a valid input should be, and the discriminator that tries to classify between real and
fake (i.e., created by generator) content. Their proposed architecture was followed by an
SVM to detect whether feature vectors come from pristine images or forgeries.

Recently, refs. [86,87] proposed the multi-branch CNNs to tackle the challenge of
image forgery detection. Specifically, Zhou et al. [86] proposed a multi-branch Region-
Convolutional Neural Network (R-CNN) which is a type of CNN typically used for object
detection to coarsely locate the tampered-with regions in bounding boxes. The authors used
pixel values in one branch with ResNet-101 architecture [88] and noise features obtained
by SRM filters in the second branch. Wu et al. [87] suggested a multi-branch CNN joined
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with an LSTM trained with a set of 385 different image manipulations. Their architecture
named Mantra-Net generates a pixel-level detection mask reflecting the probability of a
falsification. In the three input branches of Mantra-Net the first layers are initialized with
SRM filters, high-pass constrained filters of Bayar and Stamm [71], and normal random
weights. Figure 6 shows example results of bounding-box localization of falsifications
produced by Zhou et al.’s detector [86].

Q) D)

Figure 6. Bounding-box localization results generated by using the implementation of [86] on
NIST 16 dataset [36]. Top and bottom rows show copy-move and splicing examples, respectively.
(A) is the original image, (B) is the falsified image, (C) is the ground-truth mask, and (D) is the
localization result.

Very recently, Mara et al. [89] worked on a full-image CNN based on Xception
architecture [90] to detect and localize image falsifications. The proposed end-to-end
network used the Noiseprint [84] as features extracted from the image input. Meanwhile,
in [91] a GAN was proposed to generate falsified images avoiding the burdensome task of
creating and labeling image forgery examples in a conventional way. With this big number
of synthetic examples, the proposed algorithm was able to segment and refine the focus on
boundary artifacts around falsified regions during the training process.

Table 4 provides a summary of the various multipurpose falsification detection tech-
niques. The summary includes the method reference, input for the network, initialization
used in the first layer, input size, localization level, considered databases, and network
type. We also show in the last two columns of the table the performance comparisons on
the two most common datasets used among all methods, i.e., CASIA [33] and NIST 16 [36].
Besides the accuracy metric and the AUC metric, respectively introduced in Equations (2)
and (4) in Section 3.5, in the table we also use a new metric of F-1 score which is defined by
the following equation:

B 2TP 5)
~ 2TP+FP +FN’ (

In Table 4, the reported results correspond to patch size of 64 x 64 and 256 x 256
for [80,87], respectively. For the other methods, the performance corresponds to the only
patch size given in the column of “Input size”. It is worthwhile mentioning that the
performance is reported at image level for [78] and at patch level for [75], while for all
other methods the metric is pixel-level localization performance which is naturally a
more challenging metric than image-level and patch-level counterparts. We can observe
from Table 4 that besides the accuracy, the AUC and the Fl-score have also been used
as performance evaluation metrics. This is probably because for falsification detection
researchers usually have imbalanced classes of authentic and falsified samples, with the
falsified samples being fewer than the authentic ones. In this case of imbalanced classes,
the AUC and the F1-score are more appropriate metrics than the accuracy. On the CASIA
dataset the methods of [86,87] achieve satisfying performance of pixel-level localization
results. We notice that both methods have either a special input of noise features [86]
or a special design of first-layer filters [87]. It appears that both options can be effective
in detecting and locating falsifications which may leave traces in the high-frequency

F1
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component of images. On the NIST 16 dataset, methods of [80,81] share comparable
and very good results. These two methods consider resampling traces as one of the
discriminative features for the falsification localization task. This technical choice seems

quite adequate for exposing forgery traces on falsified images in the NIST 16 dataset.

Table 4. Multipurpose image falsification detection methods. Loc. level describes whether the localization is performed in a
pixel-, block- or bounding-box-wise manner. Dataset is color coded as follows: @ UCID [15], @ Dresden [17], @ Kaggle
Camera Challenge [20], @ Vision [21], () Landsat on AWS [23], ) MS COCO [25], @ Columbia gray [31], ) Columbia
Coverage [40],

color [32], (§ CASIA [33],

IEEE Forensics Challenge [34], @ Carvalho [35], ® NIST 16 [36],

and e when it is an ad-hoc dataset created by authors of the original paper. In the last two columns of performance (Perf.)
on respectively CASIA [33] dataset and NIST 16 [36] dataset, F1 stands for F-1 score, Acc. stands for accuracy, and AUC

stands for area under the curve (all in %).

U . Perf. on Perf. on
Method Input Feature Init. First Layer Input Size  Loc. Level Dataset Network Type CASIA NIST 16
[78] Pixel values SRM filters 128 x 128 pixel (C'L) CNN-SVM  Acc. 97.8 -
[75] Wavelet Random init. 32 x32 block @ Autoencoder Acc. 91.1 -
features
Steganalysis . .
[79] features Random init. 128 x 128 pixel @ CNN - SVM - -
[83] Pixel values Random init. 64 x 64 block w CNN - -
Radon .. 64 x 64, .
[80] features Random init. 128 % 128 pixel ® LSTM - Acc. 94.9
Resampling - .
[92] fontures Random init. 64 x 64 pixel (S@N} CNN - Acc. 894
[86] Pixelvalues, o qominit. 224 x 224 bbox ? Multi-branch ~ AUC79.5 AUC 93.7
noise features
[85] Pixel values Random init. 64 x 64 block (S A GAN-SVM - -
Pixel values, .. 44 x 44, .
[84] Noiseprints Random init. 64 % 64 pixel w CNN - -
[81] Resampling g dom init Resized ixel [SEN) LSTM - Acc.94.8
features ’ 256 x 256 p U
SRM filters, 256 % 256
[87] Pixel values Bayar filters, ! pixel % Multi-branch  AUC81.7 AUC79.5
.. 512 x 512
Random init.
. CNN
Pixel values, .. 960 x 720; . .
[89] Noiseprints Random init. 4640 x 3480 pixel m 1ncrem?ntal - -
learning
1] Pixel values ~ Randominit. 224 x 224 pixel GO GAN-CNN F157.4 -

4.2. Targeted Detectors

Targeted detectors, which are designed to detect only one type of image falsification,
have been developed in parallel with multipurpose ones.

4.2.1. Splicing Detection

Some early works dealing with splicing detection and localization were based on
autoencoders. In [93], authors used SRM features as input for their autoencoder model.
The method in [94] used the steganalysis features from SRM to analyze frames in a video
with autoencoder and LSTM to detect splicing forgeries.

