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Abstract: Analysis of degraded ancient documents is challenging due to the severity and combination
of degradation present in a single image. Ancient documents also suffer from additional noise during
the digitalization process, particularly when digitalization is done using low-specification devices
and/or under poor illumination conditions. The noises over the degraded ancient documents
certainly cause a troublesome document analysis. In this paper, we propose a new noise-robust
convolutional neural network (CNN) architecture for degradation classification of noisy ancient
documents, which is called a degradation classification network (DCNet). DCNet was constructed
based on the ResNet101, MobileNetV2, and ShuffleNet architectures. Furthermore, we propose a
new self-transition layer following DCNet. We trained the DCNet using (1) noise-free document
images and (2) heavy-noise (zero mean Gaussian noise (ZMGN) and speckle) document images.
Then, we tested the resulted models with document images containing different levels of ZMGN
and speckle noise. We compared our results to three CNN benchmarking architectures, namely
MobileNet, ShuffleNet, and ResNet101. In general, the proposed architecture performed better than
MobileNet, ShuffleNet, ResNet101, and conventional machine learning (support vector machine and
random forest), particularly for documents with heavy noise.

Keywords: degradation classification; document image analysis; deep learning; degraded ancient
document images

1. Introduction

As one of the most important fields in image processing and pattern recognition,
document image analysis helps machines or computers to understand a documented
content. Unfortunately, analyzing ancient documents is quite challenging because of the
severe degradation present in the documents. Accurate enhancement and restoration
is crucial and must be implemented before analyzing ancient documents. An accurate
enhancement would lead to a more readable and recognizable document. As a result, it is
easier to restore and analyze the information inside the ancient document.

Current document analysis methods cannot tackle all types of degradation and only
deal with a few issues. Additionally, the number and variations of datasets used to build
a model cannot represent the real world [1]. Other problems arise when the document is
digitalized using a device with low sensor sensitivity and/or under poor illumination con-
ditions [2-4]. Here, the digitalization may generate additional, frequently heavy noise on
the document. Inherently, most degraded ancient documents contain multiple degradation
types within a single document [5] and additional digitalization noise, which can lead to
the failure of simple image analysis.

Difficulties in enhancing ancient documents with multiple degradations can be over-
come by partitioning the documents into several parts. These partitions create an easier
mean to detect and classify the degradation type [6]. Recognition of degradation types in
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ancient documents simplifies the restoration and information-extraction steps. However, it
is not feasible to recognize these types manually because of the massive number and varia-
tions of degraded ancient documents around the world. Hence, automatic degradation
classification is required.

Currently, only a few works have reported automatic degradation classification on
degraded document images. A work of automatic degradation classification on private
datasets had been conducted using random forest [7]. Random forest as a traditional
machine learning method uses spatial image information as features. The documents used
in the experiment were synthetic images. The noise considered in the simulation was
digitalization noise, such as border noise, skew, and rotation noises and degradation of
back-to-front interference.

Shahkolei et al. had experimented with degradation classification using support
vector machines (SVM) [8,9]. As another traditional machine learning technique, here,
SVM was used to classify image quality based on a combination of spatial and frequency
image features, namely Visual Document Quality Assessment Metrics (VDQAM) and
Multi-distortion Document Quality Measure (MDQM). In this research, the degraded
document image was classified into four types of degradation: paper translucency, stain,
reader annotations, and worn holes. It was reported that a combination of MDQM and
SVM achieved the best performance on detecting worn-hole distortion, with an average
accuracy of 88.15%.

Performance of traditional machine learning in document classification over a large
database is not favorable enough. Convolutional neural networks (CNN)—as a deep
learning apporach—show superior performance on larger datasets [10]. Since AlexNet,
which has a CNN architecture, won the ImageNet Large Scale Visual Recognition Challenge
(ILSVRC) in 2012, CNN has performed remarkably in image classification and object
recognition. The benchmarking CNN models, such as ResNet101 [11], MobileNetV2 [12],
and ShuffleNet [13], have shown exceptional performances on classification of degradation
types. Moreover, Saddami [14] presented performances of ResNet101, MobileNetV2, and
ShuffleNet in classification of degradation types. However, to the best of our knowledge,
there is no article, not even the newest review and survey articles [15,16] that has reported
results on the capability of those models to classify degraded ancient documents in heavy-
noise environments.

In this paper, we propose degradation classification methods for noisy degraded
ancient documents using a deep neural network architecture, which is called document
classification networks (DCNet). The proposed DCNet is designed to combat heavy
noises inherent in low-quality document analysis application systems. We connected
several stages of MobileNetV2 and ShuffleNet using an activation function called swish
activation. Then, several ResNet blocks were attached and finally followed by the proposed
transition layers.

