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Abstract: The goal of no-reference image quality assessment (NR-IQA) is to evaluate their perceptual
quality of digital images without using the distortion-free, pristine counterparts. NR-IQA is an
important part of multimedia signal processing since digital images can undergo a wide variety
of distortions during storage, compression, and transmission. In this paper, we propose a novel
architecture that extracts deep features from the input image at multiple scales to improve the
effectiveness of feature extraction for NR-IQA using convolutional neural networks. Specifically, the
proposed method extracts deep activations for local patches at multiple scales and maps them onto
perceptual quality scores with the help of trained Gaussian process regressors. Extensive experiments
demonstrate that the introduced algorithm performs favorably against the state-of-the-art methods on
three large benchmark datasets with authentic distortions (LIVE In the Wild, KonIQ-10k, and SPAQ).

Keywords: no-reference image quality assessment; deep learning; convolutional neural networks

1. Introduction

Image quality assessment has crucial importance in the acquisition, processing, analy-
sis, and reproduction of digital images. Hence, how to design an appropriate algorithm for
objectively evaluating the perceptual quality of digital images is particularly important.
With the advent of large image quality assessment databases [1,2], data-driven deep learn-
ing methods have become popular in this field. In this study, with the aim of providing an
accurate image quality assessment scheme, we propose an innovative deep structure based
on pretrained convolutional neural networks (CNN).

Objective image quality assessment algorithms can be divided into full-reference,
reduced-reference, and no-reference groups depending on the availability of the reference
image. Full-reference image quality assessment (FR-IQA) methods require full access to the
reference image, while no-reference image quality assessment (NR-IQA) algorithms do not
need the reference image. On the other hand, reduced-reference image quality assessment
(RR-IQA) algorithms require partial information about the reference images.

1.1. Related Work

There is a large number of NR-IQA algorithms in the literature [3–6]. Moreover, many
different approaches have been taken. Before the appearance of different deep learning
techniques, NR-IQA research was mainly focused on the application of traditional machine
learning techniques or quality-aware image feature extraction. For example Lv et al. [7]
and Li et al. [8] utilized neural networks for quality prediction. Specifically, Lv et al. [7]
elaborated multi-scale difference of Gaussian (DoG) features and trained a deep neural
network for perceptual image quality prediction, while Li et al. [8] extracted features
from the input images via Shearlet transform and image quality prediction was treated
as a classification problem using neural networks. Many research papers focused on the
construction of natural scene statistics (NSS) features [3,9–11]. The main idea behind NSS-
based approaches is that the human visual system (HVS) has been evolved through natural
selection, and hence it must integrate detailed information about the statistical regularities
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of our visual environment. Over the years, many NSS features have been introduced in
the spatial and transformation domains. For example, Moorthy et al. [10] extracted NSS
features in the wavelet domain over several scales and orientations. On the other hand,
Saad et al. [12] extracted NSS features in the block discrete cosine transform (DCT) domain.
Mittal et al. [3] proposed a feature extraction method using spatial luminance statistics.
Ye and Doermann [13] utilized codebook learning to extract quality-aware features from
images. Specifically, a Gabor filter was applied as local feature extractor and codebooks
were complied from the extracted features. In [14,15], quality-aware feature vectors were
derived from the fist digit distribution in wavelet coefficients, DCT coefficients, and singular
values, the image entropy, and the image moments. Next, the compiled feature vectors
were mapped onto perceptual quality scores using Gaussian process regression.