Wu et al. [95] proposed a framework of Constrained Image Splicing Detection and
Localization (CISDL) based on the well-known VGG-16 architecture [96]. Using two input
branches they calculated the probability that one image had been partially spliced to
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another one and localized the spliced region. Meanwhile, in [97,98], a CNN without
fully connected layers known as Fully Convolutional Network (FCN) [99] was used to
predict a tampering map for a given image. In [97], the proposed architecture has two exit
localization branches. The first one was used for localizing the inner part of the spliced
area and the second one for detecting the boundary between pristine and spliced regions.
Concurrently, Liu et al. [98] made use of three FCNs to deal with different scales; moreover,
conditional random field was used to combine the results of different scales.

Some approaches [100,101] attempted to detect anomalies or inconsistencies within
tampered-with images. In [100], a Siamese CNN with a self-consistency approach to
determine if contents had been produced by a single device was proposed. The proposed
model could predict the probability that two patches had similar EXchangeable Image
File (EXIF) attributes and output a “self-consistency” heatmap, highlighting image regions
that had undergone possible forgery. In [101] authors used transfer learning from a pre-
trained residual network (ResNet-50) with illumination maps taken from input images to
find hints of forgeries.

Recent strategies [102,103] made use of U-Net [104] architectures. In a U-Net, the fea-
tures are captured by a size-reducing way of consecutive layers, then upsampled and
concatenated with the first path in a U-shaped symmetric path, attempting to reduce loss
and improve localization capability. In [102], authors took advantage of U-Net architecture
for the training of a GAN with image retouching generator, which helped a splicing localiza-
tion model to learn a wide range of image falsifications. Meanwhile Bi et al. [103] proposed
a method mainly based on U-Net as a segmentation network for splicing forgery detection.

Given the popularity of GANs in the computer vision field, some researchers have
also started to use them for image forensics purposes. This is the case of [105] where the
authors made use of a conditional GAN for the training of a detector to locate forgeries in
satellite images. Liu et al. [106] proposed a deep matching CNN together with a GAN to
generate probability maps in a CISDL scenario.

Special initialization of first layer was also considered for splicing detector. For exam-
ple, Rao et al. [107] designed and implemented a CNN with the first layer of the network
initialized with 30 SRM filters to locate splicing forgeries.

Table 5 summarizes the targeted detectors of splicing falsification. The considered
properties of the detection methods are similar to those in Table 4. A performance com-
parison on the two most common datasets used among all methods (i.e., Carvalho [35]
and CASIA [33]) is provided, in terms of pixel-level falsification localization performance.
Besides the accuracy and F-1 score metrics which were introduced previously, in the table
we use a new metric of mean average precision (mAP). In order to define this new metric,
we first introduce the definition of the average precision (AP) metric as shown in the
following equation:

AP = /O " Prec(r)dr, 6)

where Prec is the precision metric as given in Equation (3) and r is the recall metric defined
asr = Recall = TP&% In practice, the precision can be regarded as a function of the recall
when varying the decision threshold, and vice versa. The AP metric calculates the average
precision value Prec(r) for recall value r varying from 0 to 1. Consequently, the mAP metric
is defined as the mean average precision over all classes, as given by:

1& ,
mAP = = ;AP(Z), 7)

where C is the number of classes and i represents a particular class. In Table 5, forensic
performance is reported in terms of F1-score and mean average precision, mainly for two
reasons: (1) these two metrics are well suited for the classification problem of imbalanced
classes of authentic and falsified samples; (2) the mean average precision has been intro-
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duced probably by researchers who have worked for long time in the computer vision field
where the mAP is a widely used metric.

We notice from Table 5 that performance on Carvalho dataset is rather limited for
existing methods. As mentioned in Section 2.2, falsified images in Carvalho dataset were
carefully created. This limited performance implies that forensic analysis of high-quality
falsified images is still a challenging task, and future efforts shall be devoted to this
research problem. By contrast, falsified images in CASIA dataset are less difficult to handle.
Recent methods achieved good results on this dataset, either by leveraging adversarial
learning [106] or by using special forensic features as network input [107].

Table 5. Targeted splicing detection methods. AE stands for autoencoder. Dataset is color coded as follows: e Landsat

on AWS [23], @ MS COCO [25],

SUN 2012 [28], Columbia gray [31], Columbia color [32], CASIA [33],
gray

@ Carvalho [35], @ NIST 16 [36], @ Realistic (Korus) [38], @ On-the-wild websites, and e when it is an ad-hoc
dataset created by authors of the method (information of source images used for dataset creation may be provided in the

original paper). In the last two columns of performance (Perf.) on respectively Carvalho [35] and CASIA [33], F1 stands for

F-1 score, mAP stands for mean average precision, and Acc. stands for accuracy (all in %).

Method Input Feature Input Size Dataset Network Type Al::lclli(tlzgtr:l ere CP::\f;llol?o Pcegfélo :
[93] SRM features 768 x 1024 ® AE Own - -
[95] Pixel values 256 x 256 m CNN VGG-16 - -
[94] SRM features 720 x 1280 6 AE-LSTM Own - -
[97] Pixel values 224 x 224 [SICH L N] FCN VGG-16 F147.9 F154.1
[100] Eﬁi;ﬁ;ﬁ:ﬁ 128x128  ODODD CNN ResNet-v2 mAP 51.0 -
[101] INluminant maps 224 x 224 m CNN-SVM ResNet-v1 - -
[98] Pixel values 224 x 224 (S B) FCN VGG-16 - -
[103] Pixel values 384 x 384 g CNN (U-Net) ResNet-v1 - F184.1
[102] Pixel values 512 x 512 e GAN (U-Net) VGG-16 mAP480  mAP 74.0
[106] Pixel values 256 x 256 m GAN VGG-16 - F190.8
[105] Pixel values 70 x 70 e GAN Pix2Pix - -
[107] SRM features 128 x 128 (STC'L) CNN-SVM Own - Acc. 97.0

for 1st layer init.

4.2.2. Copy-Move Detection

Copy-move detection is one of the forensic techniques that have been studied with
more balance between conventional and deep-learning approaches. As mentioned before,
in a copy-move forgery, a part of the original image (source area) is copied and pasted
at a different place (target area) of the same image. Before pasting, the target area can
be transformed (rotation, scaling, shearing, etc.) to make the forgery visually realistic.
Routine image manipulation (smoothing, contrast adjustment, etc.) can be applied locally
or globally to enhance the visual quality. Copy-move is mainly used for falsifications where
certain content needs to be disguised or cloned.

