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Abstract: Radiomics analysis is a powerful tool aiming to provide diagnostic and prognostic patient
information directly from images that are decoded into handcrafted features, comprising descriptors
of shape, size and textural patterns. Although radiomics is gaining momentum since it holds great
promise for accelerating digital diagnostics, it is susceptible to bias and variation due to numerous
inter-patient factors (e.g., patient age and gender) as well as inter-scanner ones (different protocol
acquisition depending on the scanner center). A variety of image and feature based harmonization
methods has been developed to compensate for these effects; however, to the best of our knowledge,
none of these techniques has been established as the most effective in the analysis pipeline so far. To
this end, this review provides an overview of the challenges in optimizing radiomics analysis, and
a concise summary of the most relevant harmonization techniques, aiming to provide a thorough
guide to the radiomics harmonization process.

Keywords: radiomics; MRI; batch effect; variability; feature stability; image harmonization; feature
harmonization; multicenter studies; standardization

1. Introduction

Radiomics, a rapidly evolving field in medical image analysis, aims to enable digital
decoding of images into high-throughput quantitative features, aiding earlier and more
precise care in clinical decision making [1,2]. It is applied in different medical image
modalities, including magnetic resonance imaging (MRI), computed tomography (CT)
and positron emission tomography (PET) based on the concept that images potentially
contain hidden patterns of the underlying pathophysiology of the examined tissue [1,2].
The extracted image features are usually volume, shape, intensity or textural features,
calculated using several mathematical equations from the image analysis domain [3].
Radiomics features are prone to bias and variability caused by a number of factors such as
the: (i) acquisition protocols and image reconstruction settings, (ii) image preprocessing,
(iii) detection and segmentation of the examined region of interest (ROI), and (iv) radiomics
feature extraction (Figure 1) [4]. This can significantly influence the absolute value and
the statistical distribution of the radiomics features, subsequently having a considerable
impact on the robustness and generalizability of any further analysis derived from them.
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Figure 1. The radiomics analysis workflow, as partially depicted in one of our radiomics studies [5],
and the different factors that affect harmonization.

In a significant number of radiomics studies, the above variability effects are signif-
icantly reduced when images are obtained from a single center or a unique acquisition
protocol/vendor [6–12]. Nevertheless, this homogeneity in the radiomics features yields to
analyses that are susceptible to center and protocol/vendor specific dependencies, thus are
not diverse enough to generalize to new images obtained from a different data source or
acquisition setup. To address this issue, multicenter radiomics studies can foster radiomics
transfer and applicability in the clinical setting [13]. However, although studies using data
from multiple centers potentially accelerate radiomics generalizability, clinical adoption of
radiomics is limited by variability issues that exist in all analysis steps (Figure 1) [14].

Harmonization processes have been proposed as a solution to reduce the inherent
variability in medical images. In general, harmonization attempts to overcome the lack of
comparability between medical images and the absence of reproducibility in radiomics
features. For example, it is often difficult to clarify whether the results of a study can be
applied to data obtained at another institution or whether results from multiple institutions
can be pooled together. In other words, harmonization aims towards consistent and
robust findings in multicenter radiomics studies. To the best of our knowledge, up to now,
harmonization has been investigated less extensively in MRI compared to PET and CT [2].
This might be due to the technical challenges of the MRI, comprising among others non-
standardized signal intensities that are highly dependent on the manufacturer and image
acquisition specifics (e.g., scanner model, coil, sequence type, acceleration, bandwidth,
field echo, matrix size, voxel size, slice thickness, slice gap, repetition time, echo time, and
acquisition time) [15,16]. Indicatively, findings of a recent study on brain MRI showed that
the calculated radiomics features vary widely depending on the pulse sequence, while
another study on cervical cancer demonstrated that only few radiomics features were robust
across different MRI scanners and acquisition parameters [17,18]. For these reasons, the
focus of this paper is on the MRI domain, aiming to provide a systematic overview of the
radiomics harmonization strategies and to shed light on all challenges raised in every single
step of the radiomics analysis workflow. For the convenience of the reader, this review study
divides these approaches into two broad categories, although both approaches could also be
used in conjunction: (i) the image-based harmonization techniques that are applied across
images before the radiomics feature extraction, and (ii) the feature-based harmonization
techniques, aiming to reduce the differences across the features by either modifying how
these features are calculated or by post-processing them after their extraction [4,19]. Table 1
summarizes recent work on MRI radiomics harmonization.
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Table 1. Radiomics harmonization in recent multicenter MRI studies.