With the development of deep learning, more and more research has begun to experi-
ment with different deep learning techniques to elaborate effective NR-IQA algorithms.
For example, Kang et al. [4] worked out a NR-IQA method that estimated the perceptual
quality of digital images based on image patches and a trained CNN. First, the input
gray-scale image was normalized. Second, non-overlapping patches were selected from
the normalized image. Subsequently, each patch was sent to the input of a particular
CNN which consisted of five layers. Specifically, the last layers were regression layers
which estimated the perceptual quality of the image patches. Finally, the overall quality
was obtained by averaging the patches’ subscores. Similarly, Li et al. [16] trained a CNN
on image patches but combined CNNs and Prewitt magnitude on a segmented image to
predict image quality. Specifically, weights were determined for each image patch based on
the Prewitt magnitude map. In contrast, Hou et al. [17] trained a discriminative deep model
to classify NSS features into five quality categories, i.e., excellent, good, fair, poor, and
bad. After classification, five grades were assigned to the input image with corresponding
probabilistic confidences. Subsequently, the final quality was determined by a pooling
step. In contrast, Ravela et al. [18] first identified the type of image distortion with the
help of a CNN. Second, the perceived image quality degradation was predicted for each
distortion type. Finally, the perceptual quality was obtained by a weighted average. Simi-
larly, Fan et al. [19] applied a CNN first for image distortion identification. Subsequently,
other CNNs were trained for each image distortion type using image patches cropped
from the input images. Finally, a fusion procedure was applied to obtain the perceptual
quality score of the whole input image. Other researchers applied pretrained CNNs, such
as AlexNet [20] or VGG16 [21], as a feature extractor to elaborate effective quality-aware
features. For instance, Bianco et al. [22] extracted feature vectors from random patches of
an input image by a fine-tuned pretrained CNN model. Subsequently, the extracted feature
vectors were mapped onto subscores with a trained support vector regressor. To obtain
the perceptual quality, the mean of these subscores was taken. In contrast, Gao et al. [23]
extracted resolution independent features from multiple layers of an AlexNet model via
global minimum and maximum pooling. Similarly to the method of Bianco et al. [22],
the layer-wise feature vectors were mapped onto subscores with a trained support vec-
tor regressor and the average of the subscores was taken to get the perceptual quality.
In [24], deep features were extracted from multiple Inception modules of pretrained CNNs,
concatenated together, and mapped onto quality scores.

First, Lin and Wang [25] applied generative adversarial networks [26] (GAN) for NR-
IQA. Specifically, the task of the generative network was to generate a hallucinated reference
(distortion free) image for the distorted, input image. Subsequently, the information
extracted from the hallucinated, reference image was paired with those extracted from the
distorted image to predict the perceptual image quality. Similarly, Ma et al. [27] proposed
a GAN for NR-IQA. In contrast to other methods, the GAN was applied to predict the
primary content of a distorted image and based on this, a multi-stream quality network
was trained to quantify the effects of content, distortion, and degradation dependencies.
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1.2. Contributions

Image representation has been in the focus of the image processing and computer
vision community [28]. Advances in deep learning have motivated the application of deep
features extracted from convolutional neural networks to image quality assessment [29] and
other image processing tasks [30–32]. Inspired by the idea of spatial pyramid pooling [33],
a deep architecture is introduced in this study where deep features are extracted from the
input image at multiple scales to improve the effectiveness of feature extraction. Unlike
other deep architectures [18,22,23], a multi-scale orderless pooling of deep features is
elaborated where feature extraction is performed beginning from local random image
patches at multiple scales. Unlike our previous method [24], the focus is on constructing
an architecture that extracts deep features from multiple scales of an image rather than
examining the effects of deep features extracted from multiple layers of a deep CNN.
Extensive experiments have been carried on three large benchmark IQA databases (LIVE
In the Wild [34], KonIQ-10k [1], and SPAQ [2]) to demonstrate that the proposed method is
able to outperform the state-of-the-art.

1.3. Structure

The rest of the paper is organized as follows. Section 2 gives a detailed description
of the proposed method. Section 3 describes the employed publicly available benchmark
databases used in this study, defines the evaluation criteria, demonstrates experimental
results and analysis, and introduces a comparison to other state-of-the-art algorithms.
Finally, the conclusions are drawn in Section 4.

2. Proposed Method

Inspired by the idea of spatial pyramid pooling [33], a deep architecture is proposed
which extracts feature vectors from multiple image patches at multiple scales starting from
the whole image. The feature vectors of the individual scales are pooled together and
mapped onto perceptual quality scores independently from each other through Gaussian
process regression (GPR). The general overview is depicted in Figure 1. The proposed
architecture has three different scale levels, corresponding to the original size of the input
image, the input size of the applied pretrained CNN, and to the double input size of the
CNN, respectively. To extract the deep features from the different scales of the input image,
we made experiments with three different CNN networks pretrained on the ImageNet [35]
database in a parameter study (Section 3.3).