Probably the first proposal using a deep-learning approach to solve the copy-move
detection problem was the method from Ouyang et al. [108], which was based on the
famous pre-trained AlexNet [109] originally designed for image recognition. The authors
generated forged images by choosing a random square from the upper left corner and
copying it to the center. Although this method obtained decent results in this artificial
scenario, the performance was diminished for realistic forgeries.

Wau et al. [110] proposed a CNN-based method which first divided the input image
into blocks, then extracted special features, correlated features between blocks, localized
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matches between blocks and finally predicted a copy-move forgery mask. Furthermore,
routine image manipulation operations to hide the forgery traces such as JPEG compression,
blurring and AWGN were applied to training data as a means of data augmentation.
The objective was to easily detect these manipulations as possible telltales of copy-move
falsification. Very shortly after this piece of work, the same authors [111] proposed to
use a different architecture with two exit branches to deal with the problem of source-
target disambiguation where it is necessary to discern between source (original) and target
(falsified) regions in a copy-move forgery. Another deep-learning method for source-target
disambiguation was proposed in [112] where CNN with multi-exit branches was also
used to identify source and target regions. This method was shown to be capable of
learning special features focusing on the presence of interpolation artifacts and boundary
inconsistencies. Figure 7 shows two examples of source-target disambiguation localization
results generated by Wu et al.’s detector [111].

Q) D)
Figure 7. Source-target disambiguation results generated by using the implementation of [111] on

images from the NIST 16 dataset [36]. (A) is the original image, (B) is the falsified image, (C) is
the ground-truth mask, and (D) is the localization result in which green and red color represents

_—.‘- e ———
—’— — o =1 :_ = = e w1

respectively the source (original) and target (falsified) region in a copy-move forgery.

In [113] Liu et al. proposed one of the first copy-move detectors that used a CNN
approach. Their proposal was partially based on conventional methods, by taking key-
points features such as Scale-Invariant Feature Transform (SIFT) or Speeded-Up Robust
Features (SURF) as input for their network. One limitation was that this method had low
performance when duplicated areas have a homogeneous content, because the keypoints
could be hardly identified within such areas.

Very recently, Zhu et al. [114] proposed an adaptive attention and residual-based CNN
to localize copy-move forgeries. The self-attention module allowed neurons to interact
with each other to find out which neurons should receive more attention. Experiments
showed comparable results with previous deep-learning approaches, but the problem of
source-target disambiguation was not addressed.

[lumination direction, contrast and noise are usually inconsistent in splicing forgery,
so the tampering traces could be found rather easily by the CNN. However, the source and
target regions are derived from the same image in copy-move, accordingly the illumination
and contrast would be highly consistent, which raises a greater challenge for copy-move
detection based on CNN. This may be one reason for the fewer published papers focused
on copy-move when compared with splicing.

The first part of Table 6 summarizes the existing deep-learning methods targeted at
copy-move detection and localization. We show in the second-last column a comparison of
localization performance of methods that reports results on both of the popular datasets of
CoMoFoD [41] and CASIA [33]. Here CASIA means a specific subset of CASIA images with
only copy-move falsification, which were properly selected and shared by the authors of the
copy-move detection method of [111]. On CoMoFoD and CASIA datasets the comparison
is fair with same set of images, evaluation protocol and metric. It is worth mentioning
that the F1-score has become a commonly used evaluation metric of copy-move detection
methods in part owing to Wu et al.’s paper [111], where the authors proposed a detailed
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evaluation protocol of copy-move localization performance with the Fl-score as the metric.
The proposed evaluation protocol and metric in [111] are later widely accepted and used
by researchers in the community. From Table 6 we can see that methods of [111,114] have
competitive results on both datasets of CoMoFoD and CASIA. Nevertheless, the method
in [111] provides the additional capability of source-target disambiguation which may bring
more information for the forensic analysis. Moreover, having a dedicated architecture for
the copy-move forensic problem is helpful to achieve satisfying performance, in particular
the block correlation module of [111] and the self-attention module of [114]. Finally, it can
be observed that the performance is not high and there is still much room for improvement
of copy-move localization results.

Table 6. Targeted detectors of copy-move and inpainting falsifications. S-T disam. means source-target disambiguation.
Dataset is color coded as follows: @ UCID [15], @ Dresden [17], @ RAISE [18], @ Vision [21], @ MvTec [22],
€9 Oxford [24], @ MS COCO [25], ImageNet [26], MIT Place [27], SUN 2012 [28], (8 CASIA [33],

Coverage [40], @ CoMoFoD [41],9 ROME patches [115], CMFD [116], and @ when it is an ad-hoc dataset. We

show in the second-last column performances of F-1 scores (in %) for copy-move detectors on respectively CoMoFoD [41]
and CASIA [33] datasets with the following format: F1ICoMoFoD / F1CASIA. For inpainting forensic methods, we show in
the last column the localization performance (mean average precision (mAP), F-1 score (F1), area under the curve (AUC) or
accuracy (Acc.), all in %) for one typical setting of inpainted images with 10% of pixels tampered with by inpainting.

. N Backbone Performance Performance
Method  Input Features Input Size Localization Level Dataset Architecture Copy-Move Inpainting
Copy-move
[108] Pixel values 256 x 256 Detection (SEE U X] AlexNet - N.A.
[110] Pixel values 256 x 256 Image % VGG-16 313/ 14.6 N.A.
[113] Keypoints 51 x 51 Pixel (S MP} Own - N.A.
. Pixel,
[111] Pixel values 256 x 256 . VGG-16 49.3 / 45.6 N.A.
S-T disam.
[112] Pixel values 64 x 64 Pixel, ResNet-V1 - N.A.
S-T disam.
[114] Pixel values 256 x 256 Pixel (S 'CIM] VGG-16 50.1 / 45.5 N.A.
Inpainting
[117] High-pass 256 x 256 Pixel (S Own N.A. mAP 97.8
residuals
[118] Pixel values 128 x 128 bbox g ResNet-V1 N.A. F191.5
[119] High-pass Various Pixel S ResNet-V1 N.A. F197.3
residuals
LBP, Pixel &
[120] pixel values 256 x 256 bbox g Own N.A. mAP 97.8
[121] Pixel values 256 x 256 Pixel (S V] Own N.A. AUC 94.2
. Pixel &
[122] Pixel values 256 x 256 bbox w Own N.A. Acc.93.6

4.2.3. Inpainting Detection

The inpainting technique can create plausible image forgeries which are difficult to
spot by the naked eye. In contrast to copy-move where an image area is copied and pasted,
in inpainting the falsified area is often filled with micro components (e.g., blocks of 7 by 7
pixels) extracted from different places of the image. These small blocks usually represent
a kind of micro-texture and are combined in inpainting in a visually convincing way.
Although the inpainting method can be used for inoffensive purposes such as repairing
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partially deteriorated images, it is used likewise in forgery creation, for instance for object
removal to falsify an image or for erasing visible watermarks. Some splicing or copy-move
detection algorithms could be exploited to detect inpainting forgeries, but in general they
do not consider the particularity of inpainting and their performance remains not as good
as expected.