Reference MRI Sequences/
Cancer Type Variation Across Harmonization

Techniques Clinical Question

A. Carre et al.
(2020) [16]

T1w, T2w-fl1air
(brain-glioma) 3 centers Intensity-based Tumor grade

classification

M. Bologna et al.
(2019) [20]

T1w, T2w
(brain) 27 centers Intensity-based Feature stability

H. Moradmand et al.
(2019) [21]

FLAIR, T1, T1C, and T2
(brain-glioblastoma) 8 centers Intensity-based

Edema, necrosis,
enhancement, and

tumor

Y. Li et al. (2021) [22] T1
(brain) 2 scanners Both Scanner effect removal

L. J Isaksson et al.
(2020) [23]

T2w
(prostate cancer) 1 scanner Intensity-based Cancer identification

A. Crombe et al.
(2020) [24]

T2w
(sarcoma) 3 centers Intensity-based

Prediction of
metastatic-relapse-free

survival

Chatterjee et al.
(2019) [25]

T2-weighted fast spin
echo (denoted as T2);

T1-weighted fast
gradient echo with

DCE-MRI and a
postcontrast image

(post-Gado);
and diffusion-
weighted MRI

(primary uterine
adenocarcinoma)

2 centers Intensity-based
Lymphovascular space

invasion and
cancer staging

K.A. Wahid et al.
(2021) [26]

T2w
(head and neck)

15 HET cohorts-15
HOM- cohorts Intensity-based Radiotherapy

treatment

J. C. Reinhold et al.
(2018) [27]

T1-w, T2-w, and FLAIR
(brain)

1 dataset with
18 patients Intensity-based Medical image

synthesis

J. P. Fortin et al.
(2018) [28]

MRI
(brain) 11 scanners Feature-based Cortical thickness

harmonization

J. C. Beer et al.
(2019) [29]

Structural MRI
(brain) 58 sites Feature-based Alzheimer prediction

C. Ma et al. (2019) [30] 3D Cardiac MRI 20 scans (10 training
and 10 test) Intensity-based Image segmentation

D. Tian et al. (2022) [31] T1 MRI
(brain) 12 centers Intensity-based Gray matter analysis

M. Shah et al.
(2011) [32]

T1w, T2w, and PDw
(brain) 10 scanners Intensity-based Multiple sclerosis

lesion identification

Liu et al. (2018) [33] T2w
(brain-glioma) 2 cohorts Intensity-based

Prediction of
progression-free

survival in
lower-grade gliomas

F. Lucia et al.
(2019 [34])

T1, T2 DWI
(cervical cancer) 3 centers Feature-based Cervical cancer

prognosis
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Table 1. Cont.

Reference MRI Sequences/
Cancer Type Variation Across Harmonization

Techniques Clinical Question

Peeken et al. (2019) [35]

Contrast-enhanced
T1-weighted fat

saturated (T1FSGd),
fat-saturated

T2-weighted (T2FS)
(sarcoma)

2 cohorts Intensity/
feature-based

Classification of low
and high grade soft

tissue sarcoma

Liu et al. (2019) [36] T1w,T2w-fl1air
(brain) 4 centers Feature-based

Prediction of the
individualized

treatment response in
children with
cerebral palsy

C. Hognon et al.
(2019) [37]

T1, T1c, T2, FLAIR
(glioblastoma) 3 centers Intensity-based Image segmentation

R. Da-Ano et al.
(2020) [38]

Post-injection
gadolinium

contrast-enhanced MRI
(GADO),

T2-weighted MRI (T2)
and apparent

diffusion coefficients
(ADC) maps

from diffusion-
weighted MRI

(cervical cancer)

