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Abstract: A new technique for progressive visual secret sharing (PVSS) with adaptive priority
weight is proposed in this paper. This approach employs the bitwise and eXclusive-OR (XOR) based
approaches for generating a set of shared images from a single secret image. It effectively overcomes
the former scheme limitation on dealing with an odd number of stacked or collected shared images in
the recovery process. The presented technique works well when the number of stacked shared images
is odd or even. As documented in experimental results, the proposed method offers good results
over binary, grayscale, and color images with a perfectly reconstructed secret image. In addition, the
performance of the proposed method is also supported with theoretical analysis showing its lossless
ability to recover the secret image. However, it can be considered as a strong substitutive candidate
for implementing a PVSS system.

Keywords: adaptive priority weight; eXclusive-OR; lossless; odd number; progressive; secret sharing

1. Introduction

Recently, several approaches have been devoted to dealing with secure image commu-
nication. Transferring a secret image via a communication channel has become an open
issue nowadays. Two parties often communicate one to the one another via Internet, cloud
computing, communication technology, etc. In this way, a digital image is often transmitted
or sent via the communication channels with the security and integrity requirements. A
simple means for transferring or exchanging secret information between two or multiple
parties is by inserting the secret image into the digital cover image. One can select an ap-
propriate technique for transmitting a secret image. Among of them are the secret sharing
technique [1–3], the image watermarking technique [4], the multiple secret sharing tech-
nique [5–7], the progressive secret sharing technique [8–15], the lossless progressive secret
image technique [16], etc. These aforementioned methods offer promising performances
on in regards to rendering the information of the secret image into the other form (such as
a digital image host or shared images).

The secret sharing method aims to convert a meaningful secret image into a non-
friendly appearance before transmission to the other parties. The noise-like form can be
selected to hide the content of secret image such that an unauthorized malicious attacker
cannot recognize the important information contained in the secret image. In recent years,
a lot of methods have been developed in the field of secret sharing. The most well-known
secret image methods are multiple secret sharing [5–7], progressive secret sharing [8–15],
lossless progressive secret sharing [16], and more sophisticated secret sharing techniques.
The multiple secret sharing method [5–7] changes a set of secret images into multiple
images or a set of shared images, whereas the progressive secret sharing method simply
converts a single secret image into a set of shared images. In the multiple secret sharing
method, all shared images are required to reconstruct the secret image. If only a partial
subset of shared images is involved in the recovery process, one obtains nothing. The
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progressive secret sharing method [8–15] offers different ways to reconstruct the secret
image. Either a partial or a full set of shared images may be used to obtain the recovered
secret image. A higher number of involved shared images gives a better quality of the
recovered secret image, and vice versa. However, the progressive secret sharing method
cannot give warranty in the lossless recovered secret image. However, a new technique
(namely, lossless progressive secret sharing [16]) is able to recover the secret image with
lossless quality. Some modifications have been made to the progressive visual secret
sharing (PVSS) method with the adaptive priority weight [15]. We give illustrations of
PVSS and PVSS with adaptive priority weight in the following example: Figure 1 displays a
Lena image in color format. Figure 2 shows a set of shared images generated from the PVSS
method [16] and the PVSS scheme with adaptive priority weight [15]. Figure 3 gives the
reconstructed secret image by stacking several images obtained from the PVSS method [16]
and the PVSS scheme with adaptive priority weight [15]. The adaptive priority weight
offers better results regarding the quality of the reconstructed secret images.

Figure 1. Lena image in color formatting.

Figure 2. A set of generated shared images: (a–d){S1, S2, S3S4} from the progressive visual secret sharing (PVSS) scheme [16],
and (e–h) {S1, S2, S3S4} from a PVSS scheme with adaptive priority weight [15].

This paper first reviews the former scheme [15] on generating a set of shared images
from a secret image and recovering a secret image. The former scheme employs the
adaptive priority weight to progressively reconstruct a secret image. The former scheme
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shows its usability in the PVSS task as reported in [15]. Based on our observation, however,
the former scheme suffers from a slight limitation in the secret image recovery process if the
number of stacked or collected images is odd. This paper delineates this limitation, along
with the theoretical analysis required to prove this issue. Some experiments concerning this
limitation are also reported. Thereafter, we develop a new technique for overcoming this
problem. This new technique inherits the PVSS with a random grids approach from the
former scheme with a simple modification implemented to improve the recovery process
when the number of stacked images is odd. This simple modification effectively yields a
perfect reconstructed secret image whether the number of stacked images is odd or even.
The correctness of the proposed method is also supported by mathematical analysis as well
as experimental findings. The proposed PVSS method can be touted as a strong alternative
candidate for substitution in place of the former scheme [15].

Figure 3. The quality of the reconstructed secret images obtained from: (a–d) the PVSS scheme [16] and (e–h) the PVSS
method with adaptive priority weight [15].

The former scheme [15] and proposed method exploit the eXclusive-OR (XOR) opera-
tion for producing a set of shared images as well as obtaining a recovered secret image. The
XOR operation is very simple, with various symmetric properties. These XOR properties
are very important for designing the PVSS algorithm. One can produce a set of generated
shared images using an XOR operation. Conversely, the XOR operation can be used to
recover a secret image without the use of any additional computational techniques. The
XOR performs differently with common arithmetic operations. The XOR operator has no
negation/inverse operation, while the arithmetic has a negation/inverse operator. For
example, the arithmetics addition operator owns the negation operator (i.e., arithmetics
subtraction). What follows are some useful XOR properties [7] for the PVSS methods.
Herein, we provide examples of each property with both the binary and the decimal
number representation.

• Identity:

This property indicates that performing XOR over any arbitrary number with zero
yields an identical arbitrary number itself. This property is defined as:

A⊕ 0 = A (1)
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For example, we have A = (6)10 (i.e., a number 6 in decimal representation) with the
corresponding binary string set as (110)2. This property tells us that (110)2 ⊕ (000)2 =
(110)2 in binary representation or (6)10 ⊕ (0)10 = (6)10 in decimal format.