To our knowledge the first method targeted at inpainting detection was proposed
by Zhu et al. [117], where authors used an encoder-decoder network to predict the
inpainting probability on each patch. Li and Huang [119] focused on detecting inpainting
forgeries made by deep-learning methods (also known as deep-inpainting). Image high-
pass residuals were fed to an FCN in which transpose convolutional layers were initialized
with bilinear kernel.

Wang et al. [118] used a R-CNN, originally designed for object detection, to output
a bounding box of the inpainted region along with a probability score. Very recently,
the same authors [120] designed a multi-task CNN with two inputs, i.e., a Local Binary
Pattern (LBP) image as the first input and the pixel values as the second one, for inpainting
detection. This new network could produce a bounding box of inpainted area together
with an estimated mask of forgery.

In [121] authors proposed an anomaly detection method by randomly removing
partial image regions and reconstructing them with inpainting methods to detect a forgery.
The authors used a U-Net-based encoder—decoder network to reconstruct the removed
regions and output a tampering map in which each image is assigned an anomaly score
according to the region with the poorest reconstruction quality. Meanwhile, Lu and
Niu [122] published an object removal detection method by combining CNN and LSTM
to detect inpainting with single and combined post-processing operations such as JPEG
compression and Gaussian noise addition.

The second part of Table 6 provides a summary of the deep-learning-based forensic
methods targeted at inpainting falsification. For experimental studies, the listed methods
created an ad-hoc dataset from different databases of pristine images with different in-
painting techniques and experimental protocols. This makes very difficult to carry out a
fair comparison. We have made efforts and decided to report performances of compared
methods under one typical experimental setting where in falsified images 10% of pixels
were tampered with by inpainting falsification. We can see from the last column of Table 6
that methods in [117,119,120] achieved good inpainting localization performance. This
may imply that the special inputs of high-pass residuals in [117,119] and of LBP features
in [120] are effective in exposing traces left by inpainting techniques. We also observe
that different methods tend to use different evaluation metrics, in part because authors of
each method tested their method on an ad-hoc dataset created by themselves. This makes
difficult to carry out easy and fair comparisons between different methods. The devel-
opment of a high-quality open benchmarking dataset is desirable and will be beneficial
for the advancement of the relevant research. Finally, it can be observed that localization
performance is better for inpainting than copy-move (please compare the last two columns
of Table 6). A possible reason is that in copy-move the falsified region is originally from the
pristine part of the same image, while in inpainting the falsified region is a kind of new
content created by inpainting algorithm though with attempt to mimic the pristine areas.

5. Other Specific Forensic Problems

This subsection is dedicated to the presentation about some other specific problems on
which the image forensics research community has conducted extensive work. We divide
them into three groups: (1) camera identification, (2) computer graphics image detection,
and (3) detection of Deepfake images.

5.1. Camera Identification

A typical image acquiring process is shown in Figure 8. First, the light rays are
redirected by the lens, then different filters such as anti-aliasing can be applied before the
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Color Filter Array (CFA) divides the light into one of the red (R), green (G) and blue (B)
components per pixel. A demosaicing step is performed afterwards to reconstruct the
full-color scene from the input samples taken by the previous step. Depending on the
camera model and software, several post-processing operations such as white balancing,
gamma correction and JPEG compression can take place. These post-processing steps
contribute with important and distinctive clues to the image forensics field. When the final
output image of camera is falsified to create a forgery, additional traces unique for each
falsification are usually left behind.

POST PROCESSING FINAL 2D | FORGERY J

Figure 8. Illustration of typical pipeline of image acquisition and forgery creation.

The challenge of verifying the authenticity of an image can be tackled from different
perspectives. One of them is approached by answering the following question: given an
image, is it possible to find out the model of the camera with which the image was taken?
Even though camera model, date and time, and other information can be found in the
EXIF or in the JPEG header, in general it is not possible to consider such information as
reliable and legitimate because image metadata can be easily modified. By contrast and
as mentioned before, the traces of the post-processing steps carried out by each camera
constitute important source of information that can be used to authenticate the image
provenance in the image forensics field.

First deep-learning methods for camera identification were mainly dedicated to clas-
sifying patches produced by different cameras. Bondi et al. [123] used a CNN followed
by an SVM to classify patches coming from different unknown cameras. In addition,
with the output of their CNN they looked for anomalies in an image to search for forgeries.
Tuama et al. [124] applied a high-pass filter in the first layer to suppress image content and
obtain image residuals as input for a shallow CNN that was trained to learn to classify
among different camera models. Due to the release of new camera models and the difficulty
to keep an updated database, Bayar and Stamm [125] suggested an open-set scenario which
aimed to predict an unseen camera device. The authors used a constrained initialization
for the first layer of a CNN to infer whether the image was taken by an unknown device.

Ding et al. [126] proposed a multi-task CNN to predict information about brand,
modes and devices from a patch. The authors used ResNet [88] blocks together with high-
pass filter residuals as input for the network and with inputs of different sizes. In [127],
authors used a shallow CNN for mobile camera identification in a multi-class challenging
scenario. Experiments showed good forensic performance, but the performance diminished
when devices came from a same manufacturer.

Methods in [128,129] both used Siamese network for this camera classification problem.
There are multiple inputs in a Siamese network with the same architecture and same initial
weights for each sub-network. Parameter updating is mirrored across all sub-networks.
The purpose of this architecture is to learn the similarity of inputs. In [128], authors
proposed a Siamese CNN to extract the camera unique fixed-pattern noise from an image’s
Photo Response Non-Uniformity (PRNU) to classify camera devices and furthermore trace
device fingerprints for image forgery detection. Sameer and Naska [129] worked on the
scenario where annotated data (i.e., in this case image samples) were not available in big
quantities and training had to be performed using a limited number of samples per class.
This approach is called few-shot learning and refers to learning and understanding a new
model based on a few examples. For this few-shot learning approach, a Siamese network
was used to enhance classification accuracy of camera models. The intuition behind the
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Siamese network for this challenge is to form pairs of image patches coming from the same
camera models to improve the training.

