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Abstract: In this work, novel denoising and super resolution (SR) approaches for magnetic resonance
(MR) images are addressed, and are integrated in a unified framework, which do not require example
low resolution (LR)/high resolution (HR)/cross-modality/noise-free images and prior information of
noise–noise variance. The proposed method categorizes the patches as either smooth or textured and
then denoises them by deploying different denoising strategies for efficient denoising. The denoising
algorithm is integrated into the SR approach, which uses a gradient profile-based constraint in
a sparse representation-based framework to improve the resolution of MR images with reduced
smearing of image details. This constraint regularizes the estimation of HR images such that the
estimated HR image has gradient profiles similar to the gradient profiles of the original HR image.
For this, the gradient profile sharpness (GPS) values of an unknown HR image are estimated using
an approximated piece-wise linear relation among GPS values of LR and upsampled LR images. The
experiments are performed on three different publicly available datasets. The proposed SR approach
outperforms the existing unsupervised SR approach addressed for real MR images that exploits low
rank and total variation (LRTV) regularization, by an average peak signal to noise ratio (PSNR) of
0.73 dB and 0.38 dB for upsampling factors 2 and 3, respectively. For the super resolution of noisy real
MR images (degraded with 2% noise), the proposed approach outperforms the LRTV approach by an
average PSNR of 0.54 dB and 0.46 dB for upsampling factors 2 and 3, respectively. The qualitative
analysis is shown for real MR images from healthy subjects and subjects with Alzheimer’s disease
and structural deformity, i.e., cavernoma.

Keywords: reconstruction; super resolution; enhancement; self-similarity; MRI

1. Introduction

High quality magnetic resonance (MR) images are generally desired for precise medi-
cal diagnosis and analysis, and are typically characterized by high spatial resolution and
high signal to noise ratio (SNR). However, the acquisition of such high quality MR images
is limited due to various constraints such as acquisition time and requirement of expensive
hardware. For example, an increase in the spatial resolution is limited as it leads to a
decrease in SNR in MR images for a fixed acquisition time. It has been experimentally
demonstrated that the post-acquisition MR image processing can increase the spatial resolu-
tion of MR images along with improved SNR [1,2]. The focus of this work is to improve the
resolution (using a super resolution (SR) approach) and SNR (using a denoising approach)
of MR images.

Different paradigms of machine learning approaches : The limited availability of exam-
ple/training MR images makes it crucial to classify the existing denoising and SR ap-
proaches based on the requirement of paired/labeled example data as (i) supervised and
(ii) unsupervised. The supervised approaches require paired example images for learning
the mapping between input and ground truth images. The unsupervised approaches,
on the other hand, are not supervised by the paired/labeled data. Several unsupervised
approaches have been addressed in the literature which require unpaired/unlabeled

J. Imaging 2021, 7, 101. https://doi.org/10.3390/jimaging7060101 https://www.mdpi.com/journal/jimaging

https://www.mdpi.com/journal/jimaging
https://www.mdpi.com
https://doi.org/10.3390/jimaging7060101
https://doi.org/10.3390/jimaging7060101
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/jimaging7060101
https://www.mdpi.com/journal/jimaging
https://www.mdpi.com/article/10.3390/jimaging7060101?type=check_update&version=1


J. Imaging 2021, 7, 101 2 of 26

data to learn the mapping between input and ground truth images. For example, the
cycle-generative adversarial networks (GAN)-based unsupervised SR approach exploits
transductive learning and requires example low resolution (LR) and high resolution (HR)
images without any correspondences among them [3]. Many existing unsupervised SR
approaches require either example LR or example HR or example cross-modality MR
images [4–11]. Another class of unsupervised approaches assumes a mathematical model
between input and desired output images, and poses the problem as ill-posed inverse
problems [12–17]. The main advantage of these approaches is that these approaches do
not require any example images. However, there might be other requirements in these
approaches such as several denoising approaches from this class which obviate the re-
quirement of example images and require the prior knowledge of noise: noise variance or
distribution of noise [14–17]. The denoising approaches which exploit prior knowledge of
noise have been observed to outperform the approaches which do not require the prior
knowledge of noise, but such requirements of noise are generally not met because the
variance of noise is often not known a priori. Several hybrid versions for supervised and
unsupervised frameworks also exist such as a semi-supervised framework which requires
a few paired and many unpaired example MR images, for example cycle GAN-based
methods [18].

In the last decades, several deep learning-based approaches have been addressed to
super resolve the MR images [7,19,20]. These methods use three dimensional convolutional
neural networks in [7] to learn the mapping among given LR and HR images to estimate
HR images. Such methods are further investigated to estimate an HR image along with
learning the residual/difference in estimated HR and ground truth images to improve the
estimation of HR images [19]. A similar residual learning-based strategy is used for super
resolving the musculoskeletal-knee MR images in the slice-select direction [20]. Most of the
addressed deep learning-based methods are supervised and the recent research is inclined
towards reducing the requirement of example images [18].

The performances of supervised, semi-supervised, and unsupervised approaches
that exploit example images are better than the latter class of unsupervised approaches
without the requirement of any example images, but the applicability of these approaches
is highly restricted due to the limited availability of example images in real scenarios [3,18].
Further, the performance of supervised approaches is highly dependent on the training
database [21]. These issues can be addressed by unsupervised approaches, which obviate
all requirements of example data, but there are very few in the literature [12,13]. Therefore,
in this direction, we focus on SR and denoising approaches in an unsupervised framework,
which obviates the additional requirements such as prior-knowledge or estimation of noise
variance and the distribution of noise, along with the requirement of example images. For
simplicity, the latter class of unsupervised approaches, which do not require any example
images, are here onwards referred to as unsupervised approaches.

Challenges in unsupervised image denoising: Image denoising specifically for MR images
is well explored using Bayesian approaches [22], partial differential equation [23], adaptive
smoothing and filtering [24], collaborative filtering [25–27], etc. The low-rank approxima-
tion (LRA) of a given image patch estimated by either a nuclear norm or singular value
decomposition (SVD) or principal component analysis (PCA) has been extensively studied
for denoising of MR images [28–31]. The LRA-based image denoising methods, which use
PCA to provide the first few (l) eigenvectors with significant eigenvalues that are used to
represent denoised image patches, can be categorized as unsupervised approaches. The
performance of these methods depends upon the criterion to choose the appropriate l to
discard l + 1 onward eigenvectors, which are mainly associated with noise present in the
given image patches. Using the same criterion (e.g., the same l) to select the eigenvectors
for denoising different kinds of image patches (such as smooth patches, and patches with
varying strengths of edges) may not be suitable to improve the trade-off between suppres-
sion of noise and smearing of edges in images. The issue of the same criterion to choose
l for different patch structures has been addressed by choosing l adaptive to the patch
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structure as in [14–17]. These approaches address the computation of weights that are
adaptive to the patch structure. These weights are used to weigh the projection coefficients
of image patches on eigenvectors to reconstruct the denoised image patches. Hence, it leads
to efficient denoising of an image. For smooth/flat image patches, the approaches in [14,17]
provide exactly zero weight, and when multiplied with projection coefficients (producing
l = 0), they lead to better denoising of smooth patches. However, these approaches require
prior knowledge of variance of noise for the computation of adaptive weights. Other ap-
proaches [15,16] do not require prior knowledge of noise but in these approaches, the value
computed for l is usually greater than or equal to one even for smooth patches and thus
may result in noisy smooth patches. This concern is addressed by the proposed denoising
approach in the unsupervised framework by categorizing the smooth and textured patches
without the requirements of prior knowledge of noise variance and any example image.
The categorized patches are denoised using different denoising strategies. This leads to
effective denoising of smooth patches similar to [14,17] and better than [15,16] but without
the requirement of noise variance in the proposed denoising approach.

Challenges in unsupervised SR: The initial attempt made in unsupervised SR of MR
images is based on the non-local means (NLM3D) [13]. In this approach, each small 3D cube
volume is represented using weighted averaging of similar 3D cubes present non-locally in
interpolated MR image volume. Here, the weighted averaging of image patches generally
tends to blur the image details. Though weighted averaging aids in its robustness to noise
while super-resolving the noisy images, it can be effective for only a small strength of noise.
Feng Shi et al. exploit the low-rank structure of brain MR image patches along with the
total variation regularization in MR images low rank and total variation (LRTV) [12]. This
approach reduces the blur in reconstructed image details but is observed to have a tendency
to produce staircase artifacts in reconstructed MR images (a staircase artifact is generally
associated with TV prior [32]). On the other hand, the degradation of gradient profiles in
MR images differs from natural images. Thus, such a difference shall be considered while
deploying the gradient-based prior in the SR of MR images. The proposed SR approach
addresses this difference and utilizes it to regularize the estimation of HR images such that
the gradient profiles of an HR image (depicted by tissue boundaries) are restored with
better accuracy and without the significant generation of artifacts like the staircase artifact.