• Performing XOR over “odd number” times:

If we perform XOR operation on the same arbitrary number over “odd number” times,
we will receive this arbitrary number itself. Specifically, this process is denoted as:

A⊕ A⊕ . . .⊕ A︸ ︷︷ ︸
n is odd number

= A⊕ (A⊕ A) = A⊕ 0 = A (2)

For example, XOR-ing the decimal number 6 over “odd” times gives 6⊕ 6⊕ . . .⊕ 6︸ ︷︷ ︸
n is odd number

=

6 ⊕ (6⊕ 6) = 6 ⊕ 0 = 6 or, in binary representation, (110)2 ⊕ (110)2 ⊕ . . .⊕ (110)2︸ ︷︷ ︸
n is even number

=

(110)2 ⊕ {(110)2 ⊕ (110)2} = (110)2 ⊕ (000)2 = (110)2.

• Performing XOR over “even number” times:

In contrast to the previous XOR property, performing an XOR operation on the same
arbitrary number over “even number” times yields zero results. This property is shown as
follows:

A⊕ A⊕ . . .⊕ A︸ ︷︷ ︸
n is even number

= A⊕ A = 0 (3)

A simple example for this property is in the case 6⊕ 6⊕ . . .⊕ 6︸ ︷︷ ︸
n is even number

= 6⊕ 6 = 0 in deci-

mal number representation, or, in binary representation, (110)2 ⊕ (110)2 ⊕ . . .⊕ (110)2︸ ︷︷ ︸
n is even number

=

(110)2 ⊕ (110)2 = (000)2.

• Symmetric Inverse:

This property is almost similar to the common arithmetic inverse, e.g., an addition
operator against the subtraction operator. The XOR has no inverse operator. Yet, the XOR
can solely perform symmetric inverse by itself. This property is defined as follows:

If A⊕ B = C, Then B⊕ C = A. (4)

Suppose that there are two decimal numbers A = 6 and B = 3, with the corresponding
binary strings A = (110)2 and B = (011)2, respectively. Thus, we have A⊕ B = 6⊕ 3 = 5
or A⊕ B = (110)2 ⊕ (011)2 = (101)2. It is implied that C = 5 or, in binary representation,
C = (110)2. Conversely, we obtain B⊕C = 3⊕ 5 = 6 or B⊕C = (011)2⊕ (101)2 = (110)2.
This value is identical to A = 6 or (110)2, showing that the XOR has a unique symmetric
inverse property.

• Commutative:

The XOR has a similar property as the common arithmetics (i.e., a commutative
property). This property is specified as:

A⊕ B = B⊕ A (5)

Let A = 6 and B = 3, or, in binary representation, A = (110)2 and B = (011)2. The
following computations yield identical results (i.e., A⊕ B = (110)2 ⊕ (011)2 = (101)2 and
B⊕ A = (011)2 ⊕ (110)2 = (101)2) or, in decimal representation, 6⊕ 3 = 3⊕ 6.

• Associative:

This property herein is similar to that of the common arithmetic operation. The XOR
operation also offers associative computation as formally defined as follows:
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A⊕ (B⊕ C) = (A⊕ B)⊕ C (6)

Suppose that we have A = 6, B = 3, and C = 5. This property gives A⊕ (B⊕ C) =
(000)2 and (A⊕ B)⊕ C = (000)2 in binary form. This result resembles as in the decimal
form 6⊕ (3⊕ 5) = (6⊕ 3)⊕ 5. However, the XOR operation has been shown to have an
associative property.

The main contribution of this paper is to develop a new technique for PVSS with a
lossless ability in the secret image reconstruction process whether the number of stacked
shared images is odd or even. The other contribution of this paper is a formal mathematical
analysis for showing the limitation and correction of the PVSS method. This work has
been motivated with the increased demand for secure image transmissions. This work has
also motivated the success rate of lossless PVSS in [16]. The organization of this paper is
arranged as follows: Section 2 briefly discusses the former PVSS scheme with adaptive
priority [15]. This section also shows the limitation of the former scheme [15] as supported
with experimental finding and theoretical analysis. Section 3 describes the proposed PVSS
method, with adaptive priority analyzed in detail. The proposed method’s usability is
supported with the formal mathematical analysis. Section 4 extensively reports some
experimental results. The end of this paper delivers the conclusions and direction for
future works.

2. Former PVSS Scheme

This section briefly reviews the former PVSS scheme [15] wherein the secret and
shared images are in binary format. It presents the step-by-step process of shared image
generation and secret image reconstruction. A slight shortcoming of this aforementioned
method is also provided in this section along with formal theoretical analysis.

2.1. PVSS Scheme for Binary Image

The PVSS scheme in [15] for binary image generation is first presented in this section.
This scheme exploits the random grids to perform the secret sharing task. The former
method converts a secret image in binary format into a set of shared binary images. The
procedure of shared image generation is described as follows: Suppose that I is a binary
secret image of size M× N. Each pixel on I is denoted as I(x, y), for x = 1, 2, . . . , M and
y = 1, 2, . . . , N. Since I is a binary image, then I(x, y) simply consists of two values (i.e., a
black (or 0) and white pixel (or 1)). The former scheme [15] changes I into n shared images
{S1, S2, . . . , Sn} in pixel-based processing and in a bitwise fashion. The symbol Si is the i-th
shared image, for i = 1, 2, . . . , n. These sets (i.e., shared images) are further transferred to
the receiver or decoder side via communication or transmission channel. Each pixel in the
shared image Si is denoted as Si(x, y), for x = 1, 2, . . . , M and y = 1, 2, . . . , N. Herein, the
size of each shared image is identical to that of the size of the secret image (i.e., M× N).

In order to convert a secret image into a set of shared images, the former scheme [15]
requires a set of spatial pixel locations (lj) for j = 1, 2, . . . , n. These locations are spec-
ified by their adaptive priority weight (wj) for j = 1, 2, . . . , n. The adaptive priority
weight can be predetermined based on user preference. Figure 4 exhibits some examples
of spatial pixel location (lj) for j = 1, 2, . . . , 4, over various adaptive priority weights
{w1 = 0.5, w2 = 0.3, w3 = 0.1, w4 = 0.1}. In this figure, the pixel location l1 owns around
50% of the occupied pixels in order to generate a shared image. The l1 has a higher adaptive
weight compared to the other spatial pixel locations. In this example, the additional pixels
in l1 are caused by the rounding operator in the adaptive priority weight determining the
spatial pixel location. Setting a higher priority weight wj indicates more pixel locations
lj arranged in the j-th shared image, and vice versa. Thus, the recovered secret image
becomes quickly or easily recognized by human vision in the reconstruction process. In
addition, the correct pixel of the recovered secret image will be rapidly obtained by utilizing
a higher priority weight.
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Figure 4. Examples of spatial pixel locations with various adaptive priority weights {w1 = 0.5, w2 = 0.3, w3 = 0.1, w4 = 0.1}:
(a) l1, (b) l2, (c) l3, and (d) l4.