Given an input image for the first level, we simply extract the feature maps from a
given layer of a pretrained CNN. To compile feature vectors, the extracted feature maps
are run through global average pooling (GAP) layers. GAP layers are applied to decrease
the spatial dimensions of the feature maps into single values by simply taking the average
of all values within a feature map. This way, feature vectors can be created for the first
level whose dimensions are independent from the input image’s size and only depend on
the applied pretrained CNN architecture. Since GAP layers perform a very extreme type
of pooling, important information for IQA may disappear in the case of high-resolution
images. That is why two more scales were added to the network. In the second scale,
square random patches are extracted from the input image whose sizes are twice as much
as the input size of the applied feature extractor pretrained CNN. As in the first scale,
feature maps are extracted from each image patch via the pretrained CNN, and feature
vectors are complied by running the deep feature maps through GAP layers. To compile
one feature vector that characterizes the whole scale, orderless pooling is introduced in
this study (depicted in Figure 2). Let us suppose that we have N f feature vectors with

length M. Let f (j)
i stand for the ith entry of the jth image patch’s feature vector. In the

proposed orderless pooling method, minimum, average, and maximum operators are
defined as follows:

Fmin
i = min

j=1,...,N f
f (j)
i , i = 1, ..., M, (1)
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Favg
i =

1
N f

∑
j=1,...,N f

f (j)
i , i = 1, ..., M, (2)

Fmax
i = max

j=1,...,N f
f (j)
i , i = 1, ..., M. (3)

Figure 1. Block diagram of the proposed method. The proposed method extracts deep features
from the input image at three different scales. The first scale corresponds to the whole image. At
the second scale, square random patches are extracted whose size is the double that of the applied
pretrained CNN’s input size, while the patches’ size corresponds to the input of the pretrained CNN
at the third scale.

In the proposed orderless pooling method, the median operator was not applied,
since we did not experience any performance improvement when the median operator
was added. The reason for that is the results of the average and median operators being
identical or nearly equal in most feature maps of the base CNN.

The output of the orderless pooling layer is the concatenation of the outputs of the
operators defined above:

F = Fmin ⊕ Favg ⊕ Fmax, (4)

where ⊕ stands for the concatenation operator. Similar to the second scale, square random
patches are sampled from the input image in the third scale. However, the size of the
patches corresponds to the input size of the applied pretrained CNN. As a consequence,
feature vectors can be directly extracted from the image patches through the fully-connected
layers of pretrained CNNs. To compile one feature vector that characterizes the third scale,
orderless pooling is applied as in the previous case. In our implementation, 15 random
image patches are extracted in the second scale and 20 patches are sampled in the third scale.

The feature vectors of the three scales are mapped onto perceptual quality scores using
GPRs with rational quadratic kernel functions. To obtain the perceptual quality of the
entire image, the average of the three scales’ predictions is taken. GPRs are non-parametric
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kernel-based probabilistic models [36]. The rational quadratic kernel function allows the
modeling of data at multiple scales [37]. Moreover, the rational quadratic kernel function
corresponds to the infinite sum of radial basis function kernels with various characteristic
length scales. The kernel is given by:

k(xi, xj) =

(
1 +

d(xi, xj)
2

2αl2

)−α

, (5)

where α stands for the scale mixture parameter, l corresponds to the length scale of the
kernel, and d(·, ·) denotes the Euclidean distance function.

Figure 2. Illustration for orderless pooling of feature vectors. The core components of this structure
correspond to a set of statistical functions, i.e., minimum, average, and maximum. Each function
is applied to the set of input feature vectors and the outputs of the functions are concatenated. The
figure is best viewed in color.

3. Experimental Results and Analysis

In this section, our experimental results and analysis are presented. First, we describe
the applied benchmark datasets used in this study in Section 3.1. Second, the definitions
of the applied performance indices and implementation details are given in Section 3.2.
Subsequently, we analyze the experimental results of our proposed method with param-
eters’ design and compare it with other state-of-the-art methods in Sections 3.3 and 3.4,
respectively. In Section 3.5, a cross database is presented where the generalization ability of
the examined NR-IQA algorithms are tested. Finally, the computational times of feature
extraction are compared in Section 3.6.