We highlight three main contributions of this paper. First, we describe and reformulate
degradation types in ancient documents. Second, we propose a novel CNN network
design by modifying three benchmark CNN architectures, and a novel transition layer, for
degradation classification on ancient documents, especially those with considerable noise.
Third, in general, the proposed CNN performs better than ResNet, MobileNetV2, and
ShuffleNet for documents with heavy noise, while the number of learning parameters of
the proposed CNN is less than half of that of ResNet. This suggests that it can be embedded
in a low-cost document image analysis device [17].

The rest of this paper is organized as follows: Section 2 presents a brief discussion
of degradation types. Section 3 explains the proposed CNN architectures, while Section 4
presents the experimental setup. Section 5 discusses the result, and the conclusion is
provided in Section 6.
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2. Literature Review

In this section, we describe degradation in ancient documents, which were of interest
to previous research studies, namely Ntirogiannis [18], Su [19], and Bataineh [20]. We
describe four types of degradation caused by several factors: uniform degradation; bleed-
through or show-through; faint text and low contrast; and smears, stains, or spots. We also
present a brief introduction of support vector machine (SVM).

2.1. Degraded Ancient Documents
2.1.1. Uniform Degradation

If a document image contains degradation, especially in the background, but it is
easy to read and extract the text, the degradation can be defined as a uniform degrada-
tion [21]. An ideally non degraded image has two histogram modalities: the foreground
histogram and the background histogram. This is also the case for uniform degradation.
The histogram is called a uniform or bimodal histogram [21]. A uniform degradation can
be represented as in Equation (1)

Lyt = Itext + Igp 1)

where I;; is the degraded image, I;.y; is the image of the main text, and I, is the degraded
background. Figure 1a shows examples of uniform degradation.

Most ancient document images suffer from uniform degradation, and extracting text
from a document with this degradation type is easier than other types of degradation.
Using simple segmentation or binarization methods such as Otsu [22] or Sauvola [23] can
be successful. According to Ntirogiannis [18], Otsu had a favorable performance on a
document with a bimodal histogram. Consequently, a document that suffers from uniform
degradation (has a bimodal histogram) should be successfully binarized by Otsu. In this
research, uniform (UN) degradation is called UN degradation.
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Figure 1. Examples of document images under different degradation [24-32]: (a) uniform degra-
dation, (b) bleed-through-like degradation, (c) faint text and low contrast, (d) smear or stain or
spot degradation.
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2.1.2. Bleed-Through

A degradation on an ancient document that presents text from the other side of the
documents is termed bleed-through, show-through, or back-to-front interference. Tonazz-
ini [33] considered a bleed-through degradation as a combination of two images, in which
the verso side experienced the transformation process. Each recto and verso of bleed-
through document image can be formulated as in Equation (2) [33].

Ryy = Ciili(x,y) + Cr2la(x,y)

2)
Vx,y = Cxh (x/]/) + sz[z(x,y)

where Ry, and Vy , are the recto and verso side of images, Cy111(x, y) is the intensity of the
main text or image in the recto side, C12I>(x, y) is the defection of ink-bleed from the verso
side, Co1 11 (x, y) is the defection of ink-bleed from the verso to the recto side, and Cpp I (x, )
is the intensity of the verso side’s main text. Moreover, the bleed-through degradation can
be simplified by summing up the uniform degraded image by ink from the verso side [34].
Based on Equation (1), the recto side can be formulated as in Equation (3)

Irs = Itext + Idb (3)

where ;s is the recto-side image, Ijey; is the main text, I, is the background of the image.
As formulated by [34], the bleed-through is determined by Equation (4)

Ipr = Irs + Lps 4
Therefore, the bleed-through degradation can be simplified as in Equation (5) [34]

IBT = Itext + Idb + Ios (5)

where Ip7 is the image with bleed-through or show-through degradation, I;.y; is an image
of the main text, I, is the degraded background of the image, and Is is the image from the
verso side. In this research, the bleed-through or show-through or back-to-front interference
is called bleed-through (BLT) degradation. Examples of bleed-through degradation are
shown in Figure 1b.

2.1.3. Faint Text and Low Contrast

A faint-text image is a document image that suffers from faint or faded text. In this
condition, the text can be damaged or missing. Moreover, this degradation results in a low-
contrast image, in which the background and the text intensity are only slightly different.
This type of degradation makes it difficult to distinguish the text from the background;
therefore, it makes it be difficult to extract the text from this degradation.

According to Bataineh [20], low-contrast images have a low standard deviation value.
This makes sense if the value is one of the parameters for depicting image contrast [35,36].
Furthermore, according to Lins [1], back-to-front interference or bleed-through degradation
have a connection to faint text. Versa text of the degraded document can be a piece of
document that suffered from faded or faint text. In this research, faint-text and low-contrast
degradation is called Faint Text and Low Contrast (FTLC) degradation. Figure 1c shows
examples of faint-text and low-contrast degradation.