Scope of this work: This paper addresses the SR of noisy brain MR images by proposing
novel unsupervised denoising and a super resolution approach, which are embedded in a
unified framework. The proposed denoising approach is based on the hypothesis that the
trade-off between suppression of noise and smearing of image details can be improved if
different structures of patches are denoised with different strategies. The categorization
of different patch structures, such as smooth patches and textured/edge patches, from
noisy image patches is a challenging task, especially without the prior knowledge of
noise variance. The proposed work addresses such patch categorization by exploiting the
relation between different structures of MR image patches and their respective low rank
approximation (LRA)-based reconstruction error. The LRA-based reconstruction error of a
patch here denotes the mean square error between the patch and its low-rank approximated
version. Further, we propose to use a statistical measure of LRA-based reconstruction error
values of an ensemble of image patches to indicate the strength of noise, and is used to
categorize the patch structures adaptive to the noise strength. The eigenvectors used to
compute LRA of the image patches are estimated from the ensemble of given noisy image
patches. Thus, the estimated low-rank structure of image patches possesses inaccuracy.
To address this, we progressively reduce such inaccuracy by re-estimating the LRA of
patches from the denoised image patches in an iterative manner. This aids in the accurate
reconstruction of image details. On the other hand, the gradient profiles of image details
convey important semantic information and are generally degraded while improving the
resolution. The gradient information thus shall be preserved to aid the reconstruction of
clear tissue boundaries in MR images. To do so, we propose to regularize the estimation of
the HR image in the SR approach with approximated reference gradient profile sharpness
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(GPS) values. The unavailable reference GPS values, i.e., GPS values of an HR image, are
approximated by estimating a piecewise linear relation (for natural images the relation
is linear) between GPS values of available LR and upsampled LR images. The super
resolution approach addressed in this work exploits the sparse representation framework
and uses the self-similarity concept to utilize similarity among patches of the test image
itself for enriching the dictionary construction.

The novelty of this work is as follows: (i) a novel denoising approach is proposed that
addresses the categorization of noisy image patches as smooth or textured/edges without
the estimated/prior knowledge of noise such as noise variance, and (ii) a novel gradient
profile sharpness-based constraint is proposed specific to the structure of MR images in the
super resolution approach.

The preliminary work by us for in-plane (2D) super resolution of MR images with GPS
constraint has been reported in [33]. The work in this paper has been further extended by
defining a novel denoising approach that addresses the inhomogeneity among image patches
and formulates a noise adaptive approach for categorization of different patch structures
and for improving the resolution of noisy three dimensional (3D) MR volume. The extensive
experimental analysis is reported in this manuscript including the analysis of the parameters
in the proposed approach, and the performance on both healthy and unhealthy subjects.

Contributions of our work: The important contributory aspects of the proposed work
are as follows: (i) The relation between structure of a patch and its LRA version is exploited
to categorize the patch structure without the requirements of prior information about
noise, (ii) the statistical mean of LRA-based error values of patches is used to indicate
the strength of noise and is used to categorize the patches adaptive to the strength of
noise, (iii) a progressive improvement in the estimated low-rank structure of image patches
is addressed by re-estimating the eigenvectors from denoised image patches for better
reconstruction of image details, (iv) the piecewise linear relation among GPS values of
LR and an upsampled LR image is formulated to regularize the estimation of a denoised
HR image that aids in estimation of clearer tissue boundaries, (v) extensive experimental
analysis is performed for healthy and unhealthy subjects to validate the accurate estimation
of MR image details.

The organization of the paper is as follows: Section 2 is an overview of related SR and
denoising approaches. The proposed denoising approach and SR approach are discussed
in Section 3. The experimental results are demonstrated and discussed in Section 4. The
work is summarized in Section 5.

2. Related Works

The SR of noisy MR images has been addressed in the literature in two ways: (i)
using a disjoint combination of SR and denoising approaches (first denoise and then super
resolve the images or vice-versa) [12,13,25,34,35], and (ii) using the embedded framework
for SR and denoising approaches [21,36]. It has been demonstrated that the image details
are restored with better accuracy in the case of the embedded framework than the disjoint
combination [21,36]. The existing works to improve the quality of MR images are explained
in three categories: approaches that address (i) both SR and denoising in a single framework,
(ii) denoising only, and (iii) SR only, in the following Sections 2.1–2.3, respectively. Here,
we only discuss the closely related approaches in detail.

2.1. Embedded Approaches for SR and Denoising

The embedded frameworks integrate the denoising approach in the SR approach using
the framework of either sparse representation of image patches [15,21,36,37] or neural
networks, and thus omit the drawbacks of the disjoint combination of SR and denoising
approaches. Numerous ways to shrink the coefficients in the wavelet domain [24] and
PCA [15] have been reported in the literature to denoise while super resolving the images,
but require prior knowledge of noise variance. In the case of medical images, especially for
MR images, D. Trinh et al. proposed a single framework for SR and denoising [21]. Here,



J. Imaging 2021, 7, 101 5 of 26

each HR image patch is estimated from the linear combination of a few selected example
HR image patches, for the given LR image patch. However, this method requires example
HR images and is thus supervised in nature with limited applicability in the real scenario.
The approach in [36] addressed a sparse-representation framework for SR of noisy MR
images without the requirement of example images. However, it follows the denoising
approach as in [14] and thus requires prior knowledge of the strength of noise, i.e., noise
variance.

2.2. Image Denoising Approaches

In magnitude MR images (such as T1 and T2 weighted MR images), the noise follows
a Rician distribution [38]. However, for high SNR regions (pixels/patches with brain
tissues of high signal intensities) the distribution of noise can be well approximated by a
white Gaussian distribution [38,39]. Hence, the denoising of MR images for both Gaussian
distributed noise (for high SNR regions) [28,29,40,41] and Rician distributed noise along
with mean removal [25,42] is addressed in the literature. Further, many image denoising
techniques in the MR images’ literature process the 3D image’s volume [27,28,35,41].
That means while denoising one MR image, the details from its adjacent slices are also
considered. Apart from 3D level processing, there exist MR image denoising methods
which process each image independently (2D) and do not consider the information from
other slices in the same volume [34]. In LRA-based unsupervised denoising approaches,
the low rank structure estimated by eigenvectors possess inaccuracy. This is because the
eigenvectors, employed to reconstruct the denoised image, are estimated from the given
noisy image patches (especially in unsupervised framework) and thus may not represent
the reliable low-rank structure of image patches. This is addressed by an LRA-based
denoising approach which is closely related to our method, and is addressed in computer
vision literature, i.e., local patch group-based PCA [14]. In this method, similar patches
are grouped and eigenvectors are estimated from the covariance matrix of patches in
each cluster. The eigenvectors are re-estimated from the denoised images to improve the
accuracy of estimated low rank structure of image patches. The projection coefficients for
a given patch on the eigenvectors are adaptively weighted according to the structure of
the patch for efficient denoising. However, this approach requires the prior knowledge of
noise variance for the computation of these adaptive weights, in contrast to the proposed
denoising approach.

2.3. Super Resolution Approaches

The SR approaches to improve the resolution of MR images have been well explored
using different methods [4–7,9,10,12,13,43–50], and in different frameworks like sparse
representation framework, deep neural networks, etc. [2,6–8,11,49]. Various regularizers
are explored in these frameworks such as sparse derivative priors [50], gradient [49],
and structural priors [47] for better restoration of HR image details. The low rank and
total variation priors used in [12] aid in reconstruction of sharp image details but have
been observed to induce the staircase effect [32]. The SR approach is closely related
to the proposed SR approach [51] in that it addresses GPS-based approximation of the
gradient field for natural images and uses the approximated gradient field to constrain the
estimation of the HR image. The relation between GPS values of LR and upsampled LR
natural images is approximated by linear relation and is used to estimate GPS values of the
HR image. However, this approach addresses the GPS values obtained using fixed shape
edge models like the triangle and mixed Gaussian edge models. These models may not fit
the edges/gradient profiles of MR images. Thus, the proposed work utilizes the similar
formulation of GPS from [51], but is defined using a more generalized edge model [52]
for MR images instead of fixed shape edge models. Further, it has been observed that the
GPS values for LR and upsampled LR MR images are not linearly related as in natural
images but are piecewise linearly related [33]. We have focused on the gradient-based prior
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specific to MR images which addresses the above-mentioned difference between MR and
natural images.

3. Method

For the evaluation of the proposed method, both simulated as well as real T1 weighted
brain MR images are used. The simulated images are obtained from MR images dataset-I
(https://brainweb.bic.mni.mcgill.ca/ accessed on 1 December 2019) and eight real MR
image volumes are randomly selected from the publicly available dataset-II (https://www.
humanconnectome.org/study/hcp-young-adult/data-releases accessed on on 1 December
2019). The MR images are obtained from dataset-I using a normal brain database with slice
thickness 1 mm and 0% intensity non-uniformity. The selected MR images from dataset-
II are acquired from a 3T MRI scanner using Magnetization Prepared Rapid Acquisition
Gradient Echo (MPRAGE) sequence, time to repeat (TR) = 2400 ms, time to echo (TE) = 2.14,
time inversion (TI) = 1000 ms, and flip angle (FA) = 8°. The spatial resolutions of each
volume in dataset-I and dataset-II are 181× 217× 181 and 173× 173× 207, respectively,
which are used to simulate noisy LR images, and then super resolved and/or denoised
using different algorithms. The performance analysis is also evaluated for real MR images
with uncommon image details such as structural deformity (cavernoma is found in one
subject from dataset-II), and another subject with Alzheimer’s disease from dataset-III
which is acquired for the Alzheimer’s Disease Neuroimaging Initiative [53]. The selected
MR images in dataset-III are acquired from a 3T MRI scanner with an MPRAGE sequence
with a spatial resolution of 196× 256× 256.