Table 7 gives a summary of the deep-learning-based camera identification techniques.
In the table, we include the accuracy performance mainly on the Dresden dataset [17].
Even in cases where the same number of camera models was considered, the size of the
patches was not the same, which makes difficult to deliver a fair comparison. Nevertheless,
it must be mentioned that methods using smaller patch sizes such as 64 x 64 or smaller,
combined with a bigger number of camera models present a bigger challenge due to the
less information available on each patch and the bigger number of classes for the classifica-
tion task. In addition, similar to the evaluation of image manipulation detection methods
in Section 3.5, the experiments for evaluating camera model identification methods are
usually conducted in a controlled laboratory setting with balanced classes. Therefore, in
this case the simple accuracy metric has been widely used for the performance evaluation.
It can be observed once again from Table 7 that special input features of high-pass residu-
als [124-126] and/ or special first-layer design [125] appear to be effective in highlighting
the subtle differences between the traces of different camera models, leading to a satisfying
identification accuracy. Finally, we would like to mention our observations of two inter-
esting trends regarding the research on camera model identification: (1) techniques such
as few-shot learning would be helpful in realistic scenarios in which we have a limited
number of annotated samples, and (2) the deep-learning methods are promising techniques
to deliver a good camera model classification performance and may further help in the
search of anomalies for image forgery detection.

Table 7. Camera identification methods. ET means extremely randomized trees. Dataset is color
coded as follows: @ Dresden [17], 0 MICHE-I [19], @ Vision [21], and e when it is an ad-hoc
dataset. In the last column we show the accuracy performance on the Dresden dataset [17], except for
two methods for which the dataset icon is given in the corresponding rows in the last column. We
provide information about the number of tested camera models and the accuracy (in %) with the
format Number of Camera Models : Accuracy.

Method Input Initialization InputSize Dataset Network Type Performance

Features

[24]  HHgh-Pass oo qominit. 256 x 256 ® CNN 12: 98.0
residuals

[123]  Pixel values Randominit.  64x64 @)  CNN-SVM 18: 93.0
High-pass Bayar’s CNN-SVM .

[125] residuals constrained 256256 @ CNN-ET 10:93.9

[127]  Pixel values Randominit. 32 x 32 @ CNN-SVM 03911

[128] Pixel values Random init. 48 x 48 e Siamese e 3:100.0
High-pass . Multi-scale .

[126] reviduals  Randominit. 48 x48 @) CNN 14: 97.1

[129]  Pixel values Randominit. 64 x 64 (D O] Siamese 10: 87.3

5.2. Detection of Computer Graphics Images

Computer graphics techniques produce visually plausible images of fictive scenes.
Despite the benefits of CGI in virtual reality and 3D animation, it can also be used as false
information thus affecting real-life decisions, and this situation is augmented with the fast
dissemination of content enabled by the Internet. Consequently, the challenge of discerning
between a real photograph and CGI has been explored by image forensics researchers.
Figure 9 shows how challenging it is to distinguish between CGI and an image taken by
a camera.
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Figure 9. Examples to show the difficulty of visually differentiating between CGI (on the left) and an
image taken by a camera (on the right). The CGI is from Tumblr forum (https:/ /hyperrealcg.tumblr.
com/post/112323738189/title-a-land-where-dreams-take-wings-artist accessed on 2 April 2021 )
and the camera image is from Reddit forum (https:/ /www.reddit.com/r/EarthPorn/comments/409
u03/no_filter_needed_grand_tetons_national_park_wy_oc/ accessed on 2 April 2021 ).

Rezende et al. [130] proposed a deep CNN taking advantage of transfer learning
from ResNet-50 model to classify small patches of computer graphics images and real
photographic images. Yu et al. [131] investigated for this CGI forensics problem the
usage of a CNN without pooling layers. The authors of [57,132] proposed to use shallow
CNNs in a patch-based manner. Rahmouni et al. [57] used a CNN with a customized
pooling layer that computed statistics such as mean and variance followed by an SVM
to detect CGI patches. In order to classify a whole image, a weighted voting strategy
was applied to combine the local probabilities on patches of sliding windows to produce
a final label. Quan et al. [132] proposed an end-to-end approach that used a Maximal
Poisson-disk Sampling (MPS) method to crop patches in a lossless manner from a full-sized
image. Nguyen et al. [133] continued with the sliding window approach to deal with
high-resolution images using VGG-19 followed by multi-layer perceptron-based CNN as
classifier. In [134], authors proposed an approach for discriminating CGI using high-pass
residuals as input for a CNN.

He et al. [135] designed a two-input CNN-RNN taking the color and texture from
YCbCr color space on each input to detect CGIs. In [136] authors investigated the usage of an
Attention-Recurrent Neural Network (A-RNN) to classify CGlIs in a local-to-global approach
following the sliding window strategy and using the simple majority voting rule to produce
a decision on a whole image. Nguyen et al. [137] studied the application of dynamic routing
capsule networks [138] based on the VGG-19 model for detecting CGI. Capsule networks
were able to identify objects that hold spatial relationship between features.

More recently, Zhang et al. [139] proposed a CNN containing a special block at input
called hybrid correlation module composed of a 1 X 1 convolution layer followed by three
blocks of convolutional layers, which would correlate channels and pixels in an attempt to
detect CGIs. Meena and Tyagi [140] used the transfer learning approach from DenseNet-
201 [141] followed by an SVM as classifier. In [142] authors made use of a shallow A-CNN
with two inputs for CGI classification. Interestingly, the inputs for this network were pre-
processed by a Gaussian low-pass filter as the authors wanted to focus on general patterns
rather than local details. Quan et al. [143] designed a CNN combining SRM filters and
Gaussian random weights as initializations for the first layer on a two-branch architecture.
The authors also proposed to use the so-called negative samples created via gradient-based
distortion to achieve a better generalization on test images created by unknown graphics
rendering engines.

Table 8 summarizes the deep-learning-based CGI forensic techniques. In the last
column of the table, we provide a performance comparison mainly for the Rahmouni
dataset [57] and the He dataset [135]. The accuracy at patch level is used as the performance
metric on these two datasets. This is mainly because similar to manipulation detection
(Section 3.5) and camera model identification (Section 5.1), researchers consider a controlled
experimental setting with balanced classes of natural image patches and CGI patches in the
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experiments; therefore in such cases the patch-level accuracy is a simple and appropriate
metric. For the results in Table 8, the patch size is 60 x 60, 60 x 60 and 64 x 64 for method
in [132,136,142], respectively. For other methods, results are reported for the only patch size
listed in the column of “Input size”. In the case of the Rahmouni [57] dataset, we can see that
in general accuracy improves as forensic method uses larger patches, with the two highest
accuracy values achieved by [134,137] respectively on patches of 650 x 650 and 128 x 128.
Regarding the performance on the He [135] dataset, we still have the same trend with better
results achieved by [135,139] both on 96 x 96 patches, when compared to method [142] on
64 x 64 patches. In all, a larger patch size generally results in a better forensic performance
of CGI detection but also leads to a higher computational cost. Future efforts could be
devoted to the performance improvement on small patches and the aggregation strategy
from patch-level results to image-level decision.