2.1.4. Smears, Stains, or Spots

Additional external factors that cover the text area of an ancient document image are
labeled as smear, stain, or spot. Generally, the spot was labeled on degraded documents
covered in small stains. In Figure 1d, we represent a smear, stain, or spot degradation
as a summarization of a uniform document with an external factor covering the text. As
mentioned in Equation (1), a uniform document was formulated as a sum of the main text
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and degraded background. Here, uniform degradation is covered by the external factor;
hence, it is formulated as in Equation (6)

Isss = Itext + Idb + Ief (6)

where I is an image suffering from smear, stain, or spot degradation and I, fisan external
factor that affected the document images. Basically, smear, stain, or spot degradation has
commonalities with bleed-through; however, smears or stains are formed by an unknown
object, while bleed-through represents the leakage of the versa text. In this research, the
smear, stain, or spot degradation is called Smears, Stains, or Spots (SSS) degradation.
Figure 1d shows examples of smear, stain, or spot degradation.

2.2. Support Vector Machine (SVM)

Support vector machine (SVM) is one of the best machine learning techniques for
estimating nonlinear classification, regression, and multivariate functions [37]. Basic SVM
operates as binary classifiers [38]. The SVM goal is to find the best hyperplane that
separates two classes by maximizing margin distance between two outermost data points.
The optimal SVM hyperplane is defined as in Equation (7)

f(x) =wx+m (7)

where f(x) is a hyperplane function, w and m are the weight and the bias of hyperplane,
respectively. The optimal w and m can be computed by minimizing the distance between
the two outermost data points. The distance is defined as in Equation (8)

1 N
minimize(§|W|2 +C) e) 8)
i=1

where C is a trade-off penalty between margin and classification error and €; is an error
control of hyperplane as in Equation (9) [39]

yi(wx+m) >1—¢ )

where y; is the class label which is defined as y; = {+1, —1}.

To solve non-linear problems, the kernel approach, also known as the kernel trick,
was proposed by [40]. The objective of the kernel trick is to map the input feature space
into a high-dimensional space. Polynomial, Gaussian, and Radial Basis Function (RBF)
are the most familiar kernel tricks used in SVM, while, based on the literature, RBF is the
best RBF kernel trick due to its simplicity, efficiency, and adaptability. RBF is defined as in
Equation (10) [41]

K(xi,x;) = exp(=]xi — x;]?) (10)

where 7 is a regularization parameter, and x;, x; is features space from the input.

3. The Proposed Method

One approach to solving major problems in image classification is the use of deeper
neural networks. A deeper network is composed of hundreds of layers and thousands
of channels. In this section, we describe our proposed architecture for degradation clas-
sification on ancient document image, which is called document classification networks
(DCNet) and is shown in Figure 2. Our proposed architecture is based on ResNet [11],
MobileNetV2 [12], and ShuffleNet [13]. MobileNetV2 and ShuffleNet are widely considered
to be fast and accurate CNNs for image classification, while ResNet is the most inspired
and adapted CNN architecture [42,43].
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Figure 2. Architecture of the proposed model.

Swish Activation

Swish

Activation

First, the input image is trained in parallel using MobileNetV2 and ShuffleNet blocks.
Furthermore, those blocks are concatenated and activated using the swish activation layer.
The next stage is the ResNet block stage, followed by our proposed transition layer. Finally,
the last layers are the softmax and classification layers.

ResNet is one of CNN benchmarking architectures, which proposes a residual layer
for enhancing CNN performance on image classification and object detection [11]. The
residual layer of the ResNet is formulated as in Equation (11)

Y =f(x)+x (11)

where Y is the output of the residual layer, x is the input from the previous layer, and f(x)
is residual mapping from the previous layer. Based on Equation (11), Y is the result of the
element-wise addition layer of x after being trained with some computation processes with
x. Figure 3 shows ResNet architecture.

Conv_1 Conv_2 Conv_3
o 1X1 Conv, 64 1X1 Conv, 128 1X1 Conv, 64
nputimage  — 17§f NV, 04 Stde %2 533 Conv, 64 }3>< —>3X3 Cony, 128 }3>< =
’ 1X1 Conv, 256 1X1 Conv, 512
3X3 Conv, 64

ReLU

v

Softmax 1X1 Conv, 256 1X1 Cony, 512
Classification <€— Average Pooling “€«—3X3 Conv, 256 3X «€«—3X3Conv,512 }3X
layer 1X1 Cony, 1028 1X1 Conv, 2048

1X1 Conv, 256

Conv_5 Conv_4
Residual

Figure 3. The basic architecture of ResNet.

MobileNetV2 is a fast, mobile-based CNN, which was extended from MobileNet [44].
MobileNetV2 proposed a new bottleneck of depthwise separable convolution and residual
inverted blocks. It also modified the rectified linear units (ReLU) activation layer by limiting
the positive value to six; this ReLU version is called ReLU6. However, the reason for
limiting was never mentioned in MobileNet [44] or MobileNetV2. Basically, MobileNetV2
consists of two block structures based on stride numbers, which is shown in Figure 4a. Our
proposed networks are arranged in four blocks_1 and two blocks_2. This composition is
half of the original MobileNetV2.