In the proposed method, an embedded framework for SR and denoising of MR images
in an unsupervised framework is addressed. The proposed denoising method is built
upon an LRA-based unsupervised framework for image denoising [15,29,30]. The novelty
of the proposed denoising work lies in the method addressed to categorize the patch as
smooth or textured, without the prior/estimated knowledge of noise variance. Further, the
proposed idea to differently denoise the categorized patches leads to efficient denoising,
and the re-estimation of LRA leads to better representation of image patches. This aids in
improving the trade-off between noise suppression and smearing of edges. The proposed
SR approach is developed upon the existing sparse representation-based framework for
MR image patches [6,12]. The GPS values of brain MR images convey important semantic
information such as tissue boundaries and should be preserved well and close to the
gradient profiles in HR brain MR images. In the case of the proposed SR approach, the
novelty lies in formulating a piecewise relation between GPS values of LR and upsampled
LR images to estimate GPS values of unknown HR images. The estimated GPS values are
used to regularize the estimation of HR images.

The initial HR image estimate is approximated by interpolating the noisy LR image
which is denoised using the proposed denoising approach. Each iteration of the proposed
SR approach is integrated with the proposed denoising approach, consisting of three
consecutive steps in each iteration: (i) estimate the HR image by estimating its high-
frequency component in a sparse representation framework and estimate its low-frequency
component using a non-local means approach, (ii) apply the GPS-based regularization to
enhance the image edge details, i.e., tissue boundaries, and (iii) the regularized image is
denoised using the proposed denoising method to suppress the leftover noise. The SR
approach provides better restoration of fine image details and the denoised image patches
possess improved SNR, and are thus averaged for the next iteration of the SR algorithm.
These three steps are followed by back projection and are repeated until the changes in the
estimated HR image are insignificant. The flow of these steps in the proposed SR approach
for noisy images and detailed steps for both SR and denoising are illustrated in Figure 1.
The details of the proposed denoising and SR approaches are given in Sections 3.1 and 3.2,
respectively.

https://brainweb.bic.mni.mcgill.ca/
https://www.humanconnectome.org/study/hcp-young-adult/data-releases
https://www.humanconnectome.org/study/hcp-young-adult/data-releases
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3.1. Proposed Denoising Method

The MR brain image consists of different kinds of patches such as patches with edges/texture
depicting tissue boundaries, referred to as signal enriched (SE) patches (high signal related
information) and patches with the relatively smooth region due to white matter and gray matter,
referred to as noise enriched (NE) patches in the case of presence of noise.

It has been conjectured that noise belongs to the high-frequency range of the image
spectrum, so the high-frequency (HF) component of an image patch is more contaminated
with noise as compared to its low-frequency (LF) component. Thus, the HF component
(xh) of a noisy image patch is processed for denoising and the respective LF component is
added later in the estimated denoised HF component of image patch. The decomposition
of LF (xl) and HF (xh) components of an image patch (x) is performed as x = xh + xl ,

where xl is the vector with each element as µ = ∑m
i=1 x[i]

m . Here, x = [x[i]], i = 1 to m, and m
represents the dimensionality of a patch vector.

Figure 1. Detailed illustration of the proposed approach.

In the proposed denoising method, the HF components of patches are extracted and
grouped into clusters using the Euclidean distance-based k-means algorithm (for simplicity,
we will omit the notion of an HF component of the patch from here onward). The grouping
of patches helps in improving the homogeneity among patches in a cluster. However,
the clustering may not be accurate due to the presence of noise, thus leading to certain
inhomogeneity left in the clusters. We categorize the image patches in each cluster further
into smooth/NE and textured/edge/SE patches using the LRA-based reconstruction error
of a patch. The LRA of a patch xh is obtained as x̂h = ∑l

i=1 ciui, l < m. The LRA-based
reconstruction error for the jth patch is represented by ej and computed as

ej = ||x
j
h − x̂j

h||
2
2 ≤

m

∑
i=l+1

||ci||2 (1)

where xj
h represents the HF component of the jth patch, x̂j

h represents the LRA of the jth

image patch, and the respective projection coefficient of xj
h on ith eigenvector is represented

by ci. The ith unit norm eigenvector is represented by ui, after arranging eigenvectors
according to descending order of eigenvalues. The inequality in Equation (1) holds true
in general by keeping the eigenvectors of unit norm [54]. The LRA-based reconstruction
error of a patch is upper bounded by its projection coefficients on the last eigenvectors. The
different behavior of projection coefficients for different patch structures is used to categorize
the patches. The details for categorization of the patch structure for each cluster and the
denoising strategies for different patch structures and re-estimation of eigenvectors are given
in Sections 3.1.1 and 3.1.2.
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3.1.1. Categorization of Smooth and Textured/Edge Patches

It has been observed that the smooth (NE) patches have smaller magnitude variations
(due to noise) than the textured/edge (SE) patches (due to edges of varying strengths).
Thus, the projection coefficients (ci) in smooth patches are constrained to small values in
contrast to textured/edge patches. Following this and from Equation (1), small projection
coefficients in smooth patches lead to less LRA-based reconstruction error (ej) for smooth
patches than textured/edge patches, and thus can be used to categorize the patch as smooth
or textured/edge.

This has been experimentally demonstrated in Figure 2 by computing the eigenvalues
for textured/edge and smooth patches, separately. The patches extracted from a randomly
selected noisy MR image (degraded with 2% noise) are categorized as smooth and tex-
tured/edge. A threshold is defined to divide the reconstruction error values into two
ranges, each corresponding to either smooth or textured/edge patches and is discussed in
the following subsection. We have considered patches with less reconstruction error (ej)
as smooth patches and other patches as textured/edge patches, i.e., patches with varying
strength of edges. The eigenvalues computed for smooth and textured/edge patches are
shown using green and cyan color, respectively, in Figure 2. It can be observed that the tex-
tured/edge patches tend to obey the power law, i.e., the eigenvalues decay drastically from
the first eigenvector to last eigenvector. However, the last eigenvalues of textured/edge
patches are still higher than the eigenvalues of smooth patches, as shown in Figure 2,
leading to higher reconstruction error for textured patches than smooth patches (followed
from Equation (1)).

Figure 2. Demonstration of eigenvalues obtained from an ensemble of smooth patches (green)
and textured/edge patches (cyan) present in a randomly selected magnetic resonance (MR) image
degraded with 2% Rician distributed noise. The eigenvalues for patches with only noise are shown
in red color. The x-axis denotes the number of eigenvector and the y-axis denotes the corresponding
eigenvalue. The plot is zoomed for the 15th to the 25th eigenvectors and is shown to better visualize
the small differences among eigenvalues. Here, 2% noise denotes that noise variance is 0.02× 255 =

5.1 for an image with 255 as its maximum pixel intensity.

Estimation of threshold:
It shall be noted that the choice of threshold for reconstruction error of a patch (ej) to

categorize the patch as smooth or textured is crucial, and is challenging in the presence of
noise. Since LRA-based reconstruction error of a patch changes with the strength of noise,
the threshold should also be adaptive to the strength of noise.

Adaptation of threshold to the strength of noise in image patches: The LRA-based recon-
struction error for each patch (represented by ej for the jth patch) is concatenated to form
reconstruction error vector for ensemble of patches as e = [e1e2e3. . . eN ]. The LRA-based
reconstruction error for an ensemble of patches, i.e., e, is used to characterize the strength
of noise present in image patches. For fixed l, an increase in noise variance leads to an
increase in each eigenvalue and thus an increase in the reconstruction error of each patch.
To demonstrate this, a randomly selected MR image is synthetically corrupted with Rician
noise with different noise variance values and the histogram of reconstruction error values
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of all image patches (e) for different noise variance values is shown in Figure 3a. It can
be observed that the histogram of reconstruction error values shifts right with increase in
noise variance. The same has been observed for image corrupted with the Gaussian noise.
Hence, a statistical measure of reconstruction error values obtained for image patches like
mean of e computed as κ = ∑N

j=1
ej
N , can be used to correlate with strength of noise. Here,

N represents the number of patches. The experimental demonstration of relation between
mean of reconstruction error values (κ) and noise variance is shown in Figure 3b, and it
can be observed that κ follows the linear relation with noise variance.

Figure 3. (a) Illustration of the relation between distribution of LRA-based reconstruction error
values (e) of an ensemble of image patches and strength of noise, i.e., noise variance. (b) Illustration
of the relation between mean of reconstruction error values with strength of noise, i.e., noise variance.