3 centers Feature-based Prediction and
treatment adaptation

D. Moyer et al.
(2020) [39]

Diffusion MRI
(brain)

15 patients from
2 scanners Intensity-based White Matter analysis

G. Modanwal et al.
(2020) [40]

DCE-MRI
(breast cancer)

124 patients from
2 scanners Intensity-based Evaluation

J. Zhong et al.
(2020) [41]

Neonatal DTI-MRI
(brain)

84 neonates data from
2 sites Deep Learning Harmonize neonatal

data

K. Armanious et al.
(2020) [42]

T1
(brain) 11 patients Intensity-based Motion correction

Scalco et al. (2020) [43] T1w, T2w
(prostate)

3 different organs of
interest Intensity-based Reproducibility

estimation

R. Da-Ano et al.
(2021) [44]

Post-injection
gadolinium

contrast-enhanced MRI
(GADO), T2-weighted
MRI (T2) and apparent
diffusion coefficients

(ADC) maps from
diffusion-weighted

MRI (cervical cancer)

3 centers Feature-based Prediction

Saint Martin et al.
(2021) [45]

T1, T2, T1-DCE
(breast)

2 phantoms
(2 scanners and 3 dual

breast coils)
Both Lesion classification

N.K. Dinsdale et al.
(2021) [46]

T1w
(neuroimages) 3 dataset centers Feature-based Age prediction and

segmentation

F. Orlhac et al.
(2021) [47]

T1, FLAIR and
contrast-enhanced

T1-weighted (CE-T1w)
images and T2w
(brain/prostate)

2 centers Feature-based

Impact of
harmonization to

distinguish between
Gleason grades
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2. Image-Based Harmonization Techniques
2.1. Image Acquisition and Reconstruction

In multicenter studies, scanner and protocol variability issues usually occur since
diverse imaging data are collected from different clinical sites and acquisition protocols.
Moreover, images are sensitive to inter-subject variations caused by the subject and the
scanned body region. To confront this challenge, image acquisition and reconstruction
parameters need to be standardized across the various centers that are responsible for the
examined clinical study [19,48]. This can be achieved when issues regarding the scanner
type, the acquisition and reconstruction parameters are equivalently considered in the
initial design of the imaging protocol. It is of note to mention that in the case of CT and
PET imaging, many studies investigated the impact of harmonized image reconstruction
and acquisition parameters on feature consistency stating that harmonization on PET/CT
images from different vendors can be achieved [49,50]. The European Association of Nu-
clear Medicine (EARL) program is commonly used to harmonize the systems, providing
guidelines on scan acquisition, image processing, interpretation of images and patient
preparation [51,52]. Additional guidelines, reviewed in [19], are provided by the European
Society for Therapeutic Radiology and Oncology (ESTRO), the American Society for Radia-
tion Oncology (ASTRO) and the Center for Drug Evaluation and Research (FDA). However,
to the best of our knowledge, none of them refer to MRI [19].

2.2. Image Preprocessing

Image preprocessing is a significant part in the analysis pipeline that induces in-
creased levels of variability in radiomics. It can be broken down into four consecutive
steps: (i) interpolation, (ii) bias field correction, (iii) normalization, and (iv) discretization.
Each step consists of various parameters with a considerable impact on the robustness
and the absolute values of the features (e.g., distortions/non-uniformities attenuation due
to noise, gray-scale and pixel size standardization) [2,20]. Indicatively, image preprocess-
ing exhibited a significant impact in MRI studies when phantom [20] and glioblastoma
data [21,53] were utilized to improve radiomics stability. From the technical perspective,
image preprocessing is usually performed in computing environments like Python and
Matlab and is often combined with software packages for radiomics features extraction
(PyRadiomics, CERR, IBEX, MaZda and LIFEx) [2,48].