ShuffleNet proposed point-wise group convolutions and channel shuffling methods
to cross features from different channels of CNN. This arrangement resulted in an efficient
CNN, especially for mobile application. ShuffleNet consists of two main stages as shown
in Figure 4b. In our proposed network, we used only one block_1 and one block_2. This
structure has approximately half of the original ShuffleNet.
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Figure 4. The basic architecture of MobileNetV2 and ShuffleNet.

After concatenating MobileNetV2 and ShuffleNet, the weight value is activated using
swish activation layers. Introduced by the Google Brain team, Swish is a self-gated activa-
tion function that is considered better than ReLU activation [45]. Swish is formulated as in
Equation (12) [46].

Swish X = x x sigmoid(p, x) (12)

where f is either a constant or a trainable parameter. Unlike the ReLU function, which is a
monotonic and rigid curve, Swish has a non-monotonic and smooth curve. In our proposed
network, we set the § value to be 1. Therefore, we have a simple sigmoid parameter on the
Swish activation, which resulted in simple computation. Our transition layer consists of
a group convolution layer, a batch normalization layer, a swish layer, a global averaging
pooling (GAP), and a fully connected layer. The transition layers end in a softmax layer.

The group convolution layer performs the convolution process by separating the
channel into several groups. In the proposed network, the group convolution layer has
336 groups with a filter of 5 x 5 pixels. Group convolution has several advantages over the
conventional convolutional layer. It is more efficient in training, and the model has fewer
parameters. The group convolution layer is denoted as in Equation (13) [47].

X1 = Xie ® Wi (13)

Xj denotes input feature maps of the k layer, W represents the filter of the k layer,
and ® is the convolution operator. X} is represented as Xk = {xy1, Xk, ..., Xxg }, and G is
the number of groups of Xj. W is denoted as Wk = {wyq, wyy, ..., wig }- Hence, the group
convolution layer is formulated as in Equation (14)

Xir1 = {Wia * Xia, Wi * Xip, .., Wi * XiG } (14)

Batch normalization (BN) was proposed for solving complicated network training
due to the inconsistency of the layer’s weighted distribution of each iteration during the
training progress [48]. BN offers a normalization process to keep a fixed mean and variance
of the layers. BN resulted in many advantages, such as accelerating the training progress
by enabling high learning rates and saving the training networks from saturated modes.
BN also works as a regularization, so it can replace the dropout stage. A BN is formulated
as in Equation (15)

S — (15)
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where () is the normalized feature value, x(¥) is the input from previous layer, and E[x(*)]
and Var[x(¥)] are the expectation and variance over the training dataset.

Furthermore, GAP is applied to reduce the features of the previous layer by using
the average pooling approach. The idea of GAP is to obtain an activation map for every
category of the classification tasks [49]. GAP calculates one value using average pooling
for every channel of the feature.

4. Experimental Setup
4.1. Datasets

We generated 30,000 image patches from 10 public and 1 private dataset, with a size
of 224 x 224 pixels. The degraded images were obtained from Document Image Bina-
rization Contest (DIBCO) 2009-2018 [24-31], Persian Heritage Image Binarization Dataset
(PHIBD) [32], and the private Jawi dataset [50,51]. From these datasets, we identified four
categories of image degradation: uniform; bleed-through; faint test and low contrast; and
smears, stains, and spots. We collected 7500 image patches from each categories, which
made a dataset with 30,000 image patches in total. The dataset was grouped into training,
validation, and testing parts with a composition of 80%:10%:10%. Hence, we had 24,000 im-
ages for training, 3000 images for validation, and 3000 images for testing. Figure 5 shows
examples of image patches for training the models.

Figure 5. Example of image patches used for data training [24-32].

Image patches in our database were created by selecting images from the original
dataset containing the degradation types mentioned above. For each degradation category,
we chose degradation that has been confirmed/classified in the previous literature. Image
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parts that did not contain noise were ignored. We took patches with size of 224 x 224 pixels,
without doing any pre-processing. If a region had been patched, then the next region taken
as a patch was an area least 50 pixels away from the previous patch, so that there would be
no overlapping patch.

4.2. Parameter Settings

For training purposes, we used adaptive moment estimation, or Adam, as the opti-
mizer [52]. Adam is an adaptive learning gradient with momentum and magnitude of the
gradient. Adam is proposed for improving RMSprop as an adaptive learning rate for bias
correction [53]. The square gradient decay factor that was used for the Adam optimizer is
0.999 and was the default value used in the paper. The initial learning rate of the training
process was set to 1073. We used cross-entropy as the loss function. Furthermore, we
used L2Regularization with the value of lambda (A) equal to 105, These parameters were
obtained as the best values based on our hyper-parameter experiments. Due to resource
availability, we trained each CNN model using 25,000 batches size.