Table 8. CGI detection methods. Dataset is color coded as follows: @ RAISE [18], @ Vision [21],
ImageNet [26], @ Columbia CGI [43], G MesoNet [44], 0 Artlantis [45], @ Corona [46],

e VRay [47], @ Autodesk [48], @ FaceForensics [50], Rahmouni [57], @ He [135],
Tokuda [144], @ Web images, and e when it is an ad-hoc dataset. In the last column we
show the performance in terms of patch-level accuracy (in %), except for method [143] for which
HTER (half total error rate, in %) is used, on the Rahmouni [57] dataset (:9, the He [135] dataset @,
and ad-hoc datasete constructed or considered by authors of the corresponding method. In many
cases the ad-hoc datasete is a customized combination of the image sets listed in the third column

of “Dataset”.

Backbone

Method Input Size Dataset Network Type Architecture Performance
[130] 224 x 224 CNN-SVM ResNet-50 © Acc.941
[131] 32 x 32 (S C W] CNN VGG-16 © Acc. 980
[57] 100 x 100 CNN-SVM Own Acc. 84.8

30 x 30, ...,
[132] 240 » 240 (C| CNN Own Acc. 94.8
[134] 650 x 650 CNN Own Acc. 99.9
Two-input
[133] 100 x 100 (K CNN-RNN VGG-19 Acc. 96.5
[135] 96 x 96 (H W) CNN-RNN ResNet-50 @ Acc. 939
30 x 30,...,
[136] 240 x 240 (C K] A-RNN Own © Acc. 949
[137] 128 x 128 (F N Capsule VGG-19 Acc.97.0
[139] 96 x 96 (H) CNN Own @ Acc. 942
[140] 224 x 224 @ CNN DenseNet-201 e Acc.94.1
32 x 32, Two-input .
[142] 64 x 64 @ A-CNN Inception @ Acc. 87.8
Two-branch
[143] it BB B K K O'T Y] CNN Own €© HTER 1.31

5.3. Deepfake Detection

Lately, GAN models have been used in various applications and have transformed a
time-consuming task previously reserved to high-skilled experts now to a simple and fast
operation. One of such applications is to create synthetic yet visually realistic images and
videos. GAN-generated multimedia contents are commonly known as Deepfakes, referring
to the usage of a deep-learning model and the fabricated synthetic results. Majority of
cases have been used to replace a person (or a person’s face) in an existing image or video
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with another person (or the face of this other person). Figure 10 illustrates the synthesis
process realized by a GAN which replaces the face in the target (image on the left) by
using a source (image in the middle) to generate the resulting frame (image on the right).
Although benign material has been created for the illustrated example, this technique can
have more serious impact in other situations, e.g., to create political distress. Recently a big
amount of research activities has been dedicated to detecting GAN-generated fake content,
mainly due to the easiness and impact of Deepfakes. In comparison with images, videos
contain more information and different approaches have been proposed based on different
kinds of clues for the detection of Deepfake videos.

Target Source Result

Figure 10. Example frame of a Deepfake video. The tool used to generate this video is available
at the following webpage: https://faceswap.dev/ accessed on 2 April 2021, and the full resulting
video can be viewed at https:/ /www.youtube.com/watch?v=rljng79a5xc accessed on 2 April 2021 .

First proposals in the literature [44,145-147] focused on the detection of GAN-generated
images created by a specific GAN model. In [145], authors searched for statistical arti-
facts introduced by GAN with a pre-processing layer that extracted high-pass residuals.
Marra et al. [146] tested the performance of some popular CNN-based image forensics
methods for the detection of images created by GANs and shared in social networks. In [44],
authors used a shallow CNN to detect Deepfakes and Face2Face [50] videos. Interestingly,
Chan et al. [147] developed as first objective a GAN for video-to-video translation in danc-
ing poses. Additionally, they developed a detector that would detect videos coming from
their own model. In [148], authors compared several popular sophisticated architectures
and a shallow CNN. Experiments showed that the shallow CNN had better performance
in detecting Deepfakes.

Gtiera and Delp [149] proposed to use a CNN for frame feature extraction and an
LSTM for temporal sequence analysis to detect Deepfake videos which contained incon-
sistent frames. Amerini et al. [150] investigated the use of optical flow vectors to detect
discrepancies in motion across several frames using the PWC-Net model [151]. Optical
flow is a vector computed on two consecutive frames to extract apparent motion between
the observer and the scene itself. In a follow-up work [152], an LSTM was used in a
sequence-based approach which exploited the dissimilarities between consecutive frames
of Deepfake videos.

Other proposals like [53,153-156] focused on the spatial coherence and temporal
consistency among different physiological features. In [153], authors designed a CNN to
detect variations of heart rate extracted from face regions on different frames. Li et al.’s
method [154] was based on the observation that faces in Deepfake videos had a lower rate
of blinking in comparison with real videos. This occurred in early GAN-generated videos
for which the GAN was trained on faces with open eyes. The authors carried out a couple of
pre-processing steps to locate the eyes and used this feature as input for an LSTM to detect
a lower or higher rate of blinking as a telltale of Deepfake videos. Korshunov et al. [53]
proposed an LSTM to search for anomalies between the audio and mouth movements.
The method in [155] went in the same direction by comparing mouth shapes with the sound
associated with M, B an P phonemes which required complete mouth closure and were in
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many cases incorrectly synthesized. Recently, Mittal et al. [156] went a step forward using a
Siamese network to look for anomalies between the audio and video and combined it with
the affective cues of both inputs to learn the differences between real and Deepfake videos.

The signal-level artifacts introduced during the synthesis were investigated for the
detection of fake content. Li et al. [157] focused on artifacts at face boundaries by exploiting
the fact that most existing face tampering methods shared a common blending operation.
Meanwhile in [158], authors exploited the inconsistencies between warped face area and
the surrounding background. The method in [159] adopted Gaussian noise extraction as a
pre-processing step for a CNN, enforcing the network to learn more meaningful features
about GAN traces.

In [160] a multi-task CNN was proposed to detect fake faces and to segment tampered-
with areas. Dang et al. [161] investigated the use of attention mechanism for the detection
and segmentation of tampered-with faces. In [162], authors used deep transfer learning for
face swapping detection. Hsu et al. [163] made use of a so-called Common Fake Feature
Network (CFEN) consisting of several dense units and a Siamese network for Deepfake
detection. One limitation was that the CFFN may fail when the fake features of the results
of a new GAN were significantly different from most of those used in the training phase.