The generation of shared images is formally defined as follows: For each pixel in the
secret image (i.e., I(x, y)) we first must determine two selected indices of shared images
for the purpose of encoding. The first and second indices of the selected shared images
are denoted as r1 and r2. The value of r1 is determined based on the information of the
pixel location lj, whereas r2 is simply computed as r2 ← mod{r1, n}+ 1. The symbols
mod{·, ·} and← indicate the arithmetic modulus operator and the assignment operator,
respectively. A pixel in a spatial position (x, y) in the first selected shared image is assigned
the following value:

Sr1(x, y)← UI(0, 1), (7)

where Sr1(x, y) represents the pixel in the spatial position (x, y) over the r1-th shared image.
The computation in Equation (7) requires a random number generator. Herein, UI(0, 1)
denotes the uniformly random number generator producing the integer in range [0, 1].
A different strategy is then applied to determine the pixel value of the second selected
shared image Sr2(x, y). The pixel in the secret image specifies the value of Sr2(x, y). If the
processed secret image is a black pixel (i.e., I(x, y) = 0), then the pixel value in Sr2(x, y) is
assigned as:

Sr2(x, y)← Sr1(x, y). (8)

If the secret image is a white pixel (i.e., I(x, y) = 1), the former scheme provides the
pixel Sr2(x, y) as follows:

Sr2(x, y)←∼ Sr1(x, y), (9)

where ∼ is the bitwise NOT operator. Subsequently, the pixel values of all shared images
excluding Sr1 and Sr2 (i.e., all Si for 1 ≤ i ≤ n and i 6= r1, r2) are set as Sr2(x, y):

Si(x, y)← Sr2(x, y). (10)

This process is conducted for all pixels in the secret image I. A set of shared images
{S1, S2, . . . , Sn} is created at the end of this process. The shared image is in binary format if
the binary secret image is fed into the former scheme [15]. Algorithm 1 explains the shared
image generation process in detail.

Algorithm 1: Former Scheme [15].

Input: Secret image in binary format, I, of size M× N
Number of shared images, n
Output: A set of generated shared images, {S1, S2, . . . , Sn}, each of size M× N

Step 1: Based on priority weight wj, determine the location set lj, for j = 1, 2, . . . , n.
Step 2: For Each Pixel (x, y). Based on information lj, select two shared images r1 and r2. Do
Step 3: Sr1 (x, y)← UI(0, 1)
Step 4: If I(x, y) = 0, then Sr2 (x, y)← Sr1 (x, y)
Step 5: Else Sr2 (x, y)←∼ Sr1 (x, y)
Step 6: For Each other shared images, Si, with condition 1 ≤ i ≤ n and i 6= r1, r2 Do
Step 7: Si(x, y)← Sr2 (x, y)
Step 8: Obtain n generated shared images, {S1, S2, . . . , Sn}
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In normal situations, all shared images are transmitted to the decoder or receiver side.
However, the receiver often collects a partial set of shared images to reconstruct the secret
image. Let {St1 , St2 , . . . , StT} be a partial set of collected shared images in the receiver side,
where t1, t2, . . . , tT denotes the index of the received shared image and T ≤ n. The reconstruc-
tion process of the secret image can be easily performed by stacking a partial set of collected
shared images with the bitwise XOR-based operation. This process is descibed as follows:

Ĩ = St1 ⊕ St2 ⊕ . . .⊕ StT , (11)

where Ĩ is a recovered secret image. The quality can be improved if the PVSS scheme [15]
involves more stacked shared images in the secret image reconstruction process. Hopefully,
the quality of the recovered secret image would be as similar as possible to that of the
original secret image by stacking all shared images with the XOR operator.

2.2. Limitation of PVSS Scheme

As reported in literature [15], the former PVSS scheme offers a promising result in the
shared image generation and secret image reconstruction processes. The former scheme
yields a correct reconstructed secret image if and only if the number of stacked shared
images is even. However, it is little regrettable that the former PVSS scheme cannot restore
the secret image if the number of stacked shared images is odd. The following theorem
explains this limitation.

Theorem 1. The former PVSS scheme [15] yields perfect or partial reconstruction if and only if the
number of stacked shared images is even.

Proof. Let {St1 , St2 , . . . , StT} be a set of collected or received shared images involved to reconstruct
a secret image. In this proof, we investigate the quality of Ĩ . The reconstruction process is
performed with the XOR operation in a bitwise-based manner over all collected shared images. The
reconstruction process is defined as:

Ĩ = St1 ⊕ St2 ⊕ . . .⊕ StT ,

If the receiver module collects all shared images, it is implied that T = n. The recovered secret
image Ĩ can be obtained as:

Ĩ = S1 ⊕ S2 ⊕ . . .⊕ Sn. (12)

There are two selected shared images (Sr1 and Sr2) in the shared image generation. The other
shared images have the value of Sr2 (i.e., Si ← Sr2 for 1 ≤ i ≤ n and i 6= r1, r2). For sake
of simplicity, we remove the pixel position (x, y) for all proofs in this paper. Thus, the form in
Equation (12) can be alternatively computed as:

Ĩ = Sr2 ⊕ Sr2 ⊕ . . .⊕ Sr1 ⊕ . . .⊕ Sr2 ⊕ . . .⊕ Sr2

Arranging the Sr1 and Sr2 in an orderly fashion, we gain the following form:

Ĩ = Sr1 ⊕ Sr2 ⊕ Sr2 ⊕ Sr2 ⊕ . . .⊕ Sr2︸ ︷︷ ︸
n−2

The value of n− 2 is an even number if n is an even number. This implies the computation of
Ĩ as follows:

Ĩ = Sr1 ⊕ Sr2 ⊕ Sr2 ⊕ Sr2 ⊕ . . .⊕ Sr2︸ ︷︷ ︸
n−2 is even

(13)
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The basic property of XOR operation over “even number times” indicates the result
Sr2 ⊕ Sr2 ⊕ . . .⊕ Sr2︸ ︷︷ ︸

n−2 is even

= 0. Thus, the form in Equation (13) can be further simplified as:

Ĩ = Sr1 ⊕ Sr2 ⊕ 0

The XOR property with “zero number” produces the following result:

Ĩ = Sr1 ⊕ Sr2 (14)

If the observed pixel of the secret image is black (i.e., I = 0), then Sr1 = Sr2 . The XOR
property for two identical numbers implies the following result:

Ĩ = Sr1 ⊕ Sr1 = 0 (15)

The result in Equation (15) tells that the original and the recovered secret image are identical if
the secret image is 0 and n is even number. Based on this fact, we can conclude that Ĩ = I. However,
one obtains a correct recovered secret image.