2.2.1. Interpolation

Image interpolation, divided into upsampling and downsampling, manages to resize
an image from an original pixel grid to an interpolated grid. Several interpolation algo-
rithms are commonly used in the literature, including among others the nearest neighbor,
trilinear, tricubic convolution and the tricubic spline interpolation. A thorough review is
given in [54]. According to the image biomarker standardization initiative (IBSI) guide-
lines [54], interpolation is a prerequisite in radiomics studies since it enables texture features
extraction from rotationally invariant three-dimensional (3D) images [54]. In addition, it
ensures that spatially-related radiomics features (e.g., texture features) will be unbiased,
especially in the case of MRI where images are often non-isotropic [2]. To this end, there
is evidence that interpolating images in a consistent isotropic voxel space can potentially
increase radiomics reproducibility in multicenter studies (e.g., CT and PET studies have
shown dependencies between feature reproducibility and the selected interpolation al-
gorithm [55–58]). This was also shown in [53] where three distinct measures assessed
the impact of image resampling to reduce voxel size variations from images acquired at
1.5 T and 3 T; these measures were based on: (i) differences in feature distribution before
and after resampling, (ii) a covariate shift metric, and (iii) overall survival prediction. To
this end, isotropic resampling through a linear interpolation decreased the number of
features dependent on the different magnetic field strengths from 80 to 59 out of 420 fea-
tures, according to the two-sided Wilcoxon test. However, models deployed from the
resampled images failed to discriminate between high and low overall survival (OS) risk
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(p-value = 0.132 using cox proportional hazards regression analysis). Phantom and brain
MRI were isotropically resampled to voxels of length 1 mm in a study where combinations
of several preprocessing and harmonization processes were applied to compensate for
differences in the acquisition settings (magnetic field strength and image resolution) [22].
Radiomics reproducibility was evaluated on a feature-level using the “DiffFeatureRatio”,
calculated as the ratio of the radiomics features with a p-value of less than 5% (different
feature distributions due to scanner effects) to the overall radiomics features. In most of
the cases, the isotropic voxel spacing caused a decrease in the “DiffFeatureRatio”, and a
reduction of the scanner effect impact. However, still no clear recommendation can be
made about the most effective interpolation technique in multicenter MRI radiomics [54].
In addition, although isotropic interpolation enables radiomics feature extraction in the
3D domain, a per slice (2D) radiomics analysis is recommended when slice thickness is
significantly larger than the pixel size of the image (e.g., slice thickness of 5 mm and a pixel
size between 0.5 and 1 mm) [6].

2.2.2. Bias Field Correction

Bias field is a low frequency signal that may degrade the acquired image [59] and
lead to an inhomogeneity effect across the acquired image. Its variation degree differs not
only between clinical centers and vendors but also at the patient level even when a single
vendor or acquisition protocol is used. Bias field correction can be implemented using
Gradient Distribution Based methods [60], Expectation Maximization (EM) methods [61]
and Fuzzy C-Means based [62]. However, N4 Bias Field Correction [63], an improved
version of the N3 Bias Field Correction [64], has been one of the most successful and
widely used techniques. It has been used extensively in various anatomical sites (e.g.,
brain tumor segmentation [65] and background parenchymal enhancement [66]) and the
reason for its success is that it allows faster execution and a multiresolution scheme that
leads to better convergence compared to N3 [63]. To this direction, a multicenter MRI
study showed that when N4 bias field correction was applied prior to noise filtering, an
increase in the total number of the reproducible features was achieved according to the
concordance correlation coefficient (CCC), dynamic range (DR), and intra-class correlation
coefficient metric (ICC) [21]. Indicatively, in the case of necrosis, the number of robust
features was increased when radiomics was performed on the bias field corrected images
rather than on the raw imaging data (32.7%, CCC and DR ≥ 0.9). Interestingly, when bias
field correction was applied prior to noise filtering, the necrotic regions of the tumor had
the highest number of extremely robust features (31.6%, CCC and DR≥ 0.9). Another study
explored stability of radiomics features with respect to variations in the image acquisition
parameters (time of repetition and echo, voxel size, random noise and intensity of non-
uniformity) [20]. MRI phantoms represented an averaging of 27 co-registered images of
real patients (i.e., with different image acquisition parameters); and features with an ICC
higher than 0.75 were reported as stable. The study showed that N4 Bias Field Correction,
coupled with a common isotropic resolution resampling, had a significant impact on
radiomics stability (particularly on first-order and textural features). Conclusively, Bias
Field Correction is strongly recommended as a pre-processing step in multicenter studies.