Hence, the adaptation of the threshold to strength of noise can be taken care of by
choosing the threshold which is linearly related with κ, mean of reconstruction error (from
Figure 3b). Following this, the categorization of an image patch (xj

h) is done as

patch kind =

{
textured/edges, i f τ1 < ej < τ2

smooth, otherwise.
(2)

Here, τ1 = ζ1 ∑n
′

j=1
ej

n′
, and τ2 = ζ2 ∑n

′

j=1
ej

n′
such that ζ2 > ζ1. The values for ζ1 and ζ2

are empirically chosen, and are described in the experimental section. The ej = ||x
j
h − x̂j

h||
2
2

represents reconstruction error of the jth patch, xj
h represents the HF component of the

jth patch and n
′

represents the number of patches in the selected cluster. Here, τ1 and τ1
represent the noise adaptive thresholds used to categorize the image patch structure. The
τ2 represents the threshold for patches having higher projection coefficients only along the
last few eigen directions. Such patches are usually rare but should also be denoised in the
same manner as smooth patches. This is because the reconstruction of a patch using only
the last few eigen directions conveys very little semantic meaning about image details and
is usually considered to possess noise like characteristics.

The reason for employing Equation (2) in the categorization of image patches is
experimentally illustrated in Figure 4. It shows the histogram of reconstruction error values
obtained using LRA of smooth and textured patches of a randomly selected MR image in
Figure 4a. The reconstruction error values (the x-axis of Figure 4a) are split into low and
high values by using a threshold (τ1), defined using the mean of the reconstruction error

of the ensemble of patches and considering ζ1 = 0.7, i.e., τ1 = 0.7 ∑n
′

j=1
ej

n′
. The patches

corresponding to low (<τ1) reconstruction error values are shown in the red box, and
patches corresponding to high (≥τ1) reconstruction error values are shown in the green
box. These patches are placed on their corresponding locations in 2D to form an image as
shown in Figure 4b,c, respectively. It can be observed that the patches corresponding to
low reconstruction error values are mostly smooth patches corrupted with noise, and high
reconstruction error values correspond to patches dominated with texture/edges.

Different denoising strategies for different kinds of patches: The LRA for both smooth and
textured/edge patches is computed using the considerate number of eigenvectors such that
the edges are present in textured/edge patches even though the noise in these patches is
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not suppressed completely. The denoised version of textured/edge patches is represented
by their estimated LRA, i.e., x̂h. The pixels in each categorized smooth patch, are replaced
by the average of pixel values in that patch. The averaging acts as a low pass filter and thus
denoises the smooth patches. As these are smooth patches, averaging does not lead to any
significant loss of image details, thus leading to efficient denoising.

Figure 4. Demonstration of the relation between reconstruction error vector e and patch structure, i.e.,
smooth and textured/edge, using the noise adaptive threshold τ1, for (mean subtracted patches of) a
randomly selected image corrupted with 2% Rician distributed noise: (a) Histogram of reconstruction
error values e and the corresponding image, (b) histogram of reconstruction error values less than τ1

and the corresponding patches in the image, and (c) histogram of reconstruction error values greater
or equal to τ1 and the corresponding patches in the image.

3.1.2. Re-Estimation of LRA in an Iterative Manner

Eigenvectors play an essential role in estimation of textured/edge patches. Since
the estimation of eigenvectors is done from noisy image patches, the approximation of
a low-rank structure possessed by textured/edge patches may be noisy. To improve the
reliability of the low-rank structure estimated by eigenvectors and for better reconstruction
of image details, the proposed denoising procedure is repeated in an iterative manner. The
eigenvectors are estimated in each iteration from the denoised patches obtained in the
previous iteration. The patches, categorized as smooth patches in the previous iteration
and denoised by an averaging operator, lie near the origin, i.e., are with insignificant values
after mean removal (for extracting HF component). Thus, these patches do not play any
role in the computation of eigenvectors in the next iteration. However, the averaging of
categorized smooth patches in the previous iteration affects the overall distribution of
patches, which leads to a change in estimation of eigenvectors in the next iteration such
that the effect of noise on the computation of eigenvectors is reduced. Thus, repeating
this process iteratively helps in increasing the reliability of estimated eigenvectors which
capture the low-rank structure of noiseless patches, thus aiding in better reconstruction of
image details. The summarized flow of steps followed in the proposed denoising approach
is shown in Figure 5.

Figure 5. Illustration of major steps in the proposed denoising approach.

3.2. Super Resolution of Noisy MR Images

The above-mentioned denoising procedure of image patches is performed in each
iteration of the SR algorithm (refer to Figure 1), which is based on the framework of
sparse representation of image patches. In the SR approach, the LF components of HR
image patches are reconstructed using a non-local means approach. On the contrary,
the HF components of HR image patches are estimated using the framework of sparse
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representation framework. The unavailability of example HR MR images for forming the
dictionary for sparse representation is addressed using the concept of self-similarity. The
image is up and down scaled to exploit the self-similarity among patches of the image
by forming an image pyramid. The HF components of image patches and patches from
the up-down scaled version of the same image are clustered using the Euclidean distance-
based k-means algorithm. The patches of an image and the up-down scaled version of the
image aid in enrichment of dictionary construction. The k-means approach is a typical
unsupervised method for clustering, and clusters the input image patches without any
requirement of example data [54]. For each cluster, the eigenvectors are estimated from the
covariance matrix of an ensemble of patches in that cluster and are concatenated column
wise in the matrix, named the PCA-based dictionary (for more details about dictionary
building, please refer to [33]). Please note that the estimated HR image is denoised using
the proposed denoising approach in each iteration of the SR approach but the steps carried
out in both are independent of each other.

The mathematical model for degradation of HR MR images for super resolution is
adapted using a point spread function (H) (PSF, generally considered Gaussian kernel) and a
downsampling operator (B) such as y = BHx, similar to the adaption of SR for MR images
in [2,12]. Here, y ∈ Rp×1 represents the noisy LR patch vector obtained by blurring and
downsampling the HR patch vector x ∈ Rq×1, q > p using H ∈ Rq×q and B ∈ Rp×q,
respectively. Thus, the objective function for the sparse representation-based SR algorithm
with the constraint for preserving gradient profiles sharpness, proposed in this work, is
as follows:

minα,η||y− BHAα||22 + ||α||1 + λ||Ex̂{η} − Ex{ηH}||22. (3)

The interpolated version of denoised y using the proposed denoising approach is
considered as the initial estimate of x. The sparse representation of an image patch is
computed as x̂ = Aα where A is the PCA-based compact dictionary estimated for a
cluster to which the initial estimate of x belongs and α denotes the coefficient vector. Since
the sparsity is implicitly induced by thresholding the insignificant projection coefficients
(α), the weight for term ||α||1 is not mentioned. Here, λ represents the weight for the
regularizer. The η and ηh represent the images with GPS values for the estimated HR image
(its patches are represented by x̂)̂ and the original HR image (its patches are represented
by x), respectively. Here, the GPS values corresponding to patch x̂ are extracted from
η from the same location as patch x̂ using operator Ex̂{η}. Similarly, the Ex{.} operator
extracts the corresponding GPS values for patch x from η̂H . Since the reference GPS values
ηH are unavailable, the constraint becomes ||Ex̂{η} − Ex{η̂H}||22, where η̂H represents
the approximated ηH . The computation of GPS values and the estimation of η̂H are
explained below.

The GPS value indicates the ratio of height (h) and width (w) of the edge centered
on an edge pixel in image, i.e., h/w as defined in [51]. Higher values of h indicate higher
contrast and high values of w indicate more blur in the corresponding edge. Thus, higher
GPS values correspond to sharper image details. The GPS value for each pixel in an image
is computed to obtain GPS valued image η. It has been observed in the case of natural
images [51] that the GPS values of an HR image (ηH) possess a linear relation with GPS
values in an upsampled LR image (UR) (ηU) as ηH = βηU . However, we observed that the
relations among GPS values of HR and UR MR images are not exactly linear especially
when the super-resolution factor is increased (for more details, refer to [33]). It can be due to
the fact that there exist many small details in MR images which are degraded severely, and
due to image details with varying sharpness in MR images which are degraded differently
while upscaling. Thus, there exists a non-linearity between GPS values of UR and HR
MR images. This non-linear behavior is approximated with a piecewise linear relation by
dividing the range of ηU values into four regions. For each ith region of ηU values, GPS
values of HR can be related as

ηHi = βiηUi , here i = 1to 4. (4)
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The ηHi and ηUi represent the GPS values for the ith region of ηU values. Here,
βi, ∀i = 1 to 4, is unknown and is estimated to approximate ηHi . It has been observed that
most of the GPS values for a UR image lie in the small valued region, whereas there exist
higher GPS values for both LR and HR images. Such behavior of the UR image can be due
to the basic interpolation used for upsampling LR images that lead to blurred details and
hence lead to small GPS values. Further, the percentage of edge pixels in LR and HR images
is also generally considered as similar. Following which, the histogram of GPS values of
LR images (hist(ηL)) is assumed to be similar to hist(ηH). Hence, from Equation (4), we
can estimate βi by minimizing the Chi-squared distance between hist(ηLi ) and hist(βiηUi ),
for each region.