For the situation where n is an even number and the secret image is a white pixel (i.e., I = 1),
the second selected shared image is set as Sr2 ←∼ Sr1 . The substitutive computation of Ĩ in
Equation (14) is indicated as follows:

Ĩ = Sr1⊕ ∼ Sr1 .

The XOR property on two complementary numbers yields the following result:

Ĩ = 1 (16)

The result in Equation (16) reveals that the qualities of the recovered and the original secret
image are identical if n is an even number (i.e., Ĩ = I) while I is white. The former scheme [15]
yields a correct result if n is an even number.

If n is an odd number, the computation of Ĩ is given as:

Ĩ = Sr1 ⊕ Sr2 ⊕ Sr2 ⊕ Sr2 ⊕ . . .⊕ Sr2︸ ︷︷ ︸
n−2 is odd

The XOR property “odd number times” yields Sr2 ⊕ Sr2 ⊕ . . .⊕ Sr2︸ ︷︷ ︸
n−2 is odd

= Sr2 . The recovered

secret image is then:
Ĩ = Sr1 ⊕ Sr2 ⊕ Sr2

The XOR operation concerning two identical numbers results in 0. It gives the following
result:

Ĩ = Sr1 ⊕ 0 = Sr1 (17)

The recovered image obtained from Equation (17) is actually a random image (i.e., Ĩ = Sr1

with Sr1 ← UI(0, 1)). The recovered secret image cannot be correctly produced if n is an odd
number (i.e., Ĩ 6= I).

Under the similar deduction for T < n (i.e., only a partial set of shared images is involved in
the reconstructed process), the image Ĩ is computed as:

Ĩ = St1 ⊕ St2 ⊕ . . .⊕ StT

Suppose that r1 < r2 ≤ T. The computation of Ĩ is then given as:

Ĩ = St1 ⊕ St2 ⊕ . . .⊕ Sr1 ⊕ . . .⊕ Sr2 ⊕ . . .⊕ StT
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In the former scheme [15], all shared images are simply determined as Sti ← Sr2 for all ti with
i = 1, 2, . . . , T and ti 6= r1, r2. This condition implies:

Ĩ = Sr1 ⊕ Sr2 ⊕ Sr2 ⊕ . . .⊕ Sr2

The XOR properties “even number times” and “odd number times” indicate the following
result:

Ĩ =


Sr1 ⊕ Sr2 ⊕ Sr2 ⊕ Sr2 ⊕ . . .⊕ Sr2︸ ︷︷ ︸

T−2 is odd

= Sr1 ⊕ Sr2 ⊕ Sr2

Sr1 ⊕ Sr2 ⊕ Sr2 ⊕ Sr2 ⊕ . . .⊕ Sr2︸ ︷︷ ︸
T−2 is even

= Sr1 ⊕ Sr2 ⊕ 0

Then, the image Ĩ can be finally obtained as follows:

Ĩ =
{

Sr1 , I f T is odd
Sr1 ⊕ Sr2 , I f T is even

(18)

It is clearly revealed from Equation (18) that the recovered secret image can be perfectly
reconstructed if T is an even number. Thus, the perfect recovered secret image can be obtained if
and only if the number of stacked shared images is even. This concludes the theorem. �

3. Proposed PVSS Method

This section gives a detailed explanation for the proposed PVSS method. This new
method modifies the former scheme [15] for computing a set of generated shared images.
This modification is made to achieve the perfect reconstruction result in the recovery
process. Similarly to the former scheme [15], the proposed method also incorporates
the adaptive priority weight for a progressive recovery process. However, the proposed
method and the former scheme employ an identical approach for performing the secret
image reconstruction (i.e., stacking several or all shared images using a bitwise XOR
approach). This section presents two techniques for the proposed method using the
bitwise-based and XOR-based PVSS approaches.

3.1. Proposed Bitwise-Based PVSS Method

The proposed bitwise-based PVSS method is discussed in detail in this subsection.
It inherits the usability of the former scheme [15] with a slight modification. This simple
modification simply solves a minor limitation in [15] present when the number of stacked
or collected shared images is odd. The proposed method also utilizes the random grid
technique for generating a set of shared images. The proposed bitwise-based PVSS method
for computing a set of shared images is formally explained with the following procedure:
Suppose I is a binary image of size M× N. The proposed method transforms the secret
image I into n shared images. Let {S1, S2, . . . , Sn} be a set of generated shared images, and
(x, y) be the spatial position of an image pixel. Similarly to the former scheme [15], the
proposed method first determines two selected shared images (denoted as r1 and r2). The
determinations of r1 and r2 are based on the priority weight wj and location set lj. Each
pixel (x, y) in the r1-th shared image is set with a uniformly random number as follows:

Sr1(x, y)← UI(0, 1) (19)

for x = 1, 2, . . . , M and y = 1, 2, . . . , N. Subsequently, each pixel (x, y) in the r2-th shared
image is determined by considering the pixel value I(x, y). If an investigated pixel value is
black (i.e., I(x, y) = 0), afterward, the value of Sr2(x, y) is assigned as follows:

Sr2(x, y)← Sr1(x, y) (20)
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Meanwhile, the value of Sr2(x, y) is simply set with the bit negation of Sr1(x, y) as
formulated below:

Sr2(x, y)←∼ Sr1(x, y) (21)

In contrast to the former scheme [15], the proposed method solely utilizes the zero
value for all pixels in the shared images Si under the constraints 1 ≤ i ≤ n and i 6= r1, r2.
This strategy is formally defined as:

Si(x, y)← 0 (22)

This shared image generation is applied over all pixel values (x, y), for x = 1, 2, . . . , M
and y = 1, 2, . . . , N. Algorithm 2 summarizes the procedure of the proposed method for
computing a set of shared images {S1, S2, . . . , Sn}.