3.1. Datasets

The detailed information about the publicly available image quality assessment
databases used in this study are summarized in Table 1. As one can see, four large
databases containing images with either authentic or artificial distortions were used in our
evaluation. The KonIQ-10k [1] database consists of 10,073 digital images with authentic dis-
tortions which were evaluated in a large-scale crowdsourcing procedure with 1467 crowd
workers. The images of this database were selected from the YFCC100m database [38].
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Similarly, Ghadiyaram et al. [34] evaluated the perceptual quality of digital images in
a crowdsourcing experiment, but the images were collected from photographers who
were asked to take photos by different mobile device cameras. The SPAQ [2] database
contains 11,125 various high-resolution images taken by a wide variety of mobile cameras.
In contrast to KonIQ-10k [1] and LIVE In the Wild [34] (CLIVE), the captured images
were assessed in a laboratory environment. In contrast to the above-mentioned databases,
TID2013 [39] contains 25 reference images and 3000 distorted images which were derived
from the reference images using 24 types of distortions at five different distortion levels.
The images were evaluated by 971 human observers in five different countries (Finland,
France, Italy, Ukraine, and the USA).

The main features of the used publicly available IQA databases are summarized
in Table 1.

Table 1. Publicly available IQA benchmark databases used in this paper.

Database Year #Distorted Images Resolution Environment

TID2013 [39] 2013 3000 512 × 384 laboratory
CLIVE [34] 2015 1162 500 × 500 crowdsourcing

KonIQ-10k [1] 2018 10,073 1024 × 768 crowdsourcing
SPAQ [2] 2020 11,125 ∼4000 × 4000 laboratory

3.2. Evaluation Criteria and Environment

Pearson linear correlation coefficient (PLCC), Spearman rank order correlation coef-
ficient (SROCC), and Kendall rank order correlation coefficient (KROCC) were used to
evaluate the prediction performance of our method and other state-of-the-art algorithms.
These coefficients were calculated between the ground-truth and predicted scores. A cor-
relation coefficient of 1 corresponds to perfect prediction, while 0 correlation coefficient
indicates no correlation. Specifically, the predicted scores were mapped to the subjective
ratings using the following nonlinear logistic function before calculating the PLCC:

Q = β1

(
1
2
− 1

e−β2(Qp−β3)

)
+ β4Qp + β5, (6)

where Qp and Q stand for the predicted and mapped scores, respectively. The βi(i = 1, ..., 5)
variables are the fitting parameters.

Given paired data (x1, y1), ..., (xm, ym), PLCC is defined as:

PLCC(x, y) =
∑m

i=1(xi − x)(yi − y)√
∑m

i=1(xi − x)2
√

∑m
i=1(yi − y)2

(7)

where x = 1
m ∑m

i=1 xi and y = 1
m ∑m

i=1 yi. On the other hand, SROCC can be defined as:

SROCC(x, y) = PLCC(rank(x), rank(y)) (8)

where the rank(·) operator returns with a vector whose ith element is the rank of the ith
element in the input vector. The definition of KROCC between x and y is

KROCC(x, y) =
nc − nd

1
2 n(n − 1)

(9)

where n is the length of the input vectors, and nc and nd denote the number of concordant
and discordant pairs between x and y, respectively.

The main features of the computer configuration used in our experiments are summa-
rized in Table 2. The proposed method was implemented and tested in MATLAB R2020a
relying on the functions of the Deep Learning Toolbox, the Image Processing Toolbox, and
the Statistics and Machine Learning Toolbox.
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Table 2. Computer configuration applied in our experiments.

Computer model STRIX Z270H Gaming
CPU Intel(R) Core(TM) i7-7700K CPU 4.20 GHz (8 cores)

Memory 15 GB
GPU Nvidia GeForce GTX 1080

To evaluate our proposed method and other state-of-the-art algorithms, the IQA
benchmark database containing authentic distortions (CLIVE [34], KonIQ-10k [1], SPAQ [2])
were divided simply into training (appx. 80% of images) and test sets (appx. 20% of images).
On the other hand, the TID2013 [39] database was divided with respect to the reference
images to avoid semantic content overlap between the training (appx. 80%) and test sets
(appx. 20%). In the followings, median PLCC, SROCC, and KROCC values are reported
which were measured over 100 random train–test splits.