We thus estimate the GPS values for an HR image as

η̂Hi = βiηUi , i = 1 to 4. (5)

using LR and UR images only. This is used to constrain the solution space for the estimate
of the HR image (I) by using ηH ' η̂H in Equation (3). Such a piecewise linear relation-
based approximation for GPS values of an HR image aids in the improvement of the linear
correlation of ηH and ηU for each region of ηU , thus leading to a better approximation of the
underlying relation. Further, it also helps in considering the low GPS values (obtained from
relatively smoother regions) and high GPS values (from regions with edges) differently,
which aids better preservation of tissue boundaries. It has to be noted that the four regions
for a piecewise linear relation are empirically chosen as choosing three or five regions
provides lesser overall linear correlation among ηH and ηU values. The step wise flow of
the proposed approach is shown in Algorithm 1.

Algorithm 1 Estimate denoised HR image.
Input: Noisy LR image patches y
Output: Denoised HR image patches x̂
Variables: M: Number of iterations
k = 1 to M
Step 1: Denoise y as discussed in Section 3.1. Interpolate the denoised LR image patches to
provide initial denoised HR patches x, represented by x̂.
Step 2: Estimate GPS values η̂H of x̂ as explained in Equation (5).
Step 3: Apply a low pass filter to x̂ to get the LF component and subtract it from x̂ to get the
HF component of x̂.
Step 4: Represent the LF component of each patch of x̂ using a non-local mean approach.
Step 5: Apply k-means clustering to HF components of x̂, and up-down scaled versions of
image patches x̂. Construct a PCA-based dictionary for each cluster.
Step 6: Represent the HF component of x̂ using one of the dictionaries, i.e., the dictionary
constructed from a cluster to which the HF component of x̂ belongs.
Step 7: Update the estimate of the HR patch x̂ by adding estimates of the LF (from Step 4)
and HF (from Step 6) components.
Step 8: Regularize and update the estimated HR image patch x̂ obtained in Step 7 using
GPS constraint.
Step 9: Denoise the estimate of HR patch x̂ obtained in Step 8 as discussed in Section 3.1.

If k > 0 and Îk − Îk−1 < ε
break;

else
Update x̂ as average of outputs from Step 8 and Step 9, i.e., Îk, in Step 3 and repeat the steps
from Step 3 to Step 9.
end If
end while loop



J. Imaging 2021, 7, 101 13 of 26

4. Results and Discussion

The performance of the proposed algorithm is evaluated for SR of noisy MR images as
well as individually for the denoising approach and super resolution along three directions,
i.e., in-plane and slice-select direction. The reconstruction quality of the resultant images is
reported using peak signal to noise ratio (PSNR), structural similarity index (SSIM) [55], and
feature similarity index metric (FSIM) [56] values. Higher PSNR and SSIM values indicate
the overall quality improvement of the reconstructed image. Higher FSIM indicates the
higher subjective evaluation based on image gradient magnitude and phase congruency,
and is generally used to indicate better features related to edge information [56]. The
weight for GPS regularizer (λ) is empirically chosen as 0.001 for the best reconstruction
of image patches and ζ1 and ζ2 are empirically chosen as 0.7 and 1.8, respectively. The
patch size used in the experiments is 5× 5. The number of iterations for the denoising
algorithm is fixed to 3 because it has been observed that further increase in iteration does
not improve the performance. The maximum number of iterations in the proposed SR
approach is fixed at 320 and is otherwise stopped early if the change in the estimated HR
image is insignificant.

4.1. Denoising of MR Images

The experiments are performed for images corrupted with Rician and Gaussian dis-
tributed noise. The noise is synthetically added in simulated images as well as real MR
images to simulate the real scenario. Here, the variance of noise is decided as a percentage
of brightest tissue in an MR image, followed from the literature [34,41,57]. For example, 2%
noise here means the noise variance is 0.02 × 255 = 5.1 for the image with 255 as its maxi-
mum intensity value. The proposed denoising approach is compared with conventional as
well as state-of-the-art denoising methods addressed for MR images. These methods re-
quire prior knowledge of noise variance. In addition to noise variance, few approaches also
require prior knowledge of noise distribution. The existing methods that process 2D images
include non local means (NLM), universal NLM (UNLM) [34] and variance stabilization
transform (VST) [25] with block-matching and 3D filtering (BM3D) [27]. Other existing
methods denoise 3D image volume by considering the adjacent slices information. These
methods include optimized blockwise NLM denoising filter optimized blockwise non local
means (ONLM) [57] and its adapted version ONLM (AONLM) [40], multi-resolution-based
ONLM multi-resolution based ONLM (MRONLM) [41], oracle-based discrete cosine trans-
form filter oracle based discrete cosine transform (ODCT) explained in [57], PCA-based
denoising over ODCT method PCA-based denoising over ODCT (PRINLM) [35], and VST
in conjunction with block matching with 4D filtering (BM4D) and AONLM [25].

One real MR image is randomly selected, degraded with 2% Gaussian noise, and is
denoised using different algorithms. The denoised images are shown in Figure 6. It can
be observed that the proposed approach has reduced smearing of image details (in the
yellow box), provides efficient denoising in the smooth region, and estimates edges with
comparable quality to existing methods in the cyan box in Figure 6.

Noisy	Image Existing	Approaches-	Require	Noise	Variance Proposed Ground	TruthExisting	Approach-	Local
estimation	of	Noise	Variance

Figure 6. Demonstration of image denoising achieved by different denoising algorithms on real MR
images with synthetically added 2% Gaussian noise. From left to right—noisy image, optimized
blockwise non local means (ONLM) [57], multi-resolution based ONLM (MRONLM) [41], oracle
based discrete cosine transform (ODCT), PCA-based denoising over ODCT (PRINLM) [35], variance
stabilized transform with blockwise matching and 4D filtering (VST-BM4D) [25], adaptive ONLM
(AONLM) [40], the proposed approach, and the original noiseless image.
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Table 1 gives the quantitative comparison of the proposed approach with existing
approaches. Here, the highest PSNR and SSIM values are highlighted in red color. PSNR
and SSIM values obtained for proposed work are made bold. The blue colored values
indicate the performance of existing algorithms that are comparable to the proposed work.
The estimation of noise variance is crucial and is observed to be inaccurate as the level of
noise increases, leading to decreased performance of the existing algorithms [58]. Hence,
for a fair comparison, the existing works with the requirement of prior knowledge of noise
variance are given the true variance value in the experiments.

It can be observed that the proposed work, without the requirement of knowledge of
variance and distribution of noise, performs comparable to the existing classical methods
such as NLM and UNLM [34], and the recent methods like ODCT and PRINLM [35] that,
on contrary, have such requirements. The proposed method provides PSNR values within
the 0.5 dB range of these existing approaches. This can be explained by the fact that in NLM
and UNLM approaches, the images are denoised using weighted averaging and thus several
image details get blurred, leading to its comparable performance to the proposed approach.

Table 1. Quantitative comparison (peak signal to noise ratio (PSNR) and structural similarity index (SSIM) values) of the
proposed denoising approach with existing approaches. Each row indicates a different method and each column indicates a
different noise level (in % , i.e., 2% means noise variance is 255× 0.02 = 5.1 for image with 255 maximum intensity value)
with mentioned distribution (Rician/Gaussian) and mentioned datasets (real/simulated dataset).

I/
P

Rician Noise Gaussian Noise

Method Assumed
Noise

Need
Var.

Simulated Dataset Real Dataset Simulated Dataset Real Dataset
3% 5% 7% 9% 11% 3% 5% 7% 9% 11% 3% 5% 7% 9% 11% 3% 5% 7% 9% 11%

2D
Im

ag
e

ba
se

d
M

et
ho

ds

Noisy
Image - - 30.41 26.00 23.12 20.98 19.28 20.45 19.87 19.14 18.32 17.47 30.39 25.95 23.03 20.85 19.10 20.38 19.70 18.84 17.91 16.96

0.8401 0.7623 0.6946 0.6369 0.5874 0.5003 0.4914 0.4828 0.4747 0.4669 0.8397 0.7598 0.6886 0.6271 0.5746 0.4984 0.4862 0.4730 0.4600 0.4476

NLM Rice Yes 35.88 32.62 30.23 28.37 26.74 34.54 31.45 29.06 27.18 25.64 35.87 32.66 30.36 28.72 27.48 34.66 31.88 29.93 28.55 27.55
0.9239 0.8866 0.8469 0.8082 0.7694 0.8927 0.8301 0.7705 0.7204 0.6804 0.9237 0.8857 0.8445 0.8073 0.7763 0.8942 0.8372 0.7875 0.7489 0.7192