Algorithm 2: Proposed Bitwise-Based PVSS Method.

Input: Secret image in binary format, I, of size M× N
Number of shared images, n

Output: A set of generated shared images, {S1, S2, . . . , Sn}, each of size M× N

Step 1: Based on priority weight wj, determine the location set lj, for j = 1, 2, . . . , n.
Step 2: For Each Pixel (x, y). Based on information of lj, select two shared images r1 and r2. Do
Step 3: Sr1 (x, y)← UI(0, 1)
Step 4: If I(x, y) = 0, Then Sr2 (x, y)← Sr1 (x, y)
Step 5: Else Sr2 (x, y)←∼ Sr1 (x, y)
Step 6: For Each Generated shared images, Si, with the condition 1 ≤ i ≤ n and i 6= r1, r2 Do
Step 7: Si(x, y)← 0
Step 8: Obtain n generated shared images, {S1, S2, . . . , Sn}

Similar to [15], the proposed method collects a partial or full set of generated shared
images in order to recover the secret image. Herein, the proposed method also performs an
XOR operation over these collected shared images. This process is defined as follows:

Ĩ = St1 ⊕ St2 ⊕ . . .⊕ StT (23)

where Ĩ denotes the recovered secret image and tT is the total number of collected shared
images on the receiver side. The proposed bitwise-based PVSS method is quite simple,
yet it effectively solves the lossless problem in [15]. The following analysis supports the
proposed method performance theoretically.

Theorem 2. The proposed bitwise-based PVSS method yields a perfectly reconstructed secret image
by stacking a partial or full set of generated shared images.

Proof. We begin this proof with the quality of the recovered secret image produced by the proposed
bitwise-based PVSS method. The XOR-ed process over a partial or full set of generated shared
images is denoted as:

Ĩ = St1 ⊕ St2 ⊕ . . .⊕ StT

We first investigate the proposed method performance when one involves all shared images in
the recovery process. In this occasion, it similarly performs a recovery process under a condition
T = n. However, the computation of Ĩ can be performed as follows:

Ĩ = S1 ⊕ S2 ⊕ . . .⊕ Sn (24)
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We know that 1 ≤ r1, r2 ≤ n and Si ← 0 for all 1 ≤ i ≤ n and i 6= r1, r2. This implies that
Equation (24) can be recalculated when considering n as an even or odd number as follows:

Ĩ = Sr1 ⊕ Sr2 ⊕ 0⊕ . . .⊕ 0, Ĩ = Sr1 ⊕ Sr2 ⊕ 0⊕ 0⊕ . . .⊕ 0⊕ 0︸ ︷︷ ︸
n−2 is odd/even number

(25)

Performing XOR on any arbitrary number with zero is equivalent to the arbitrary number
itself. Thus, the Equation (25) can be simplified as:

Ĩ = Sr1 ⊕ Sr2 (26)

Stacking all shared images actually resembles the process of performing an XOR operation
between Sr1 and Sr2 . In addition, the proposed method gives various values for Sr2 , depending on
the value of I. If I = 1, then the value of Sr2 is identically set with the value of Sr1 . While I = 0,
the value of Sr2 is set in bitwise negation of Sr1 (i.e., Sr2 ← Sr1 ). This condition gives Ĩ as follows:

Ĩ =
{

Sr1 ⊕ Sr1 , I f I = 0
Sr1⊕ ∼ Sr1 , I f I = 1

The following result is obtained based on the XOR property:

Ĩ =
{

0, I f I = 0
1, I f I = 1

(27)

The last form indicates an important result (i.e., Ĩ = I ). Herein, the recovered and the original
secret image are identical. Thus, the proposed method yields a perfectly reconstructed secret image
when all shared images are involved in the recovery process.

If only a partial set of shared images is involved under condition T < n, the recovered secret
image Ĩ can be computed as follows:

Ĩ = St1 ⊕ St2 ⊕ . . .⊕ StT

Suppose that the two selected shared images (Sr1 and Sr2) are in this partial set under the
condition r1 < r2 ≤ T. One cannot obtain a perfectly reconstructed secret image if this condition is
not satisfied. The computation of Ĩ is then given as:

Ĩ = St1 ⊕ St2 ⊕ . . .⊕ Sr1 ⊕ . . .⊕ Sr2 ⊕ . . .⊕ StT

Based on the fact that Si ← 0 for all 1 ≤ i ≤ n and i 6= r1, r2, one can trivially obtain the
following form:

Ĩ = Sr1 ⊕ Sr2 ⊕ St1 ⊕ . . .⊕ StT = Sr1 ⊕ Sr2 ⊕ 0⊕ 0⊕ . . .⊕ 0⊕ 0︸ ︷︷ ︸
T−2 is odd/even number

The XOR property implies the following result:

Ĩ = Sr1 ⊕ Sr2

The last form indicates that the value of Ĩ is identical to that of the XOR-ed result between Sr1

and Sr2 . By investigating the value of I, we acquire the following conclusion:

Ĩ =
{

Sr1 ⊕ Sr1 = 0, I f I = 0
Sr1⊕ ∼ Sr1 = 1, I f I = 1

In the case of T < n, we achieve an important deduction (i.e., Ĩ = I) To simplify, the quality
of the recovered secret image is identical to that of the original secret image. In addition, a perfect
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recovered secret image can be yielded if either a partial set or all generated shared images are involved
in the reconstruction process. This completes the proof. �

3.2. Proposed XOR-ed Based PVSS Method

In this approach, the proposed method performs a simple computation involving
an XOR operation in order to generate a set of shared images. The proposed method
takes an image I of M × N as the secret image to produce the targeted shared images
{S1, S2, . . . , Sn}. Herein, the secret image can be present as binary, grayscale, or color space.
For each pixel (x, y) in the secret image, we perform the following procedure to generate n
shared images: We first decide two selected shared images (r1 and r2). In contrast to the
former scheme [15] and the proposed bitwise-based approach, the proposed XOR-based
method needs to first generate the following constant:

C ← UI(a, b) (28)

where C is a constant. The symbol UI(a, b) denotes a uniform random number generator
producing an integer in range [a, b]. We utilize UI(0, 1) and UI(0, 255) for the binary image
and the 8-bit grayscale image, respectively. A three dimensional image of UI(0, 255) can be
used for the 24-bit color image (i.e., generating a random number for three dimensional
color spaces). Subsequently, all pixels in two selected shared images (Sr1 and Sr2) are
determined as follows:

Sr1(x, y)← I(x, y)⊕ C (29)

Sr2(x, y)← C (30)

All pixels in Si are simply set with zero value for 1 ≤ i ≤ n and i 6= r1, r2. Alternatively,
the pixels are set according to the following process:

Si(x, y)← 0 (31)

The proposed XOR-ed PVSS method requires simple steps to compute a set of shared
images. This simple approach is also applicable for grayscale and color images. The
contents of all shared images are totally different compared to that of the original secret
image. In addition, the proposed XOR-based PVSS method is designed to solve a slight
problem in the former scheme [15]. Algorithm 3 illustrates the shared image generation
using the proposed XOR-based PVSS approach.