2.2.3. Intensity Normalization

To compensate for scanner-dependent and inter-subject variations, signal intensity
normalization has been deployed to change the range of the signal intensity value within
the ROI. This is achieved by calculating the mean and the standard deviation of the signal
intensity gray-levels within the predefined ROI, or by transforming the ROI histogram to
match a reference signal intensity 1-dimensional histogram [16,22–27,67]. The importance
of intensity normalization was emphasized in the literature but no principal guidelines
have been established yet. On the other hand, seven principles for image normalization
(a.k.a SPIN) were proposed [68] in order to produce intensity values that: (i) have a
common interpretation across regions within the same tissue type, (ii) are reproducible,
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(iii) maintain their rank, (iv) share similar distributions for the same ROI within and across
subjects, (v) are not affected by biological abnormalities or population heterogeneity, (vi) are
minimally sensitive to noise and artifacts, and (vii) do not lead to loss of information related
to pathology or other phenomena. Noting that Inorm(x) and I(x) are the intensities of the
normalized and the raw MRI respectively, the most commonly used intensity normalization
techniques are outlined below (publicly available repositories are summarized in Table 2).

Table 2. Harmonization techniques publicly available on GitHub.

Reference. Harmonization Method GitHub

Reinhold et al. [27] Fuzzy C-means https://github.com/jcreinhold/intensity-normalization, accessed
on 9 September 2022

Reinhold et al. [27] Gaussian mixture model (GMM) https://github.com/jcreinhold/intensity-normalization, accessed
on 11 October 2022

Reinhold et al. [27] Kernel Density Estimate (KDE) https://github.com/jcreinhold/intensity-normalization, accessed
on 30 August 2022

Shinohara et al. [68] Z-Score
https://github.com/jcreinhold/intensity-normalization, accessed

on 8 October 2022;
https://github.com/Jfortin1/RAVEL, accessed on 8 October 2022

Shinohara et al. [68] White Stripe

https://github.com/jcreinhold/intensity-normalization, accessed
on 11 September 2022;

https://github.com/Jfortin1/RAVEL, accessed on 11 September
2022

Fortin et al. [69] Ravel
https://github.com/jcreinhold/intensity-normalization, accessed

on 12 August 2022;
https://github.com/Jfortin1/RAVEL, accessed on 12 August 2022

Nyul et al. [70] Histogram Matching

https://github.com/jcreinhold/intensity-normalization, accessed
on 24 October 2022;

https://github.com/Jfortin1/RAVEL, accessed on 24 October
2022;

https://github.com/sergivalverde/MRI_intensity_normalization,
accessed on 24 October 2022

Johnson et al. [71]
Fortin et al. [28] ComBat, M-Combat

https://github.com/Jfortin1/ComBatHarmonization, accessed on
18 September 2022;

https://github.com/ncullen93/neuroCombat/tree/
master/neuroCombat, accessed on 18 September 2022

Horng et al. [72] Nested & GMM ComBat https://github.com/hannah-horng/generalized-combat, accessed
on 3 October 2022

Beer et al. [29] Longitudinal ComBat https://github.com/jcbeer/longCombat, accessed on 31 October
2022

Johnson et al. [71]
Fortin et al. [28]

ComBaTool
Standalone web application

https://forlhac.shinyapps.io/Shiny_ComBat/, accessed on 27
September 2022

Garcia-Dias et al. [73] NeuroHarmony https://github.com/garciadias/Neuroharmony, accessed on 23
August 2022

C. Ma et al. [30] Deep Learning https://github.com/horsepurve/StyleSegor, accessed on 21
September 2022

D. Tian et al. [31] Deep Learning https://github.com/DezhengTian/DeRed-Harmonization,
accessed on 22 September 2022

Z-score normalizes the original image I(x) by centering the intensity distribution at
a mean (µ) of 0 and a standard deviation (σ) of 1 [68]. Computationally, Z-score is not
time consuming and can be applied easily by subtracting the mean intensity either of the
entire image or a specific ROI from each voxel value, followed by dividing the result by the
corresponding standard deviation [26].