4.3. Simulations

To evaluate the robustness of our proposed model, we trained DCNet and three
CNN benchmarking architectures, namely MobileNet, ShuffleNet, and ResNet101, for
comparison purposes. The training was performed on (1) noise-free images and (2) heavy-
noise images. The heavy-noise images consisted of heavy zero-mean Gaussian noise
(ZMGN)-noise images (o = 0.125) and heavy speckle-noise images (¢ = 0.25). Thus, we
obtained three models from each architecture, which made a total of 12 models. Then,
we tested each of the models with the ZMGN and speckle noise images with different
levels of noise (different o). We tested our model on ZMGN by adjusting variance (o)
to o = {0.005,0.01,0.05,0.1,0.125}, and, for speckle noise, we adjusted variance (o) to
o ={0.05,0.075,0.1,0.15,0.2,0.25}. Figure 6 shows examples of the testing images after
applying various noises.

Furthermore, we compared DCNet with traditional machine learning, namely support
vector machine (SVM) and random forest (RF) [7,9]. We set SVM kernel to RBF function and
trained it using one-versus-one approach. We used 1000 trees to perform the RF training
process. We used the visual document quality assessment metric (VDQAM) method as the
feature extractor [8].

To show the robustness of our proposed method in classifying degradation types, we
present classification results of the four degradation types, using the f-measure (FM) metric.
In this case, we trained the model with noise-free images.

4.4. Evaluation Performance

We evaluated our proposed model using accuracy and F-measure (FM). Accuracy is
formulated as in Equation (16)

TP+TN
TP+ FP+TN+FN

where true positive (TP) is the correct prediction of the class image, true negative (TN) is
the correct prediction of the different class, false positive (FP) is an image that is wrongly
predicted as the class image, and false negative (FN) is a class image that is wrongly
predicted as a different class.

Furthermore, F-measure (FM) is is determined by Equation (17)

Accuracy = (16)

2 X Recall x Precision
FM = Recall + Precision (17)

where recall is presented as TPE% and precision is TPT7+PFP In the subsequent parts we
show the training and validation loss graphics and testing accuracy.
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(b)

Figure 6. Example of images with heavy noise [24-32], where: (a) the document image suffered
from zero-mean Gaussian noise (bottom), and (b) the document image suffered from speckle

noise (bottom).

5. Result and Discussion
5.1. Training Results

Figure 7 shows training and validation loss charts of all CNN architectures. Figure 7a
presents the overall training loss of training progress, while Figure 7b shows validation
loss. DCNet and ShuffleNet obtained the lowest loss value during the training process,
while ResNet101 and MobileNetv2 achieved the highest loss value. This result indicated
that DCNet has a good performance during training process. Furthermore, the validation
loss chart shows corresponding trends with the training loss. Based on Figure 7b, DCNet
accomplished validation loss under 0.5 starting from 100 validations, while ResNet101 and
MobileNetV2 obtained similar performance after 200 validations. ShuffleNet showed a
similar validation loss with DCNet, but it was quite unstable (shown by fluctuated graphs).
The proposed model resulted in a more stable performance compared with ResNet101,
MobileNetV2, and ShuffleNet.
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Figure 7. Training performance: (a) training loss, (b) validation loss.

5.2. Results of the Noise-Free Model

In the first simulation condition, the CNN architectures were trained on noise-free
images and tested on images with zero-mean Gaussian noise (ZMGN) and speckle noise.
The testing and comparison results are shown in Figure 8a,b.

Based on Figure 8a, ResNet101’s accuracy reached almost 100% when the noise level
was low (¢ = 0.005). Moreover, DCNet, MobileNetV2, and ShuffleNet obtained accu-
racy between 40% and 60%. However, when the noise level was increased, ResNet101’s
performance dropped drastically to around 40%; in contrast, the accuracy of DCNet, Mo-
bileNetV2, and ShuffleNet decreased only by around 8%, 8%, and 5%, respectively. DCNet
achieved better performance when ¢ > 0.1, which indicated heavier noise.

A similar trend was also present with speckle noise (see Figure 8b), DCNet achieved
higher accuracy when the noise level was high (¢ > 0.1). Under heavy noise, the pro-
posed model achieved accuracy between 35 and 45%, while ResNet101, MobileNetV2, and
ShuffleNet only obtained accuracy between 33 and 37%, 24 and 26%, and 29 and 31%,
respectively. Under light noise (¢ < 0.1), ResNet101 performed the best, while DCNet
came in second place. DCNet resulted in a noise-robust performance and the best classi-
fication result against heavy noise levels, compared with ResNet101, MobileNetV2, and
Shufflenet. A heavier noise level reduced ResNet101’s performance; the chart experienced
a gradual decline, but ResNet101 showed a promising classification performance on light
ZMGN and speckle noise. MobileNetV2 and ShuffleNet showed a lower accuracy in both
noise conditions.