Algorithm 3: Proposed XOR-ed Based PVSS Method.

Input: A grayscale or color image as secret, I, of size M× N
Number of shared images, n
Output: Full set of generated shared images, {S1, S2, . . . , Sn}, each of size M× N

Step 1: Based on priority weight wj, determine the location set lj, for j = 1, 2, . . . , n.
Step 2: For Each Pixel Position (x, y). Based on the information in lj, decide the selected shared
images r1 and r2. Do
Step 3: C ← UI(a, b)
Step 4: Sr1 (x, y)← I(x, y)⊕ C
Step 5: Sr2 (x, y)← C
Step 6: For Each other generated shared images, Si, under the condition 1 ≤ i ≤ n and i 6= r1, r2
Do
Step 7: Si(x, y)← 0
Step 8: Obtain the n generated shared images, {S1, S2, . . . , Sn}

The proposed method reconstructs the secret image in a similar fashion as compared
to the former scheme [15]. Herein, the proposed method simply needs to perform an XOR
operation over either a partial set or all generated shared images. The following theorem
supports the correctness of the proposed method.
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Theorem 3. The proposed XOR-ed based PVSS method yields a perfectly reconstructed secret
image by stacking partial or all generated shared images.

Proof. In order to prove this theorem, we first examine the quality of recovered secret image produced
by our proposed method. Suppose that all generated shared images are involved in the recovery
process of a secret image. This indicates that T = n . Thus, the Ĩ can be produced as follows:

Ĩ = S1 ⊕ S2 ⊕ . . .⊕ Sn = Sr1 ⊕ Sr2 (32)

The simplified form in Equation (32) is actually identical to that of Equation (26). The proposed
method applies a similar strategy on Si (i.e., Si ← 0 for 1 ≤ i ≤ n and i 6= r1, r2). The selected
shared images Sr1 and Sr2 are set with the value of I ⊕ C and C, respectively. The form in Equation
(32) is similar to following computation:

Ĩ = (I ⊕ C)⊕ CĨ = I ⊕ (C⊕ C) (33)

The XOR property indicates that an XOR operation between two identical scalars yields zero
value. Thus, the form in Equation (33) has the following result:

Ĩ = I ⊕ 0

The XOR operation between scalar and zero produces the scalar itself. However, one obtains
the following result:

Ĩ = I (34)

The last form in Equation (34) clearly reveals that the proposed XOR-based PVSS method
achieves a lossless result. The qualities of the recovered and the original secret image are identical if
all generated shared images are utilized in the recovery process.

If only several shared images are involved in the recovery of a secret image (i.e., in the case of
T < n), the recovered secret image Ĩ is computed as follows:

Ĩ = St1 ⊕ St2 ⊕ . . .⊕ StT

The condition r1 < r2 ≤ n implies the following result:

Ĩ = Sr1 ⊕ Sr2 (35)

A similar deduction on Equation (33) can be applied for Equation (35). Thus, we conclude an
important result (i.e., Ĩ = I). The proposed XOR-based PVSS method is able to reconstruct a secret
image with the lossless condition even if only a partial set of generated shared images is involved
in the reconstruction process. The proposed XOR-based PVSS approach yields a perfect recovered
secret image whether all or several generated shared images are utilized in the recovery process. This
concludes the proof. �

4. Experimental Results

The performances of the proposed method and the former scheme [15] are extensively
reported in this section in terms of dealing with the PVSS tasks. We first explain several
image quality assessment metrics to objectively measure the degree of similarity between
the original and the recovered secret image. Subsequently, the performances of the pro-
posed method are compared under visual investigation and objective measurement over
binary, grayscale, and color images. These assessments are conducted to further investigate
the proposed method’s usability and superiority. The comparisons in terms of algorithm
aspects between the proposed method and competing schemes are summarized at the end
of this section.
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4.1. Performance Evaluation

We first evaluated the performance under the subjective and objective assessments.
For the subjective image quality assessment, the quality of the recovered secret image was
simply inspected and judged based on a visual observation. Herein, we visually compared
the similarities between the original and the recovered secret image under the perception
of human vision, whereas the objective image quality assessment utilizes several metrics
to calculate the degree of similarity between the original and the recovered secret image.
These metrics are referred to as image contrast α, bit error rate β, peak signal-to-noise ratio
(PSNR), structural similarity index metric (SSIM), and mean absolute error (MAE). All of
these objective metrics are formally defined as follows:

α =
T
(

Ĩ[I(1)]
)
− T

(
Ĩ[I(0)]

)
1 + T

(
Ĩ[I(0)]

) (36)

β =
∑M

x=1 ∑N
y=1 I(x, y)⊕ Ĩ(x, y)

MN
(37)

PSNR(I, Ĩ) = 20 log10
255

1
MN ∑M

i=1 ∑N
j=1

[
I(i, j) − Ĩ(i, j)

]2 (38)

SSIM
(

I, Ĩ
)
=

(
2µIµ Ĩ + c1

)(
2σI Ĩ + c2

)(
µ2

I + µ2
Ĩ
+ c1

)(
σ2

I + σ2
Ĩ
+ c2

) (39)

MAE
(

I, Ĩ
)
=

1
MN

M

∑
i=1

N

∑
j=1

∣∣∣I(i, j)− Ĩ(i, j)
∣∣∣ (40)

where I is the secret image, and Ĩ is the recovered secret image. These two images are of
the same size (i.e., M× N).