UNLM Rice Yes 36.35 33.21 30.90 29.13 27.77 34.44 31.67 29.78 28.42 27.38 36.26 32.94 30.30 28.10 26.17 34.49 31.66 29.46 27.46 25.50
0.9307 0.8990 0.8639 0.8296 0.7984 0.8955 0.8499 0.8018 0.7569 0.7191 0.9304 0.8966 0.8522 0.8020 0.7494 0.8967 0.8537 0.8083 0.7638 0.7197

VST
BM3D Rice Yes 36.28 33.54 31.75 30.36 29.24 35.19 32.87 31.33 30.07 28.90 36.12 32.91 30.28 27.93 25.86 35.08 32.16 29.31 26.49 24.06

0.9304 0.9070 0.8858 0.8635 0.8423 0.9018 0.8701 0.8409 0.8112 0.7810 0.9297 0.8999 0.8607 0.8136 0.7634 0.9024 0.8701 0.8334 0.7861 0.7317

Proposed Nill No 34.21 32.58 30.19 28.21 25.80 34.57 32.04 29.08 27.08 25.66 33.86 32.14 30.14 28.26 25.93 34.10 32.03 29.74 26.80 24.08
0.9235 0.9010 0.8564 0.8045 0.7623 0.8903 0.8560 0.7989 0.7247 0.6862 0.9192 0.8953 0.8585 0.8182 0.7559 0.8828 0.8593 0.8107 0.7350 0.5677

3D
V

ol
um

e
ba

se
d

M
et

ho
ds

ORNLM Rice Yes 36.34 33.45 31.53 29.74 27.63 35.13 32.31 30.53 29.20 28.28 36.00 33.03 31.37 30.23 29.35 35.54 33.15 31.55 30.29 29.32
0.9312 0.9067 0.8819 0.8492 0.8016 0.9130 0.8719 0.8400 0.8132 0.7902 0.9308 0.9051 0.8843 0.8664 0.8506 0.9164 0.8821 0.8536 0.8295 0.8080

AONLM Rice Yes 36.28 33.64 31.95 30.61 29.48 34.74 32.71 31.12 29.95 28.77 36.10 33.43 31.74 30.47 29.44 34.67 32.68 31.27 30.16 29.24
0.9295 0.9056 0.8842 0.8628 0.8421 0.9061 0.8794 0.8498 0.8242 0.7964 0.9293 0.9041 0.8822 0.8615 0.8422 0.9044 0.8780 0.8534 0.8304 0.8090

MRNLM Rice Yes 36.05 33.26 31.38 29.64 27.59 35.49 32.84 31.00 29.58 28.60 35.47 32.57 30.96 29.86 29.00 35.52 33.05 31.36 29.98 28.95
0.9329 0.9091 0.8852 0.8543 0.8087 0.9160 0.8795 0.8484 0.8212 0.7991 0.9314 0.9050 0.8837 0.8655 0.8494 0.9162 0.8822 0.8531 0.8274 0.8057

ODCT Rice Yes 35.88 32.69 30.35 28.26 26.13 31.20 28.96 27.47 27.94 27.78 35.87 32.46 29.94 28.05 26.59 32.12 30.83 30.28 28.50 27.18
0.9295 0.9017 0.8694 0.8289 0.7754 0.8575 0.8103 0.7779 0.7861 0.7765 0.9303 0.9001 0.8654 0.8327 0.8019 0.8742 0.8547 0.8411 0.7932 0.7496

PRINLM Rice Yes 36.26 32.87 30.29 28.11 25.79 30.93 27.34 26.83 27.64 27.18 36.06 32.28 29.51 27.55 26.03 31.70 30.87 30.13 28.00 26.61
0.9373 0.9106 0.8757 0.8281 0.7616 0.8533 0.8091 0.7729 0.7956 0.7714 0.9363 0.9035 0.8634 0.8229 0.7793 0.8677 0.8594 0.8372 0.7751 0.7129

VST
BM4D Rice Yes 36.65 33.90 32.16 30.80 29.71 35.48 33.14 31.54 30.25 29.29 36.57 33.42 30.75 28.35 26.15 35.43 32.54 29.63 26.72 24.21

0.9353 0.9142 0.8945 0.8746 0.8555 0.9057 0.8765 0.8496 0.8227 0.7985 0.9358 0.9089 0.8715 0.8271 0.7777 0.9067 0.8772 0.8409 0.7936 0.7400
VST

NLM3D Rice Yes 36.04 33.21 31.34 29.88 28.62 35.00 32.57 30.91 29.57 28.42 35.93 32.65 29.96 27.52 25.29 34.86 31.89 28.93 25.91 23.49
0.9278 0.9007 0.8754 0.8508 0.8252 0.9061 0.8730 0.8424 0.8130 0.7838 0.9272 0.8929 0.8510 0.8024 0.7485 0.9066 0.8720 0.8296 0.7731 0.7146

Here, red color denotes the highest PSNR/SSIM values obtained, bold numbers denote the PSNR and SSIM values obtained using the
proposed work. Blue color denotes the PSNR/SSIM values comparable (within 0.5 dB PSNR range) to the proposed work obtained using
different approaches.

The existing supervised 3D volume-based approaches addressing denoising of MR
images perform better than the proposed approach. These approaches assume the prior
distribution of noise and such assumption is the reason that VST-based methods, i.e.,
VST+BM4D and VST+AONLM, perform better for images with Rician distributed noise
than with Gaussian distributed noise. These approaches also require prior knowledge
of noise variance. Hence, such prior knowledge aids in better performance for these
approaches as compared to the proposed approach, but is not generally available in the
real scenario.

4.1.1. Significance of the Proposed Patch Categorization and Re-estimation of Eigenvectors

The significance of the proposed patch categorization is demonstrated by incorpo-
rating it in an existing LRA-based denoising method [15]. For this, the image patches
are categorized as smooth and textured/edge patches using the proposed method. The
smooth patches are denoised using the proposed method and the textured/edge patches
are denoised using the existing method [15]. The eigenvectors in the existing method are
re-estimated in the progressive manner as mentioned in the proposed denoising approach.
A randomly selected denoised image (3% Rician noise) obtained by this procedure is shown
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in Figure 7d. The noisy input and noise-free images are shown in Figures 7a,e, respectively.
The images denoised using the method described in [15] is shown in Figure 7b. It can be
observed that smooth patches are not efficiently denoised in the existing LRA-based ap-
proach [15]. The denoising of such smooth patches is improvised by adapting the existing
approach to the proposed denoising method indicating the advantages of patch catego-
rization. On the other hand, the tissue boundaries represented by the proposed denoising
approach are not denoised well but improvise by using patch adaptive l for textured/edge
patches from the existing approach [15]. This can be due to the empirically chosen fixed l
in the proposed denoising approach for representation textured/edge patches.

Figure 7. Illustration of the significance of the proposed categorization of smooth and textured/edge
patches and progressive estimation of eigenvectors by adapting it with the existing low-rank ap-
proximation (LRA)-based denoised approach [15]. (a) Noisy image (3% Rician Noise), (b) denoised
using the existing LRA-based denoising approach [15], (c) the proposed denoising approach, (d)
the existing approach [15] adapted with the proposed patch categorization and re-estimation of
eigenvectors, (e) noise-free image.

4.1.2. Parameter Analysis for Optimal Selection of τ1 in the Proposed Denoising Approach

In the proposed denoising approach, τ1 is a crucial parameter as it is challenging
to separate the smooth and textured/edge patches in the presence of noise. In addition
to the noise adaptive threshold τ1, the optimal threshold has to be chosen such that no
texture/edge patch is categorized as smooth patch because it may lead to loss of image

details. To analyze the change in denoising with the change in τ1 = ζ1∑n
′

j=1
ej

n′
, a randomly

selected noisy MR image (2% noise) is denoised with varying values of ζ1. The obtained
PSNR values for denoised images are plotted against different values for ζ1 in Figure 8. It
can be observed that there is a slight increase in PSNR values for smaller values of ζ1. The
increase in PSNR value at ζ1 = 0.7 compared to the image denoised with ζ1 = 0.25 can be
explained by further reduction in noise at ζ1 = 0.7, as shown in Figure 8. The PSNR value
is reduced significantly as the value for ζ1 is further increased. This can be explained by the

corresponding image at ζ1 = 1, i.e., τ1 = 1∑n
′

j=1
ej

n′
, where even the textured/edge patches

are considered as smooth and are denoised accordingly. This lead to huge image detail
loss and thus the PSNR value drops. Hence, ζ1 = 0.7 is used for the experiments in this
work. Similarly, the value of ζ2 is used to govern the minimum loss of image details while
suppressing the noise and it has been observed that the value of 1.8 gives the best results.
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Figure 8. Analysis of parameter ζ1 for optimal selection of τ1 = ζ1 ∑N
i=1 ei, ei denotes the low rank-

based reconstruction error of the ith patch and N denotes the number of patches, for categorization
of the patch as smooth or textured/edge in the proposed denoising approach. The peak signal to
noise ratio (PSNR) values are computed for an MR image denoised using different values of ζ1, and
plotted in this Figure. The denoised images using ζ1 as 0.25, 0.7 and 1.0 are also shown to indicate
the reason for rise and drop in PSNR values.