3.3. Parameter Study

In this subsection, a parameter study is carried out to present experimental results with
respect to several different types of pretrained CNNs and layers. Although the proposed
method can be generalized to any other pretrained CNNs, AlexNet [20], VGG16 [21], and
VGG19 [21] were chosen as base CNNs in this study, since they are a very common choice
in IQA [22,23]. A comprehensive evaluation of all possible pretrained CNNs is out of the
scope of this study.

The main characteristics of the applied pretrained CNNs are summarized in Table 3.
AlexNet [20] was a breakthrough in the history of deep learning. It consists of five con-
volutional and three fully-connected layers. Moreover, it introduced the ReLU activation
function and the dropout technique. The main novelty of VGG16 and VGG19 [21] was
that the input image is passed through a stack of convolutional layers where the size of
the filters is 3 × 3 all over. Bianco et al. [22] extracted deep features from the f c7 layer
of AlexNet [20] like pretrained CNNs. In this study, we examine the features of the last
three fully-connected layers of AlexNet [20], VGG16 [21], and VGG19 [21]. The results
are summarized in Figure 3. It can be observed that deep features extracted from the
f c6 layer of the VGG16 [21] network provide the highest correlation values in terms of
PLCC and SROCC. As a consequence, the f c6 layer of VGG16 [21] was chosen as a source
of deep features in the proposed architecture. Moreover, this architecture is codenamed
MSDF − IQA in the following sections and subsections.

(a) (b)

Figure 3. Cont.
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(c)
Figure 3. Performance comparison of deep features extracted from (a) AlexNet [20], (b) VGG16 [21],
and (c) VGG19 [21]. Median Pearson’s linear correlation coefficient (PLCC) and Spearman’s rank
order correlation coefficient (SROCC) values were measured over 100 random train–test splits.

Table 3. On the ImageNet [35] database pretrained CNNs used in this study.

Network Depth Size Parameters (Millions) Image Input Size

AlexNet [20] 8 227 MB 61.0 227 × 227
VGG16 [21] 16 515 MB 138 224 × 224
VGG19 [21] 19 535 MB 144 224 × 224

3.3.1. Effect of the Number of Patches

As already mentioned in Section 2, the number of patches on the second and third scale
were set to 15 and 20, respectively. In this paragraph, experimental results are presented
with respect to different number of image patches on CLIVE [34] and KonIQ-10k [1]. The
results are summarized in Tables 4 and 5. First, we intuitively set the number of patches
to 3 and 4 on the second and third scale, respectively. Next, the number of patches were
increased by 3 and 4 in five steps, respectively. Over 15 and 20 patches, we experienced no
performance gain. This is why 15 and 20 were chosen for the number of patches on the
second and third scale, respectively.

Table 4. Performance comparison on the effect of image patches’ number on CLIVE [34]. Median
PLCC, SROCC, and KROCC values were measured over 100 random train–test splits.

CLIVE [34]
#Patches—Scale2 #Patches—Scale3 PLCC SROCC KROCC

3 4 0.825 0.797 0.604
6 8 0.827 0.800 0.607
9 12 0.828 0.800 0.607

12 16 0.831 0.801 0.607
15 20 0.831 0.801 0.607

Table 5. Performance comparison on the effect of image patches’ number on KonIQ-10k [1]. Median
PLCC, SROCC, and KROCC values were measured over 100 random train–test splits.

KonIQ-10k [1]
#Patches—Scale2 #Patches—Scale3 PLCC SROCC KROCC

3 4 0.888 0.872 0.690
6 8 0.895 0.878 0.696
9 12 0.898 0.882 0.701

12 16 0.899 0.884 0.703
15 20 0.901 0.885 0.703
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3.3.2. Effect of the Scales

As described in Section 2 and depicted in Figure 1, the proposed method extracts
deep features from the input image at three different scales. Specifically, the first scale
corresponds to the whole image, while, at the second scale, image patches are sampled
whose sizes correspond to the double input size of the applied CNN. Finally, at the third
scale, the size of the patches is exactly the same as the input of the CNN. In this paragraph,
we present the performance results of the individual scales. The results are summarized
in Table 6. It can be seen that the features of Scale 3 significantly outperform those of other
scales. Moreover, considering information from all scales improves the performance of
image quality prediction.