To overcome data scarcity, refs. [164,165] proposed some solutions. Fernandes et al. [164]
used a Attribution Based Confidence (ABC) metric to detect Deepfake videos with a deep
model only trained on original videos. Khalid and Woo [165] formulated the challenge as a
one-class anomaly detection problem by using a Variational Autoencoder trained only on
real face images and subsequently detected Deepfakes as anomalies.

More recently, Wang et al. [166] used the well-known ResNet50 with careful data
preparation to study the artifacts left by GANs. Their method demonstrated good general-
ization performance on unseen Deepfake content. In [167], authors designed a two-branch
CNN to exploit the distribution differences between pixels in the face region and the back-
ground. Masi et al. [168] proposed a two-branch LSTM to combine color and frequency
information. A multi-scale Laplacian-of-Gaussian operator was used in their method,
which acted as a band-pass filter to amplify the artifacts.

Table 9 provides a summary of Deepfake detection methods presented above. In
particular, in the table we present the main cue used by each method, by grouping cues
into several categories as spatial context, generator traces, physiology-inspired, inter-frame
consistency, and anomaly classification. We show performance comparison mainly on the
two most common datasets used among all methods, i.e., FaceForensics [50] and FaceForen-
sics++ [51]. The simple accuracy metric is the most commonly used evaluation metric for
Deepfake detection methods, still because researchers mainly consider a controlled experi-
mental setting with balanced classes of real and fake samples. Other metrics, e.g., mAP and
AUC, have also been used for instances by researchers originally coming from the computer
vision field. Even though accuracy is the most common metric, different settings were used
for each method. Specifically, video compression levels were not the same for methods
that conducted tests on a same dataset. H.264 compression was sometimes applied on the
testing set providing different subsets with different compression levels. Additionally, loss-
less compression was used in some cases. Given the fact that Deepfake traces can get lost
after lossy compression, uncompressed settings may present better results than scenarios
with compression. Finally, compression level was not specified in all methods. Therefore,
a direct and fair comparison is difficult. Nevertheless, we discuss some interesting points
on these methods. We can see that most methods achieved a good performance on a binary
classification for GAN-generated images. In the case of videos as input (cf., column of
“Video”) and using FaceForensics++ as dataset, the use of an architecture that can track
changes among frames, such as LSTM in the method of [168], leads to very good perfor-
mance. On images (cf., column of “Image”), results from [166] show that traces of current
GAN:S are easy to detect. In addition, with data augmentation techniques detectors can
achieve a good generalization on unseen data created by unknown Deepfake generation
tools. A final remark is that the different metrics, e.g., accuracy, AUC and mAP, are not
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directly comparable. First, there is a clear difference between the threshold-dependent
accuracy metric and the more comprehensive AUC and mAP metrics which in theory
consider all possible threshold values. Second, although under certain conditions and with
additional information of the classification system AUC and mAP can have an approximate
relationship [169], in general these two metrics are not easily convertible to each other. This
highlights the importance of open-source policy of forensic methods and free availability
of high-quality datasets. With open implementations and datasets, it will be possible to
carry out reliable evaluation of existing and future methods even on new datasets and with

new metrics.

Table 9. Deepfake detection methods. Dataset is color coded as follows: e CelebA [29], @ CelebAHQ [30], G
MesoNet [44], @ UADFV [49], ® FaceForensics [50], @ FaceForensics++ [51],
@ DFDC [55], @ DFD [56], e CycleGAN [170], and e when it is an ad-hoc dataset. We show in the last column
performance mainly on FaceForensics [50] dataset @ and FaceForensics++ [51] dataset @, as well as on other datasets
considered or constructed by authors of the corresponding method. In some cases, ad-hoc dataseteused for performance
evaluation comprises fake samples generated by authors of the corresponding method with existing Deepfake generation
tools. Acc. stands for accuracy, AUC for area under the curve, EER for equal error rate, TPR for true positive rate, Prec. for

precision, and AP for average precision (all in %).

CelebDF [52], @) DeepfakeTIMIT [53],

Cue
. Backbone . g % qé
Method Input Size Dataset Network Type Architecture Image Video ~ [g % E ,_: Performance
n O B~ = <

[145] 256 x 256 (S H) CNN Own [ ) () ©OAcc. 94
[146] 256 x 256 (S Y] CNN XceptionNet o [ ) OAcc. 945
[154] 224 % 224 (S) CNN-LSTM VGGl16 ) o ©AuC9.0
[149] 299 x 299 (S CNN-LSTM Inception V3 o [ ) OAcc. 971
[44] 256 x 256 (N CNN Inception o () @) Acc. 953
(48] 1024x1024 OOD CNN ResMan10 etc. ® ® ©AUC 940
[158] 224 x 224 (T U] CNN Rez\i?slo?im o o o ®Auco74
[147] 256 x 256 (S) CNN Own o o OAcc. 970
[150] 224 x 224 (M) CNN PWC-Net ) [ ) @ Acc.816
[153] 128x128 QDOG® CNN Own [ ® &iﬁi‘_ ol
53] 221(; X 5323' (S CNN-LSTM Own ® o @ERR 8
[160] 256 x 256 DO AE-CNN Own o e O & 22‘; zg';
[159] 128 x 128 (S 'H]) CNN Own o o o OAcc. %55
[162] 224 x 224 (S) CNN ResNet18 [ ) o () ©OAcc. 99
[155] 128 x 128 (S) CNN XceptionNet o [ ) ©1rrR978
[157] 64 x 64 (DG M] CNN XceptionNet [ ) [ ) () @ AUC 985
[161] 299 x 299 (S) CNN XceptionNet, VGG16 () o () ©Aucv7
[152] 256 x 256 (M) LSTM Inception V3 ) [ ) @ Acc. 943
[164] 224 x 224 [S"ATM] ABC-CNN ResNet50 o o ©Acc. 96.0
[163] 64 % 64 (s"A) Siamese-CNN Own o [ ) ©pPrec. 988
[165] 100 x 100 (M) VAE One-Class VAE o [ ) @ Acc. 982
[167] 224 % 224 (S FIN'T] CNN ResNet18 o () ) Acc. 94
[168] 224 X 224 (M) LSTM Own [ ) () @ Acc. 96.4
[156] Unknown (D'T) CNN Own o [ ) @AUC%3
[166] 224 x 224 (M) CNN ResNet50 o @ Ar9s2




J. Imaging 2021, 7, 69

30 of 39

6. Anti-Forensics

Anti-forensics also called counter-forensics aims at defeating the analysis and exami-
nation of forensic methods. Different techniques can be adopted by a smart and determined
adversary to modify an image while attempting to prevent image forensics tools from
getting useful clues on manipulations, falsifications, source devices, etc.