4.2. Super Resolution of MR Image Volumes

The LR image volumes are simulated by blurring the HR image volumes using a
Gaussian kernel of the standard deviation of one voxel size and followed by downsampling.
One MR image volume is randomly selected from dataset-II and super-resolved with super-
resolution factor (SRF) 2 using the proposed SR approach and is compared with the existing
state-of-the-art unsupervised methods NLM3D [13] and LRTV [12]. The reconstructed
images using these approaches are shown in Figure 9. The highlighted region in the coronal
slice is zoomed and shown in the red box. The pink and green arrows show the location
for tissue boundary between cerebrospinal fluid (CSF) and gray matter, and white matter
and gray matter, respectively. It can be observed that the proposed approach reconstructs
the image details with relatively sharper tissue boundaries as well as better preservation
of image details (near green arrow) as compared to the existing methods. Table 2 shows
the mean PSNR, SSIM and FSIM values computed for different subjects for SRFs 2 and
3 reconstructed by different methods. The graphical representation of Table 2 is shown
in Figure 10. It can be observed that the proposed approach provides comparably higher
PSNR, SSIM, and FSIM values than existing methods, and thus illustrates the advantages of
the proposed work in pixel-intensity, and structural and gradient-feature-based similarities,
respectively.
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Figure 9. Illustration of reconstruction results for real MR image volume for super-resolution
factor 2 using different super-resolution algorithms: (a) nearest neighbor interpolation, (b) spline
interpolation, (c) non-local means [13], (d) low rank and total variation (LRTV) [12], (e) the proposed
method, and (f) the original denoised high resolution (HR) image. Zoomed version of the red box
shown in the axial slice is shown to demonstrate the difference (specifically in tissue boundaries
indicated with arrows).

A popular supervised approach in neural network super-resolution convolutional
neural network (SR-CNN) [9] (after training using paired example LR-HR images) is also
tested for SR of the MR image volumes used for evaluation of performance of proposed
approach. It provides the maximum SSIM value 0.9012 and the average SSIM value reaches
0.8666 for (SRF = 2) which is comparable to the proposed approach.

To emphasize the significance of reconstruction of uncommon image details in the
proposed SR method, we chose a real MR image volume with a cavernoma and improved
its resolution by factor 2, as shown in Figure 11. It can be observed that the LRTV [12]
approach in Figure 11d reduces the blur as compared to interpolation and NLM3D [13]
in Figure 11b,c, but tends to produce staircase effect. It can be observed that the tissue
boundaries and image details inside the cavernoma, shown in the red box, are more clear
and distinct for the proposed method. In addition, the skull outlines can be seen to be well
defined (in the sagittal plane) in the case of the proposed algorithm (see Figure 11e) as
compared to existing methods.
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Figure 10. Demonstration of PSNR, structural similarity index (SSIM) and feature similarity index
metric (FSIM) values obtained for super resolution of eight MR image volumes by upscale factors 2
and 3.
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Table 2. PSNR, SSIM, and FSIM values obtained using different algorithms for super resolution of real MR images in all
three directions by factors 2 and 3.

Subject Metric NN Spline NLM3D LRTV Proposed

PSNR 29.0981 29.9406 31.2103 33.4160 34.63
SSIM 0.7275 0.7575 0.8079 0.8759 0.88591
FSIM 0.8831 0.8856 0.9519 0.9597 0.9484

PSNR 29.21 29.96 31.10 33.12 33.56
SSIM 0.7546 0.7750 0.8109 0.8637 0.86382
FSIM 0.8999 0.9012 0.9297 0.9538 0.9697

PSNR 27.73 28.43 29.58 31.61 32.21
SSIM 0.7682 0.7900 0.8241 0.8727 0.87653
FSIM 0.9007 0.9056 0.9198 0.9467 0.9668

PSNR 27.92 28.47 29.56 31.31 32.20
SSIM 0.8269 0.8437 0.8724 0.9089 0.91614
FSIM 0.9051 0.9083 0.9217 0.9482 0.9639

PSNR 29.71 30.15 31.42 33.40 33.79
SSIM 0.7389 0.7821 0.8413 0.8786 0.88195
FSIM 0.8984 0.9084 0.9102 0.9194 0.9248

PSNR 28.67 29.15 30.55 32.00 32.82
SSIM 0.7009 0.7104 0.8277 0.8695 0.87626
FSIM 0.8872 0.8972 0.9099 0.9185 0.9274

PSNR 27.44 28.77 32.44 34.24 35.40
SSIM 0.7103 0.7497 0.8436 0.9083 0.92937
FSIM 0.8980 0.9069 0.9103 0.9291 0.9413

PSNR 28.23 28.70 29.95 31.73 32.01
SSIM 0.7511 0.7653 0.7907 0.8407 0.8683

SR
F

=
2

8
FSIM 0.8720 0.9014 0.9104 0.9248 0.9236

PSNR 26.23 27.12 28.30 28.41 28.89
SSIM 0.6941 0.7308 0.7787 0.7986 0.80661
FSIM 0.8749 0.8840 0.9030 0.9096 0.9182

PSNR 27.44 28.31 29.60 29.76 30.26
SSIM 0.7163 0.7534 0.7963 0.8108 0.81802
FSIM 0.8901 0.9091 0.9285 0.9396 0.9390

PSNR 26.10 27.79 28.79 28.85 29.11
SSIM 0.6557 0.6943 0.7441 0.7647 0.76993
FSIM 0.8498 0.8740 0.8919 0.9038 0.9148

PSNR 27.03 28.20 29.30 29.24 29.57
SSIM 0.6271 0.6635 0.7192 0.7442 0.74194
FSIM 0.8571 0.8720 0.8904 0.9081 0.9117

PSNR 27.97 28.90 30.30 30.32 30.67
SSIM 0.5838 0.6372 0.7121 0.7342 0.74485
FSIM 0.8301 0.8539 0.8949 0.9038 0.9175

PSNR 26.34 27.89 28.97 29.13 29.45
SSIM 0.6103 0.7612 0.7731 0.7812 0.78656
FSIM 0.8534 0.8641 0.8837 0.9088 0.9130

PSNR 26.77 27.62 28.90 28.92 29.32
SSIM 0.6668 0.7059 0.7612 0.7807 0.78757
FSIM 0.8693 0.8841 0.8922 0.9076 0.9127

PSNR 27.14 28.04 29.18 29.27 29.64

SR
F

=
3

SSIM 0.6115 0.6551 0.7121 0.7341 0.74218
FSIM 0.8610 0.8801 0.9067 0.9135 0.9195

Bold numbers indicate the best performance of respective metrics.
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Parameter Analysis for Optimal Selection of λ in the Proposed Super Resolution Approach

In the proposed approach, the weight to GPS-based regularizer is denoted by λ. It
is a crucial parameter that decides the balance between the data fidelity term and the
regularizer for gradient profiles. The optimal value of λ is chosen empirically based on
the maximization of PSNR for estimated HR images. For this, an example MR image is
upscaled by factor 2 with different values of λ, and PSNR values are plotted in Figure 12. It
can be observed that with the high value of λ, i.e., beyond 0.005, the PSNR values dropped.
Similarly for lesser values of λ, the PSNR value is less. The optimal of λ is thus chosen as
0.001 for which the PSNR value obtained is maximum, and holds true for another ensemble
of MR images.

(a) (b) (c)

(d) (e) (f)

Figure 11. Illustration of super resolution results for structural deformity cavernoma in real MR
images, by different algorithms: (a) nearest neighbor, (b) spline interpolation, (c) non local means
in three dimensions (NLM3D) [13], (d) low rank total variation based method (LRTV) [12], (e) the
proposed approach, and (f) the original HR image. Each slice in axial, sagittal, and coronal planes
is shown. The zoomed version of the cavernoma region from the coronal slice is highlighted in red
rectangle. Please zoom for better visualization.

Figure 12. Optimal selection of parameter λ in the super resolution approach. A random MR image is
selected and upscaled by factor 2 using the proposed super-resolution (SR) approach. The HR image
is obtained with different values of λ in Equation (3), and the obtained PSNR values are plotted.
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4.3. Resolution Improvement of Noisy MR Image Volumes

The performance of the proposed single framework for the super resolution of noisy
MR images has been evaluated here for 2% Gaussian noise and different upsampling
factors. For existing SR methods, the images are first denoised using AONLM [40]. The
qualitative results using different algorithms for upsampling a randomly selected noisy
image by factor 2 are shown in Figure 13. To illustrate the significance of the proposed
approach for efficient denoising as well as the preservation of image details, different kinds
of regions are zoomed and shown separately. The green box in Figure 13 comprises the
region with strong edges, the red box shows the region with minor edges and texture, and
the cyan box shows the smooth region. It can be observed that the reconstructed image
using spline interpolation and the non local means in three dimensions (NLM3D) approach
in Figure 13b,c blur the image details in every kind of region and hence provide poorer
contrast but with better denoising in each region. The LRTV method, however, tends to
provide better contrast among tissues and preservation of image details, yet it is not able
to provide efficiently denoised smooth regions (see red and cyan boxes in Figure 13d).
The proposed work, on the contrary, can be observed to reconstruct strong edges while
preserving the image details with limited noise (see green box Figure 13e), it can relatively
better suppress the noise in patches with smooth and texture/minor edges as compared to
LRTV [12] (can be seen in red and cyan boxes), and it can provide improved contrast as
compared to NLM3D [13]. It demonstrates that the proposed method tends to improve the
trade-off between the preservation of image details and suppression of noise. The obtained
PSNR, SSIM, and FSIM values for different subjects are summarized in Table 3 and show
that the proposed work performs relatively better than existing unsupervised methods
when combined with supervised denoising method.