5.3. Results of the ZMGN-Noise Model

In the second simulation condition, CNN models were trained on heavy zero-mean
Gaussian noise (ZMGN) with noise variance o = 0.125 and tested on zero-mean Gaussian
noise (ZMGN) and speckle noise with different noise levels. The testing and comparison re-
sults are shown in Figure 8c,d. Based on Figure 8c, DCNet shows a promising performance
shown by an increasing accuracy values starting from noise variance (o) 0.01. DCNet
accuracy is higher than that of ResNet101 when o = 0.125.

In the training stage, the images were trained with heavy ZMGN noise images
(0 =0.125). This may explain why, as noise level increased in the testing stage, the the
performance of all CNN models improved. At o = 0.125, each model achieved its best
accuracy, and all models performed similarly.

Based on Figure 8d, DCNet and ShuffleNet show a moderate improvement. However,
the accuracy of both DCNet and ShuffleNet declined from ¢ = 0.2. MobileNetV2 and
ResNet101 remained constant even when the noise variance was increased. Here, ResNet101
achieved the most stable performance when the CNN was trained on ZMGN noise.
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5.4. Results of the Speckle-Noise Model

In the third simulation condition, CNN models were trained on heavy speckle noise
with noise variance (¢) of 0.25 and tested on zero-mean Gaussian noise (ZMGN) and
speckle noise with different noise levels. The testing and comparison results are shown
in Figure 8e f. Based on Figure 8e, DCNet demonstrates a promising performance with
a significant increment of accuracy values starting from noise variance ¢ = 0.01 and
reached the best performance when noise variance ¢ = 0.25. ShuffleNet showed a a
similar tendency with the DCNet, while ResNet101 and MobileNetv2 showed a fluctuated
performance. Figure 8f presents testing results of degradation classification that applied
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speckle noise on the testing image. Similar to what is shown in Figure 8e, DCNet resulted in
a promising performance on degradation classification, particularly on heavy noise images.
DCNets graph showed a significant improvement in accuracy values, from the smallest to
the biggest noise levels. Its best performance was achieved at the noise variance ¢ = 0.25.
ShuffleNet shows a similar performance to DCNet, while ResNet101 and MobileNetV2
show a stable performance with slight accuracy increment.

5.5. Comparison with Traditional Machine Learning

Tables 1 and 2 show comparison performance of DCNet, as a deep learning approach,
with traditional machine learning namely support vector machine (SVM) and random forest
(RF). Based on Table 1, DCNet resulted in the best performance in classifying degradation
on ancient documents with noise-free training images. The heavier noise only slightly
affects the SVM and RF performance. The accuracy values of classification were similar, for
either SVM or RF, when the DCNet trained with ZMGN and speckle noise images. The
accuracy of SVM and RF was lower than 42% if ZMGN was applied on the testing images.
In contrast, DCNet reached an accuracy of 92%. In general, a better result was achieved
when the testing noise was speckle noise, as shown in Table 2. The SVM and RF can reach
an accuracy of 50%, while DCNet achieved an accuracy of 94%, which was significantly
higher than those of SVM and RF.

Table 1. Comparison of accuracy value with traditional machine learning on zero mean Gaussian
noise (ZMGN) testing images. Bold fonts indicate the best results.

Testing Image Applied ZMGN Noise
Model Trained on noise-free image
Methods c=0.0 o =0.005 c=0.01 o =0.05 c=01 o=0.125

DCNet 100.0 54.00 47.0 42.00 45.00 46.00
SVM 78.00 35.60 35.00 35.57 35.77 34.03
RF 70.17 27.17 27.03 27.17 26.57 28.67

Model Trained on ZMGN image
Methods c=0.0 o =0.005 o =0.01 o =0.05 c=01 o =0.125

DCNet 41.10 43.70 64.40 75.90 90.10 92.20
SVM 25.00 25.23 25.53 23.70 21.57 22.33
RF 37.37 34.32 34.13 37.70 41.33 41.17

Model Trained on Speckle image
Methods c=0.0 o =0.005 c=0.01 c=0.05 c=01 c=0.125

DCNet 29.50 27.50 32.30 40.40 64.10 76.40
SVM 25.00 31.73 31.67 30.63 30.23 31.50
RF 64.97 34.17 34.50 36.70 36.47 35.80

The results of SVM and RF tend to be similar even if various noise variance was
added to the image. In SVM and RF, we need to extract the hand-crafted feature, Here,
we used the visual document quality assessment metric (VDQAM) method as the feature
extractor. We observed that varying noise variance did not change the resulted VDQAM
features; thus, it would affect the classification performance. In other words, when we
use traditional machine learning in classification, it was proven that the classification was
determined by the hand-crafted feature, not by the visual image condition. According to
Tables 1 and 2, applying ZMGN noise on testing images was successfully handled by the
DCNet that was trained with noise-free images and noisy images. For traditional machine
learning, the model that was trained using speckle images has a better performance when
tested either on ZMGN or speckle noise images. These results indicated that the DCNet
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has a better performance as compared to traditional machine learning (in this case SVM
and RF) in degradation classification tasks of noisy images.