Table 6. Performance comparison of different scales on CLIVE [34]. Median PLCC, SROCC, and
KROCC values were measured over 100 random train–test splits.

CLIVE [34] KonIQ-10k [1]
PLCC SROCC KROCC PLCC SROCC KROCC

Scale 1 0.810 0.778 0.586 0.888 0.873 0.687
Scale 2 0.817 0.787 0.595 0.893 0.874 0.690
Scale 3 0.830 0.800 0.600 0.900 0.883 0.700

All 0.831 0.801 0.607 0.901 0.885 0.703

3.4. Comparison to the State-of-the-Art

To compare the proposed MSDF-IQA algorithm with other state-of-the-art methods,
twelve NR-IQA algorithms (DeepRN [40], BLIINDS-II [11], BMPRI [41], BRISQUE [3],
CurveletQA [42], DIIVINE [43], ENIQA [44], GRAD-LOG-CP [45], NBIQA [46], PIQE [47],
OG-IQA [48], SSEQ [49]) were collected whose original source codes are available online.
Moreover, we reimplemented the deep learning based BLIINDER [23] method (available
at: https://github.com/Skythianos/BLIINDER (accessed on on 8 July 2021). To evaluate
the proposed MSDF-IQA algorithm and the other state-of-the-art methods, the applied
benchmark IQA databases (CLIVE [34], KonIQ-10k [1], SPAQ [2]) were divided into a
training (appx. 80% of images) and a test set (appx. 20% of images). The TID2013 [39]
database was divided into a training and a test set with respect to the reference images to
avoid semantic content overlap between these two sets. Moreover, median PLCC, SROCC,
and KROCC values are reported in this study which were measured over 100 random
train–test splits.

The experimental results of our and the other state-of-the-art algorithms on authentic
distortions are summarized in Tables 7 and 8. It can be seen that the proposed MSDF-IQA
is able to outperform the other twelve state-of-the-art algorithms on three very large IQA
benchmark databases (CLIVE [34], KonIQ-10k [1], and SPAQ [2]) containing authentic
distortions. Table 9 contains the results measured on TID2013 [39]. Since TID2013 contains
images with small resolution (512 × 384), the implementation of MSDF-IQA was modified
by considering 1.5× of the base CNN’s input size, instead of 2× on the second scale. As it
can be seen, the proposed method achieves the third best result on TID2013 [39] behind
BLIINDER [23] and DeepRN [40] in terms of PLCC.

To prove that the achieved results are statistically significant, one-sided t-tests were
carried out between the results of MSDF-IQA and those of other state-of-the-art methods.
The results of the significance tests are summarized in Table 10. It can be observed that
the introduced method is able to produce significantly better results than the examined
state-of-the-art algorithms.

Figures 4 and 5 illustrate the boxplots of the measured SROCC values of the examined
NR-IQA algorithms on CLIVE [34] and TID2013 [39] databases, respectively. Specifically,
on each box, the red central mark denotes the median. Moreover, the blue bottom and top
edges of the boxes denote the 25th and 75th percentiles, respectively. The most extreme

https://github.com/Skythianos/BLIINDER
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values, which are not considered as outliers, are indicated by whiskers. Outliers are
depicted by ’+’.

Table 7. Comparison of MSDF-IQA to the state-of-the-art on authentic distortions (CLIVE [34]
and KonIQ-10k [1]). Median PLCC, SROCC, and KROCC values were measured over 100 random
train–test splits. Best results are typed in bold, and second best results are typed in italic.

CLIVE [34] KonIQ-10k [1]
Method PLCC SROCC KROCC PLCC SROCC KROCC

BLIINDER [23] 0.782 0.763 0.576 0.876 0.864 0.668
DeepRN [40] 0.784 0.753 0.579 0.866 0.880 0.666

BLIINDS-II [11] 0.473 0.442 0.291 0.574 0.575 0.414
BMPRI [41] 0.541 0.487 0.333 0.637 0.619 0.421

BRISQUE [3] 0.524 0.497 0.345 0.707 0.677 0.494
CurveletQA [42] 0.636 0.621 0.421 0.730 0.718 0.495