In the SSIM computation, the symbols µI and µ Ĩ are the mean values of I and Ĩ,
respectively. However, the standard deviations of I and Ĩ are denoted as σI and σĨ , re-
spectively. Meanwhile, the covariance between I and Ĩ is denoted as σI Ĩ . The c1 and c2

are two predetermined constants. In the case of a binary image, the symbols T
(

Ĩ[I(1)]
)

and T
(

Ĩ[I(0)]
)

denote the average light transmission [8] of the recovered secret images
over a white pixel (1) and a black pixel (0), respectively. In our subsequent experiment, a
better performance is indicated by higher scores of α, PSNR, and SSIM, and vice versa. On
the other hand, a better performance is also implied by lower values of β and MAE, and
vice versa.

4.2. Visual Evaluation on Binary Image

The visual investigation between the proposed method and the former scheme [15]
in terms of a binary image is reported in this subsection. We examined the performances
of the proposed method and the former scheme [15] under a set of binary images as
displayed in Figure 5. In this experiment, we simply set the adaptive priority weights
wj as {0.4, 0.3, 0.15, 0.1, 0.025, 0.025} and {0.4, 0.3, 0.2, 0.05, 0.05} for n = 6 and n = 5,
respectively. Figure 6 exhibits a set of generated shared images for n = 6 with the proposed
bitwise-based PVSS method. Setting a higher value for adaptive priority weight implies a
brighter shared image compared to that obtained by setting a lower value of wj. In addition,
the contents of all generated shared images are in a noise-like appearance, meaning that
each image cannot easily be distinguished. This clearly reveals that the proposed method
satisfies the PVSS constraint (i.e., that the content of the generated shared images cannot be
recognized by an unauthorized party).



J. Imaging 2021, 7, 70 15 of 33

Figure 5. Four secret images in a binary format for experiment (a) I1, (b) I2, (c) I3, and (d) I4.

Figure 6. Generated binary shared images using the proposed bitwise-based PVSS method for n = 6: (a–f) {S1, S2, . . . , S6}.

Subsequently, we verified the quality of the recovered secret image. We select Barbara
from Figure 5a as a binary secret image. We investigated and compared the performances
of the proposed method and former scheme using visual inspection of the recovered secret
image. Figure 7 displays the recovery process of the Barbara secret image for n = 5, while
Figure 8 displays the recovery process for n = 6. These two figures demonstrated the
superiority of the proposed method compared to that of [15]. The proposed method was
able to produce the recovered secret image when the number of stacked shared image T
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is odd. However, one cannot reconstruct the secret image using the former scheme [15] if
T is an odd number. In addition, the recovered secret image produced by the proposed
method is lossless if all shared images are stacked using an XOR operation. This experiment
indicates that the proposed method offers a promising result in the PVSS task.

Figure 7. Cont.
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Figure 7. The results of stacking several shared images with t = 2, 3, . . . , 6, by setting n = 6. The first colum is from the former
scheme [15], while the second and third columns are from the proposed method.

Figure 8. Cont.
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Figure 8. Stacking several shared images t = 2, 3, . . . , 5, by setting n = 5. The first column is from the former scheme [15], while the
second and third columns are from the proposed method.

4.3. Visual Investigation on Grayscale Image

We subsequently considered the performance of the proposed method and the former
scheme [15] under visual investigation. In this experiment, we examined the performances
of four secret images in grayscale, as shown in Figure 9. The adaptive priority weights were
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identically set to those used in the binary image case. In the shared image generation, we
simply employed n = 5 and n = 6. Figure 10 displays a set of shared images for n = 6
when the Barbara grayscale image is selected as a secret image. As depicted in this figure,
the content of the generated shared images cannot be perceived and understood by human
vision. This means that the shared images are effectively produced by the proposed method.

Figure 9. Four grayscale images as secret for experiment: (a–d) {I1, I2, I3, I4}.

Figure 10. Generated shared images using the proposed eXclusive-OR (XOR)-based PVSS method: (a–f) {S1, S2, . . . , S6}, by
setting n = 6.
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The qualities of the recovered secret image were further inspected under visual inves-
tigation. Herein, the recovered secret image produced by stacking several shared images
is shown in Figures 11 and 12 for n = 6 and n = 5, respectively. As shown in these two
figures, the quality of the recovered secret image is increased if more shared images are
involved in the reconstruction process. However, the former scheme [15] produces an
incorrectly recovered secret image if the number of stacked shared images is odd (i.e., the
content of the recovered secret image cannot be correctly reconstructed after the stack-
ing process). Conversely, the proposed XOR-based method works well, indicating its
superiority compared to that of the former scheme [15].
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4.4. Visual Assessment of Color Image

This subsection compares the performances of the former scheme [15] and the pro-
posed method under the visual inspection on color image. Four color images (as shown in
Figure 13) were used for experimentation. Herein, the number of shared images is set as
n = 5 and n = 6. We applied an identical adaptive priority weight, as used in the binary
image case. Figure 14 displays a set of shared images in color format, while the color image
in Figure 13a was chosen as a secret image. Human vision cannot recognize the object or
image content from all shared images as delivered in Figure 14. Thus, it can be concluded
that the proposed method effectively produces a set of shared images in color format.



J. Imaging 2021, 7, 70 24 of 33

Figure 13. A set of color images used as secret images in the experiment, denoted as: (a) I1, (b) I2, (c) I3, and (d) I4

Figure 14. Shared images obtained from the secret image in the color format using the proposed XOR-based PVSS method:
(a–f) {S1, S2, . . . , S6}.

Subsequently, we observed the quality of the recovered secret image after stacking
several shared images using an XOR operation. In this experiment, we reconstructed the
secret image by stacking two shared images until reaching n shared images. Figure 15
displays the recovered secret image obtained from the former scheme [15] and the proposed
method for n = 6, while Figure 16 shows the results for n = 5. It can be observed
from Figures 15 and 16 that the former scheme [15] and the proposed method satisfy
the progressive constraint (i.e., the quality of the recovered secret image is increased if
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more shared images are involved and stacked with an XOR operation). Similarly to the
binary and grayscale image cases, the proposed XOR-based PVSS method produces a good
result whether the number of stacked shared images is odd or even, whereas the former
scheme [15] cannot correctly yield the recovered secret image if the number of stacked
shared images is odd. The proposed XOR-based PVSS overcomes the limitation of [15]
with a simple approach. Thus, the proposed method delivers a promising result for binary,
grayscale, and color images.
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4.5. Performance Comparisons in Terms of Objective Image Quality Assessment

This subsection compares the performances of the proposed method and the former
scheme [15] in detail based on an objective image quality assessment. For a binary image,
the performance is simply measured and compared under two objective measurements
(i.e., an average image contrast and average bit error rate). Herein, four secret images (as
shown in Figure 5) were first converted into a set of shared images. The recovery process
was subsequently conducted on these generated shared images to produce the recovered
secret image. The averages of α and β were then computed for all recovered secret images.
Figures 17 and 18 display the performance comparisons in terms of average α and average
β, respectively, between the proposed method (with a bitwise and XOR-based approach)
and the former scheme [15]. In this experiment, we set the number of shared images
as n = 5 and n = 6. As shown in Figures 17 and 18, the former scheme [15] yields an
unacceptable average α and β, respectively, if n or T is an odd number. However, the
proposed method performs well for n or T whether they are odd or even numbers. In
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addition, the proposed method yields progressive results, indicating the increasing average
value of α and the decreasing average value of β over different values of n or T.