Table 2. Comparison of accuracy value with traditional machine learning on speckle testing image.
Bold fonts indicate the best results.

Testing Image Applied Speckle Noise

Model Trained on noise-free image

Methods c=0.0 o =0.05 o =0.075 c=0.1 oc=0.15 c=02 =025

DCNet 100.0 44.00 42.00 41.00 41.00 40.10 39.00
SVM 78.00 40.13 40.50 34.03 44.90 45.47 46.03
RF 70.17 23.57 23.83 28.67 24.37 23.47 23.67

Model Trained on ZMGN image
Methods ¢=00 ¢=005 ¢=0075 0¢=01 0¢=015 0¢=02 0=025

DCNet 41.1 67.8 77.2 83.8 88.1 85.7 76.5
SVM 25.00 31.03 34.57 37.47 40.37 43.90 46.37
RF 37.37 42.40 40.90 41.83 48.63 53.05 55.83

Model Trained on Speckle image
Methods ¢=00 ¢=005 ¢=0075 0¢=01 0¢=015 0¢=02 00=025

DCNet 29.5 40.5 44.8 62.0 82.3 91.2 94.3
SVM 25.00 40.93 46.27 53.60 66.17 71.63 72.63
RF 65.37 44.87 50.80 56.80 65.97 73.50 74.67

5.6. Performance of Deep Learning Models in Degradation Classification

In this subsection, we present the performance of CNN models in classifying degrada-
tion types. We did the training on noise-free images. Tables 3 and 4 show the performance
of CNN models in classifying degradation types on ancient document images.

Table 3 presents a comparison of CNNs’ model performance on ZMGN. DCNet
achieved the best performance in classifying FTLC and SSS degradations with heavy
noise (o > 0.05). DCNet also accomplished a similar performance to MobileNetV2 on
BLT degradation. Unfortunately, the proposed model did not succeed in recognizing
Uniform (UN) degradation. Under the same condition, the MobileNetV2 obtained a better
performance UN, which was shown by a non-zero values. In contrast, under light noise
conditions, ResNet101, which has a much larger model than the others, obtained the highest
FM result, followed by DCNet, MobileNetV2, and ShuffleNet. In general, the BLT and the
FTLC are easier to classify compared with the SSS and the UN. During the experiment, we
found that most of the SSS- and UN-degraded images were classified as BLT or FTLC.

Table 4 presents a comparison of CNNs’ model performance on documents with
speckle noise. DCNet achieved the best performance in classifying FTLC and SSS degra-
dations under heavy noise conditions (¢ > 0.1). It accomplished a similar performance
to MobileNetV2 on BLT degradation. Similar to ZMGN noise, the proposed model did
not succeed in recognizing UN degradation. MobileNetV2 obtained a better performance
on UN degradation (it has non-zero values). However, it failed to classify document im-
ages with FTLC and SSS degradation, as well as ShuffleNet. Under light noise conditions
(0 < 0.1), ResNet101 obtained the best result for all noise types.

According to Tables 3 and 4, ResNet101 showed acceptable performance only on light
noise images, but its performance dropped dramatically on heavy noise of all noise types.
Under heavy noise, MobileNetV2 and ShuffleNet failed in classifying noisy images with
FTLC and SSS degradations; these models had worse performances than DCNet. As for
UN, MobileNetV2, ShuffleNet, DCNet, and ResNetl101 obtained almost zero FM values
for all noise conditions. It was determined that all models failed in classifying UN with
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any noise conditions. Therefore, it can be inferred that MobileNetV2 and ShuffleNet works
only on BLT degradation.

ResNet101 has the limitation of being implemented in a low-cost system because
it only works on light-noise images and fails on heavy-noise images. MobileNetV2 and
ShuffleNet are also inappropriate for implementation in a low-cost document analysis
application because they only performed well on BLT degradation. The facts that a low-cost
digitalization device resulted in heavy-noise images, and that the simulations showed that
DCNet is robust to heavy noises, confirm that the proposed architecture is the suitable
CNN for a low-cost document image analysis system.

DCNet consists of half of ResNet101, MobileNet, and ShuffleNet and self-proposed
transition layers. Table 5 shows the number of learning parameters of all the networks.
DCNet has 18.9 million parameters, which is fewer than ResNet101 but more than Mo-
bileNetV2 and ShuffleNet. However, MobileNetV2 and ShuffleNet showed a less stable
performance compared with DCNet for all conditions. Therefore, we argue that increas-
ing learning parameters in DCNet is a compromise to accomplish robust degradation
classification on documents with heavy noise.