DIIVINE [43] 0.617 0.580 0.405 0.709 0.693 0.471
ENIQA [44] 0.596 0.564 0.376 0.761 0.745 0.544

GRAD-LOG-CP [45] 0.607 0.604 0.383 0.705 0.696 0.501
NBIQA [46] 0.629 0.604 0.427 0.771 0.749 0.515

PIQE [47] 0.172 0.108 0.081 0.208 0.246 0.172
OG-IQA [48] 0.545 0.505 0.364 0.652 0.635 0.447

SSEQ [49] 0.487 0.436 0.309 0.589 0.572 0.423

MSDF-IQA 0.831 0.801 0.607 0.901 0.885 0.703

Table 8. Comparison of MSDF-IQA to the state-of-the-art on authentic distortions (SPAQ [2]). Median
PLCC, SROCC, and KROCC values were measured over 100 random train–test splits. Best results are
typed in bold, and second best results are typed in italic.

SPAQ [2]
Method PLCC SROCC KROCC

BLIINDER [23] 0.872 0.869 0.683
DeepRN [40] 0.870 0.850 0.676

BLIINDS-II [11] 0.676 0.675 0.486
BMPRI [41] 0.739 0.734 0.506

BRISQUE [3] 0.726 0.720 0.518
CurveletQA [42] 0.793 0.774 0.503

DIIVINE [43] 0.774 0.756 0.514
ENIQA [44] 0.813 0.804 0.603

GRAD-LOG-CP [45] 0.786 0.782 0.572
NBIQA [46] 0.802 0.793 0.539

PIQE [47] 0.211 0.156 0.091
OG-IQA [48] 0.726 0.724 0.594

SSEQ [49] 0.745 0.742 0.549

MSDF-IQA 0.900 0.894 0.692

Figure 4. Boxplots of measured SROCC values on CLIVE [34]. The examined NR-IQA algorithms
were evaluated over 100 random train–test splits.
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Table 9. Comparison of MSDF-IQA to the state-of-the-art on artificial distortions (TID2013 [39]).
Median PLCC, SROCC, and KROCC values were measured over 100 random train–test splits. Best
results are typed in bold, and second best results are typed in italic.

TID2013 [39]
Method PLCC SROCC KROCC

BLIINDER [23] 0.834 0.816 0.720
DeepRN [40] 0.745 0.636 0.560

BLIINDS-II [11] 0.558 0.513 0.339
BMPRI [41] 0.701 0.588 0.427

BRISQUE [3] 0.478 0.427 0.278
CurveletQA [42] 0.553 0.505 0.359

DIIVINE [43] 0.692 0.599 0.431
ENIQA [44] 0.604 0.555 0.397

GRAD-LOG-CP [45] 0.671 0.627 0.470
NBIQA [46] 0.723 0.628 0.427

PIQE [47] 0.464 0.365 0.257
OG-IQA [48] 0.564 0.452 0.321

SSEQ [49] 0.618 0.520 0.375

MSDF-IQA 0.727 0.448 0.311

Table 10. One-sided t-test. Symbol ’1’ means that the proposed MSDF-IQA method is statistically
better than the NR-IQA method in the row on the IQA benchmark database in the column, while
symbol ’0’ means that the proposed MSDF-IQA performs significantly worse. Symbol ’-’ is used
when there is no significant difference.

CLIVE [34] KonIQ-10k [1] SPAQ [2] TID2013 [39]

BLIINDER [23] 1 1 1 0
DeepRN [40] 1 1 1 0

BLIINDS-II [11] 1 1 1 1
BMPRI [41] 1 1 1 1

BRISQUE [3] 1 1 1 1
CurveletQA [42] 1 1 1 1

DIIVINE [43] 1 1 1 1
ENIQA [44] 1 1 1 1

GRAD-LOG-CP [45] 1 1 1 1
NBIQA [46] 1 1 1 1

PIQE [47] 1 1 1 1
OG-IQA [48] 1 1 1 1

SSEQ [49] 1 1 1 1

Figure 5. Boxplots of measured SROCC values on TID2013 [39]. The examined NR-IQA algorithms
were evaluated over 100 random train–test splits with respect to the reference images.
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3.5. Cross Database Test

Resolution, spatial information, and image semantics may influence the performance
of machine learning based NR-IQA algorithms. Hence, the generalization ability of NR-
IQA methods are often evaluated in cross database tests, where the methods are trained
on one database and tested on another one. In this study, we have KonIQ-10k [1] and
CLIVE [34] IQA databases for this purpose. Namely, the examined methods were trained
on KonIQ-10k [1] and tested on CLIVE [34]. The results of the cross database test are
summarized in Table 11. It can be seen that the proposed is able to outperform all the other
examined state-of-the-art NR-IQA methods in this test.