Figure 17. The average image contrast between the proposed method and the former scheme [15] of the binary secret image
with (a) n = 5, and (b) n = 6.

Figure 18. The average bit error rate between the proposed method and the former scheme [15] for a binary secret image
with: (a) n = 5, and (b) n = 6.

For the grayscale and color images, the comparisons between the proposed method
and the former scheme [15] are examined based on the average values of PSNR, SSIM, and
MAE. We selected all secret images in grayscale and color spaces shown in Figures 9 and 13
as secret images. All secret images were then converted into a set of shared images. The
recovered secret images were further computed by stacking several shared images using
an XOR operation. The qualities of all of the recovered secret images were then measured
in terms of average PSNR, SSIM, and MAE. Figures 19 and 20 display the performance
comparisons for grayscale and color image, respectively. As depicted in these two figures, the
former scheme [15] delivers unacceptable results if n or T is an odd number. The proposed
method gives correct results whether n or T is an odd or an even number. The proposed
method satisfies the progressive constraint for the PVSS task, as indicated by the improving
PSNR and SSIM scores that result if more stacked images are utilized in the secret image
reconstruction stage. It also gives a good result, decreasing the average MAE value if more
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stacked images are used to recover a secret image. However, the proposed method is a good
candidate for implementing PVSS with adaptive priority and a perfect reconstruction process.

Figure 19. Comparisons between the proposed method and the former scheme [15] in terms of (a,b) PSNR, (c,d) SSIM, and
(e,f) MAE values. The comparisons are conducted for a secret image in grayscale format.
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Figure 20. Comparisons between the proposed method and former scheme [15] in terms of (a,b) PSNR, (c,d) SSIM, and
(e,f) MAE values. Herein, the secret image is in a color format.
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4.6. Comparison of Algorithm Aspects for the Proposed Method and Other Schemes

The proposed method and former scheme [15] works on a pixel-by-pixel basis in the
shared image generation and secret image reconstruction processes. The computational
times of these two methods completely depends on the image size. Let M and N be the
width and height of an original secret image. The computational complexity for generating
one shared image is O(MN) for both the proposed method and the former scheme [15]. In
reality, the former scheme requires a slightly higher computational burden, since it involves
more steps to be conducted in order to compute the shared image, compared to those
required in the proposed method. However, the difference is not quite significant. The
proposed method and the former scheme [15] need identical computational complexity in
the secret image reconstruction process (i.e., O(MN)). These two methods simply perform
a stacking process with an XOR operation in order to reconstruct a secret image. However,
the proposed method and the former scheme have am almost identical computational
complexity, except in terms of the quality of the recovered secret image. Thus, the proposed
method is a better choice for implementing a PVSS algorithm.

This subsection also reports the algorithm aspects between the proposed method
and other competing schemes. Herein, we simply compared the proposed method with
others PVSS schemes [9–15] based on the share style, encoding matrix, pixel expansion,
and adaptive priority weight. Table 1 summarizes this comparison. This table shows that
the proposed method is able to perform the PVSS task with an priority adaptive weight
similar to that of [12,14,15]. The other schemes cannot utilize the priority adaptive weight
in the recovery stage of the secret image. The former approach [15] is the most competitive
candidate when compared to the proposed method in these terms. However, the proposed
method reveals its superiority since it works regardless of whether the number of stacked
shared images is odd or even. The former scheme [15] has a limitation when the number of
stacked images is odd. In addition, the proposed method does not require the encoding
matrix and pixel expansion in the secret image recovery step, meaning that it requires a
lower amount of storage space. In addition, the proposed method generates a set of shared
images in the form of a noise-like appearance. Thus, the content of the shared images cannot
be easily distinguished from one to the other. The contents of each shared image cannot be
easily recognized and perceived by human vision. At the end, the proposed method offers
its benefit for the PVSS task with adaptive priority and a perfect reconstruction process for
recovering a secret image.

Table 1. Comparisons between the proposed method and the former scheme in terms of algorithm aspects.

Method Share Style Encoding Matrix Pixel Expansion Adaptive Priority Quality

Fang’s Scheme [9] Noise-Like Form Require Need No Lossless for n is
even

Wang’s Scheme [10] Noise-Like Form Require Need No -

Hou’s Scheme [11] Noise-Like Form Require No No -

Hou’s Scheme [12] Noise-Like Form Require No Adaptive Priority Lossy

Lin’s Scheme [13] Friendly
Appearance No No No Lossy

Yang’s Scheme [14] Noise-Like Form Require No Adaptive Priority Lossy

Former Scheme [15] Noise-Like Form No No Adaptive Priority
Lossy, if n is

oddLossless, if n
is even

Prasetyo’s Scheme [16] Noise-Like Form No No No Lossless for n is
odd or even

Proposed Method Noise-Like Form No No Adaptive Priority Lossless for n is
odd or even
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5. Conclusions

A simple approach for overcoming the limitation of the former PVSS with adaptive
priority weight is presented in this paper. The proposed method is designed to satisfy
the lossless constraint and adaptive priority weight required for the PVSS system. The
proposed method exploits the bitwise-based and XOR-based techniques for generating
a set of shared images. It achieves perfect reconstruction on a recovered secret image
whether the number of stacked or collected images is odd or even. While this works for
a binary image, the proposed method also works well for grayscale and color images.
This superiority can be further applied and extended for video processing or other image
processing applications. Thus, the proposed method can be considered and viewed as a
strong PVSS alternative with a perfect reconstruction ability.
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