Table 3. Performance of convolutional neural network (CNN) models on different types of degrada-
tion and additional zero-mean Gaussian noise (in F-measure). Bold fonts indicate the best results.

o = 0.005
BLT (%) FTLC (%) SSS (%) UN (%)
ResNet101 98.14 99.10 98.22 97.19
MobileNetV?2 48.60 79.41 27.11 1.73
ShuffleNet 50.89 43.26 79.45 49.87
DCNet 59.26 68.00 55.49 0.00
o =0.01
BLT (%) FTLC (%) SSS (%) UN (%)
ResNet101 93.36 96.05 91.83 93.96
MobileNetV2 45.20 25.75 10.79 0.00
ShuffleNet 44.33 11.32 62.35 13.11
DCNet 49.34 59.85 47.44 0.00
o =0.05
BLT (%) FTLC (%) SSS (%) UN (%)
ResNet101 67.73 52.51 44.12 1.78
MobileNetV?2 44.72 0.00 0.20 0.38
ShuffleNet 41.65 4.76 25.02 0.00
DCNet 32.85 51.94 42.89 0.00
c=0.1
BLT (%) FTLC (%) SSS (%) UN (%)
ResNet101 33.78 43.51 25.63 0.00
MobileNetV?2 45.67 0.00 0.00 0.00
ShuffleNet 40.89 2.18 0.00 0.51
DCNet 36.65 56.37 40.82 0.00
o =0.125
BLT (%) FTLC (%) SSS (%) UN (%)
ResNet101 27.14 42.52 19.98 0.00
MobileNetV2 45.87 0.00 0.00 0.48
ShuffleNet 40.67 0.00 0.00 0.00

DCNet 40.58 58.15 41.53 0.00
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Table 4. Performance of CNN models on different types of degradation and additional speckle noise

(in F-measure). Bold fonts indicate the best results.

o =0.05
BLT (%) FTLC (%) SSS (%) UN (%)
ResNet101 87.57 66.82 83.72 35.02
MobileNetV?2 4496 0.00 6.00 1.42
ShuffleNet 43.11 6.71 47.68 2.37
DCNet 43.42 55.48 45.56 0.00
o =0.075
BLT (%) FTLC (%) SSS (%) UN (%)
ResNet101 77.34 57.85 65.32 11.08
MobileNetV?2 44.84 0.00 4.85 1.07
ShuffleNet 42.02 6.63 30.94 0.00
DCNet 39.54 55.80 45.20 0.00
c=0.1
BLT (%) FTLC (%) SSS (%) UN (%)
ResNet101 62.12 51.85 50.75 291
MobileNetV?2 44 .95 0.00 2.54 0.53
ShuffleNet 41.40 5.57 21.91 0.00
DCNet 37.74 55.82 44.60 0.00
o =0.15
BLT (%) FTLC (%) SSS (%) UN (%)
ResNet101 37.23 454 27.73 0.00
MobileNetV?2 45.32 0 1.76 0.64
ShuffleNet 41.14 6.39 18.68 0.00
DCNet 38.06 59.82 42.27 0.00
c=0.2
BLT (%) FTLC (%) SSS (%) UN (%)
ResNet101 33.57 43.87 20.14 0
MobileNetV2 45.28 0 0.59 0.64
ShuffleNet 41.14 6.2 18.84 0.00
DCNet 39.63 58.13 36.03 0.00
o =0.25
BLT (%) FTLC (%) SSS (%) UN (%)
ResNet101 31.89 42.89 17.51 0
MobileNetV?2 45.32 0 0 0.64
ShuffleNet 41.02 6.19 17.51 0
DCNet 42.38 47.26 26.09 0

Table 5. Comparison of learning parameters with baseline CNN models.

Models Number of Parameters (millions)
ResNet101 44.6
MobileNetV?2 3.5
ShuffleNet 14
DCNet 18.9
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6. Conclusions

We propose a novel CNN architecture for degradation-type classification of noisy
ancient documents. The proposed model is called degradation classification network
(DCNet). DCNet is a combination of MobileNetV2, ShuffleNet, ResNet101, with newly
proposed transition layers. The degradation types under consideration were bleed-through;
faint text and low contrast; smears, stains, or spots; and uniform degradations. We trained
the DCNet using (1) noise-free document images and (2) heavy-noise document images
in which the noise was zero mean Gaussian noise (ZMGN) and speckle noise. Then, we
tested the resulting models with document images containing the ZMGN and speckle
noise images with different noise levels. We compared the performance of DCNet with
three CNN benchmarking architectures, namely MobileNet, ShuffleNet, and ResNet101, in
terms of training loss, validation loss, and accuracy. We also extended our experiments
to assess two machine learning approaches’ (support vector machine and random forest)
classification performance. It turned out that the DCNet demonstrated a better performance
as compared to other methods, particularly for documents with heavy noise.
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