Inorm(x) =
I(x)− µ

σ
(1)

WhiteStripe is a biologically driven normalization technique, initially deployed in
brain radiomics studies, which applies a Z-score normalization based on the intensity
values of the normal-appearing white matter (NAWM) region of the brain [68]. The NAWM
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is used as a reference tissue, since it is the most contiguous brain tissue and is, by definition,
not affected by pathology (leading to conformity to SPIN 5) [68]. To this end, WhiteStripe
normalizes the signal intensities by subtracting the mean intensity value of the NAWM (µ)
from each signal intensity I(x), and dividing the result by the standard deviation of the
NAWM (σ).

Min–Max standardizes the image by rescaling the range of values to [0, 1] using the
Equation (2), where the min(x) and max(x) are the minimum and the maximum signal
intensity values per patient, respectively [26].

Inorm(x) =
I(x)−min(x)

max(x)−min(x)
(2)

Normalization per healthy tissue population is performed when the signal intensity
values of a given image are divided by the mean intensity value of the healthy tissue (e.g.,
adipose tissue or muscle in musculoskeletal imaging) [26].

Inorm(x) =
I(x)

mean
(

xhealtytissue

) (3)

Fuzzy C-means (FCM) uses fuzzy c-means to calculate a specified tissue mask (e.g.,
gray matter, white matter or the cerebrospinal fluid) of the image [27]. This mask is then
used to normalize the entire image based on the mean value of this specified region. The
method procedure is based on the following Equation (4) where c ∈ R>0 is a contrast that
determines the specified tissue mean after normalization.

Inorm(x) =
c · I(x)

µ
(4)

Gaussian mixture model (GMM) assumes that: (i) a certain number of Gaussian dis-
tributions exist in the image, and (ii) each distribution represents a specific cluster [27].
Subsequently, GMM clusters together the signal intensities that belong to a single dis-
tribution. Specifically, GMM attempts to find a mixture of multi-dimensional Gaussian
probability distributions that best model a histogram of signal intensities within a ROI. The
mean of the mixture component, associated with the specified tissue region, is then used in
the same way as the FCM-based method according to (4) with a constant c ∈ R>0.

Kernel Density Estimate (KDE) estimates the empirical probability density function
(pdf) of the signal intensities of an image I over the specified mask using the kernel density
estimation method [27]. The KDE of the pdf for the signal intensity of the image is then
calculated as follows:

p̂(x) =
1

N ·M · L · δ
N·M·L
∑
i=1

K
(

x− xi
δ

)
, (5)

where x is the intensity value, K is the kernel (usually a Gaussian kernel), and δ is the
bandwidth parameter which scales the kernel K. The kernel density estimate provides a
smooth version of the histogram which allows us to robustly pick the maxima associated
with the reference mask via a peak finding algorithm. The peak ρ is then used to normalize
the entire image, in the same way the FCM does. Specifically,

Inorm(x) =
c · I(x)

ρ
(6)

where the c ∈ R>0 is a constant that determines the reference mask peak after the normalization.
Histogram-matching is proposed by Nyul and Udupa to address the normalization

problem by first learning a standard histogram for a set of images and then mapping the
signal intensities of each image to this specific histogram [32,70]. The standard histogram
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learns through averaging pre-defined landmarks of interest (i.e., intensity percentiles at
1, 10, 20, . . . , 90, 99 percent [32]) of the training set. Then, the intensity values of the
test images are mapped piecewise and linearly to the learned standards histogram along
the landmarks.