Figure 13. Demonstration of reconstruction quality of different kinds of regions/patches, region
with edges (green boxes), region with texture (red boxes), and smooth region (cyan boxes), after
super resolving real MR images degraded with downsampling factor 2 and 2% noise, using different
algorithms. (a) NN interpolation of noisy LR image, (b) spline interpolation of denoised LR image,
(c) NLM3D [13] applied on denoised LR image, (d) LRTV [12] applied on denoised LR images, (e)
the proposed work applied on a noisy LR image, and (f) the original noise-free HR image.
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Table 3. Quantitative results for different algorithms for super resolution of real MR images with upscaling factors 2 and 3,
degraded with synthetically added 2% noise.

Subjects Metric NN Spline NML3D LRTV Proposed

SR
F

=
2

1

PSNR 29.01 29.50 30.17 31.29 31.95

SSIM 0.6893 0.7099 0.7562 0.7972 0.7983

FSIM 0.8820 0.8841 0.9102 0.9404 0.9546

2

PSNR 29.47 30.25 30.97 32.20 32.81

SSIM 0.7234 0.7802 0.7971 0.8068 0.8114

FSIM 0.8987 0.8981 0.9178 0.9456 0.9537

3

PSNR 27.98 28.70 29.44 30.61 31.26

SSIM 0.7012 0.7289 0.7313 0.8029 0.8032

FSIM 0.8979 0.8986 0.9186 0.9443 0.9530

4

PSNR 31.64 32.96 33.59 34.64 34.52

SSIM 0.7901 0.8001 0.8162 0.8512 0.8524

FSIM 0.9020 0.9028 0.9198 0.9418 0.9507

5

PSNR 28.31 29.00 29.68 30.66 31.23

SSIM 0.7173 0.7214 0.7445 0.7991 0.8041

FSIM 0.8904 0.9008 0.9038 0.9048 0.9121

6

PSNR 29.13 29.54 30.26 31.43 31.97

SSIM 0.7529 0.7712 0.7830 0.8090 0.8095

FSIM 0.8694 0.9027 0.9071 0.9103 0.9174

7

PSNR 29.21 29.80 30.49 31.54 32.32

SSIM 0.7374 0.7442 0.7834 0.8186 0.8291

FSIM 0.8943 0.9041 0.9094 0.9194 0.9255

8

PSNR 28.47 29.12 29.83 30.86 31.47

SSIM 0.7404 0.7619 0.7910 0.8138 0.8108

FSIM 0.8632 0.8926 0.9088 0.9122 0.9198

SR
F

=
3

1

PSNR 26.45 26.97 27.87 27.62 28.08

SSIM 0.7192 0.7231 0.7450 0.7401 0.7532

FSIM 0.8611 0.8814 0.9006 0.9059 0.9134

2

PSNR 27.19 27.86 29.17 28.99 29.26

SSIM 0.7267 0.7342 0.7662 0.7580 0.7667

FSIM 0.8854 0.9072 0.9223 0.9232 0.9280

3

PSNR 26.97 27.24 28.48 28.28 28.49

SSIM 0.7142 0.7208 0.7221 0.7241 0.7354

FSIM 0.8443 0.8654 0.8907 0.9001 0.9062

4

PSNR 26.95 27.35 28.72 28.29 28.93

SSIM 0.6707 0.6744 0.6819 0.6804 0.6880

FSIM 0.8486 0.8662 0.8888 0.9000 0.9026

5

PSNR 28.16 28.88 29.52 28.93 29.44

SSIM 0.6423 0.6487 0.6560 0.6446 0.6689

FSIM 0.8218 0.8501 0.8845 0.8875 0.8974

6

PSNR 26.91 27.12 28.33 27.90 28.43

SSIM 0.7128 0.7146 0.7257 0.7225 0.7351

FSIM 0.8424 0.8631 0.8734 0.9075 0.9047

7

PSNR 27.19 27.57 28.62 28.29 28.83

SSIM 0.6367 0.6456 0.6701 0.6647 0.6807

FSIM 0.8534 0.8732 0.8982 0.9041 0.9105

8

PSNR 27.05 27.67 28.49 29.09 29.63

SSIM 0.6848 0.6896 0.7015 0.6971 0.7035

FSIM 0.8517 0.8760 0.9028 0.9064 0.9142

Bold numbers indicate the best performance of respective metrics.
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To see the effect of different noise levels, a volume is randomly selected followed by
degradation with downsampling factor 2 and varying noise levels (1% to 4%). The obtained
PSNR values using different algorithms are mentioned in Table 4. It can be observed that
the increase in PSNR values of images reconstructed by the proposed work are decreased
as the noise level is increased and this is expected because restoring the image details for
a high level of noise is a challenging problem. In addition, the PSNR metric represents
an average measure of similarity and thus can be higher even for the blurred image as
compared to the image with left out noise. This is observed to be true in case of 4% noise,
where NLM3D [13] provides the blurred image with comparable PSNR. The FSIM and
SSIM values are obtained for the estimated HR image using the proposed approach for
varying variance of noise and upscaling factors, and are plotted in Figure 14. The metrics
are obtained for one randomly chosen real MR image volume from dataset-II. It can be
observed that the FSIM values decrease at a lesser rate when strength of noise is increased
as compared to the case where the upscale factor is increased.

Table 4. PSNR values for reconstructed images of randomly selected subject degraded with down-
sampling factor 2 and different levels of noise.

Noise Level Interpolation NLM3D [13] LRTV [12] Proposed

1% 30.12 30.5 31.67 32.19
2% 30.26 30.58 31.43 31.78
3% 29.75 30.00 30.34 30.45
4% 29.54 29.62 29.28 29.34

Figure 14. Analysis of FSIM and SSIM values for different noise variances and upscale factors.

Analysis for Alzheimer Subjects

The clinical applications of the proposed approach can be valid only if no artifacts are
introduced while denoising or super resolving. To experimentally verify this, a noisy LR
image of an Alzheimer’s subject is restored by different algorithms and compared in the
first row of Figure 15. The zoomed version of the region in the blue rectangle (highlighted
in the first row) is shown in the second row. It can be observed that interpolated images
and NLM3D [13] provide blurred image details. The LRTV [12] approach highlights the
CSF flow artifact significantly (which is not as present in the noise-free HR image), may
compromise the detection of pathology in the ventricular system, thus compromising the
diagnostic capability. The image reconstructed by the proposed approach looks relatively
noisy but clearer than existing methods and does not highlight any such artifact; hence, it
can aid in accurate diagnosis. The same values of ζ1 = 0.7, ζ2 = 1.8, and λ = 0.001 were
used to process the MR images of an Alzheimer’s subject obtained from dataset-III as for
processing dataset-II and dataset-I. It indicates the generalization of the proposed approach
that uses the same values of parameters for different datasets.
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Figure 15. Illustration of super resolving the real MR images of an Alzheimer’s subject degraded with
downsampling factor 2 and 2% noise. From Left: Interpolated noisy LR image, spline interpolation of
denoised image, NLM3D-based super-resolved denoised image, LRTV-based super resolution of the
denoised image, the proposed approach super resolving the noisy LR image, and the original noiseless
HR image.

5. Summary

This paper addresses the embedded framework for the super resolution of the noisy MR
images. The smooth and textured/edge patches are categorized, without the prior/estimated
knowledge of noise, and are denoised using different denoising strategies for efficient denois-
ing. Further, the degradation of gradient profiles is addressed specifically for MR images to
regularize the estimation of the HR image with clear tissue boundaries. The experimental sec-
tion demonstrates the significance of proposed different denoising strategies for categorized
patches to achieve efficient denoising. The importance of GPS constraint is demonstrated in
the results section by clear tissue boundaries, i.e., reduced blur and reduced staircase effect,
and higher FSIM values in estimated HR images. The experimental section demonstrates that
the proposed unsupervised denoising approach performs comparably to the conventional [34]
and a few recent supervised denoising approaches [25,35,40], which require prior knowledge
of noise. The proposed integrated framework performs better than the existing unsupervised
approaches [12,13] for super resolution of real MR images (with and without synthetically
added noise). The proposed unsupervised SR method performs better than existing un-
supervised methods for each kind of region (smooth/textured/strong edges) in noisy MR
images, and thus improves the trade-off between denoising and smearing of image details. In
addition, the proposed work performs comparable to the supervised deep learning-based SR
approach [9] indicating the potential of unsupervised approaches.
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