Table 11. Cross database test. Methods were trained on KonIQ-10k [1] and tested on CLIVE [34]. The
best results are typed in bold, and the second best ones typed in italic.

Method PLCC SROCC KROCC

BLIINDER [23] 0.748 0.730 0.503
DeepRN [40] 0.746 0.725 0.481

BLIINDS-II [11] 0.107 0.090 0.063
BMPRI [41] 0.453 0.389 0.298

BRISQUE [3] 0.509 0.460 0.310
CurveletQA [42] 0.496 0.505 0.347

DIIVINE [43] 0.479 0.434 0.299
ENIQA [44] 0.428 0.386 0.272

GRAD-LOG-CP [45] 0.427 0.384 0.261
NBIQA [46] 0.503 0.509 0.284
OG-IQA [48] 0.442 0.427 0.289

SSEQ [49] 0.270 0.256 0.170

MSDF-IQA 0.764 0.749 0.552

3.6. Computational Complexity of Feature Extraction

In this subsection, we compare the computational times of feature extraction using
the computer configuration described in Table 2. The results for CLIVE [34], KonIQ-10k [1],
SPAQ [2], and TID2013 [39] are summarized in Table 12. It can be observed that the
traditional machine learning and hand-crafted feature based OG-IQA [48] and GRAD-
LOG-CP [45] are the fastest methods. On the other hand, the extraction of deep features can
be carried out efficiently due to GPU acceleration. This is why the examined deep learning
based methods (BLIINDER [23], DeepRN [40], and MSDF-IQA) are able to outperform
several traditional methods. Moreover, the resolution of input images has lesser impact on
the computational times of feature extraction if the input image and the base CNN fit into
the GPU memory.

Table 12. The best results are typed in bold, and the second best ones typed in italic.

CLIVE [34] KonIQ-10k [1] SPAQ [2] TID2013 [39]

BLIINDER [23] 1.85 4.67 16.74 1.58
DeepRN [40] 1.31 1.74 5.67 1.30

BLIINDS-II [11] 15.23 47.25 1365.82 11.96
BMPRI [41] 0.29 0.78 21.54 0.24

BRISQUE [3] 0.03 0.11 3.36 0.03
CurveletQA [42] 0.65 1.75 26.65 0.49

DIIVINE [43] 6.99 18.79 543.68 5.27
ENIQA [44] 4.19 13.00 363.22 3.25

GRAD-LOG-CP [45] 0.03 0.10 3.05 0.03
NBIQA [46] 6.35 20.07 580.72 5.04

PIQE [47] 0.06 0.17 4.58 0.05
OG-IQA [48] 0.03 0.10 3.15 0.02

SSEQ [49] 0.41 1.28 36.44 0.33

MSDF-IQA 1.45 1.94 5.85 1.34
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4. Conclusions

In this paper, a novel architecture for NR-IQA was proposed that—inspired by the idea
of spatial pyramid pooling—extracts deep features from the input image at multiple scales
to improve the effectiveness of feature extraction using convolutional neural networks.
Specifically, we started to extract deep activation features from local random image patches
at multiple scales. The base scale was the entire image and, at finer scales, the local details
of the image were captured. The extracted deep features were mapped onto perceptual
quality scores with the help of trained Gaussian process regressors. Extensive experiments
demonstrated that the introduced method is able to perform favorably against state-of-the-
art methods on three large benchmark IQA datasets with authentic distortions, such as
LIVE In the Wild [34], KonIQ-10k [1], and SPAQ [2].

To facilitate the reproducibility of the presented results, the source code of the pro-
posed method and test environments written in MATLAB R2020a are available at:
https://github.com/Skythianos/MSDF-IQA (accessed on 8 July 2021).
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