Early research [171,172] showed that CNN models are vulnerable to adversarial at-
tacks. In the deep-learning-based anti-forensics field this has been translated to the use of
GAN:S to recreate or hide different cues with visually imperceptible distortions.

Giera et al. [173] proposed a method to slightly modify images to alter their estimated
camera model when analyzed by a CNN. The authors showed that adversarial-attack-
based approaches such as Jacobian-based Saliency Map Attack (JSMA) and Fast Gradient
Sign Method (FGSM) are capable of misleading CNN models that have been trained to
perform camera model identification.

In [174], Chen et al. proposed a white-box scenario where information on the forensic
tool and camera model is known. A GAN was proposed to modify traces used to identify
a camera model. Additionally, they introduced a new loss function focused on both fooling
a CNN-based detector of camera models and introducing minimum distortion into the
image. Later, the same authors proposed in [175] the usage of GAN for two scenarios: a
data-dependent scenario where camera model is known and a data-independent one where
no information is available. In both cases a generative model was used to fool CNN-based
camera model identification methods.

An anti-forensic method for recaptured image detection was proposed by Zhao et al. [176].
The authors proposed to employ Cycle-GANS typically used for image translation to accom-
plish this anti-forensic task of hiding traces of image recapturing. In their work, high-pass
filters were used within the model to improve the anti-forensic performance. Moreover,
the loss function was also adapted to ensure that the image content would not be changed
too drastically.

Other proposals focused on concealing the traces left by routine image manipulations.
Kim et al. [177] proposed a GAN model which was able to reproduce and hide the cues
left by median filtering operation. Meanwhile, Wu and Sun [178] investigated the use of
GANSs and a tuned loss function to hide the traces left by multiple image manipulation
operations. Uddin et al. [179] proposed a GAN-base anti-forensic method against double
JPEG compression detection. Results showed that detection accuracy could be reduced
from 98% to 85% by using the proposed method.

In [180], authors designed a small GAN architecture to prevent CGIs from being
correctly detected. In this approach, the first layer of the discriminator was initialized with
2 Sobel filters to guide the network to concentrate more on the texture information of the
input image.

Barni et al. [181] presented an analysis on the transferability of anti-forensic attacks.
Their results showed that in most cases, attacks are not transferable, which facilitates the de-
sign of appropriate counter measures against anti-forensics. This is particularly true when
an anti-forensic adversary does not have full knowledge of the targeted forensic method.

Table 10 provides a summary of deep-learning-based anti-forensic methods presented
above. In particular, in the table we present the main component used by each method and
the targeted forensic problem. We can see that the current trend is to design GAN-based
anti-forensic algorithms against camera model identification methods and detectors of
routine image manipulations. We expect to see in the near future interesting anti-forensic
works considering more advanced tampering operations.
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Table 10. Anti-forensic methods. The column of “Backbone strategy” shows the main technical com-
ponent used in each method. Dataset is color coded as follows: e BOSSBase [16], @ Dresden [17],
@ RAISE [18], @ Vision [21], e CelebA [29], Cao [182], Agustsson [183], and e when it
is an ad-hoc dataset created by authors of the original paper.

Method Problem Backbone Strategy Input Size Dataset
[173] JSMA, FGSM 32 x 32 ®
Camera
7[174] identification GAN 256 X 256 @
[175] GAN 64 x 64,227 x 227 @
[76] . Recaptured Cycle-GAN 256 % 256
image detection
[177] Median filtering GAN 64 x 64,227 x 227 @
Multiple image
[178] manipulations GAN 256 x 256 ®
[179] Double JPEG GAN 512 x 384
compression
[180] CGI detection GAN 178 x 218
Attack
[181] transferability GAN 128 x 128 m

7. Concluding Remarks

Through this review, we provide a general understanding of the detection methods in
the image forensics field. We collected and presented many deep-learning-based methods
divided into three broad categories, with a focus on the different characteristics that are
particular for the image forensics approaches. It can be observed that a pre-processing step
to obtain a certain feature or a special initialization on the network’s first layer have been
used in many pioneer works and still exist in recent ones. It is interesting to see that these
characteristics are mainly present in the manipulation, falsification, camera identification
and CGI detection methods but scarcely seen in the Deepfake detection works. We have
not found clear reasons to explain this observation, and it would be interesting to carry out
theoretical studies and practical comparisons with and without the use of pre-processing
step and with different initializations of the first layer, for various forensic problems. This is
a research opportunity to be explored in our future work. As any arms race scenario where
two opponents, in this case a forger and a forensic investigator, try to make their respective
actions successful, both sides will keep evolving with new technologies and challenges.
Deep learning has brought a tremendous advance due to its ability to automatically learn
useful features from available data and this strength has been used on both sides and their
competition will be continued in the future.

One promising working direction is that it is beneficial to gain access to real-life
forgery datasets that include ground-truth masks with a vast number of samples. Currently,
depending on the forensic problem we want to study, existing datasets may have a limited
number of examples or focus on a small range of devices or subjects. Although data scarcity
has been tackled with the few-shot learning approach, the generalization problem may
still be in game. In the case of Deepfake detection, a very popular research topic as we
see from the large number of recent works collected in this review, high-quality datasets
are becoming more and more available because of the involvement and commitment of
big companies.

We also believe that although single works can obtain good performance, the com-
bination of several domains or features will be of huge importance in the future. We
have listed some works that combine the usage of image and audio features to detect
Deepfakes, and probably these works would benefit from other features or strategies if
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properly combined. To this end, the availability of open-source implementation of existing
methods is of paramount importance.

Another interesting future research topic is the development of different counter-
forensic methods which we believe have a right of existence. Indeed, the creation of tools
to deceive forensic detectors adds another interesting and important player in the game
who challenges the detectors of fake multimedia content. As we saw in Section 6, almost
all existing deep-learning-based anti-forensic methods make use of a GAN model which
has proved to show good results. Nevertheless, different strategies could be explored to
realize the objective of removing forensic cues, from the design of appropriate network
architectures to the explicit analysis and removal of forensic traces with customized layers
and loss function. Additionally, it is interesting to notice that special initializations on
the first layer of a network architecture have also been used in the anti-forensics field.
The resilience of forensic detectors would be improved by considering the attacks of anti-
forensic methods. We believe that the competition between the two sides of forensics and
anti-forensics would be beneficial for the advancement of both subjects and is an interesting
topic to follow.

In all, we think that the image forensics research presents big challenges and opportu-
nities for the future in which we hope to see more deep-learning-based methods to take
better account of the particularities of the image forensics field.
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