Ravel (Removal of Artificial Voxel Effect by Linear regression) is a modification of
WhiteStripe [69]. It attempts to improve the White Stripe by removing an unwanted
technical variation, e.g., scanner effects. The Ravel normalized image is defined as:

Iravel(x) = IWS(x)− γxZT (7)

where IWS is the WhiteStripe normalized image, γxZT represents the unknown technical
variation and γx are the coefficients of unknown variations associated with voxel x.

Several multicenter studies examined the influence of signal intensity normalization
in MRI radiomics variability. Fortin et al. compared Ravel, Histogram Matching and
WhiteStripe normalization methods using T1-weighted brain images [70]. Ravel had the
best performance in distinguishing between mildly cognitively impaired and healthy sub-
jects (area under the curve—AUC= 67%) compared to Histogram Matching (AUC = 63%)
and WhiteStripe (AUC = 59%). Scalco et al. evaluated three different normalization tech-
niques, applied to T2w-MRI before and after prostate cancer radiotherapy [43]. They
reported that, based on the ICC metric, very few radiomics features were reproducible
regardless of the selected normalization process. Specifically, first-order features were
highly reproducible (ICC = 0.76) only when intensity normalization was performed using
histogram-matching. A brain MRI study reported that Z-score normalization, followed
by absolute discretization, yielded robust first-order features (ICC & CCC > 0.8) and
increased performance in tumor grading prediction (accuracy = 0.82, 95% CI 0.80–0.85,
p-value = 0.005) [16]. A radiomics study in head and neck cancer explored the intensity
normalization effect in: (i) an heterogeneous multicenter cohort comprising images from
various scanners and acquisition parameters, and (ii) a prospective trial derived from a
single vendor with same acquisition parameters [26]. Statistically significant differences
(according to Friedman and the Wilcoxon signed-rank test) in signal intensities before
and after normalization were only observed in the multicenter cohort. Additionally, Z-
Score (using ROI) and histogram matching performed significantly better than Min–Max
and Z-Score, when the entire image was used. This indicates that the addition of a large
background area to the Z-score calculations can adversely affect the normalization process.
Intensity normalization should also be performed cautiously in cases where a healthy tissue
is delineated as the reference ROI (e.g., WhiteStripe where Z-score normalization is based
on the NAWM) since significant changes can occur in this area from pathological tissue
changes and/or after treatment (e.g., structural and functional changes from a radiation
therapy) that can potentially alter the signal intensity values within the reference ROI [26].
Summing up, to the best of our knowledge, there is no clear indication whether to use
intensity normalization with or without a reference tissue. On the one hand, normalization
like the Z-Score is simple to implement, as it requires only the voxels within the ROI. On
the other hand, WhiteStripe and its modifications can potentially perform better when
the reference ROI is accurately segmented and the corresponding areas is known to be
unassociated with disease status and or other clinical covariates.

Deep Learning (DL) methods (Table 2) are also used, in lieu of the well-known interpo-
lation methods for image normalization [4]. These methods rely on Generative Adversarial
Networks (GAN) [37,41] and Style Transfer techniques (ST) [30,74]. When it comes to the
GANs, the idea is to construct images with more similar properties so that the extracted
radiomics features can be comparable. Despite their novelty, the phenomenon of disap-
pearing gradients makes GAN training a challenging process because it slows down the
learning process in the initial layers or even stops completely [19]. Furthermore, GANs are
also prone to generate images with similar appearance as an effect of mode collapse which
occurs when the generator produces only a limited or a single type of output to fool the
discriminator [19]. Due to this, the discriminator does not learn to come out of this trap,
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resulting in a GAN failure. Last but not least, GAN-based models can also add unrealistic
artifacts in the images.

A solution to this problem is Style Transfer where two images called Content Image
(CI) and Style Image (SI) are used to create a new image that has the content of CI rendered
according to the style of SI. This can help to overcome scanner acquisition and reconstruc-
tion parameter variability. The Style Transfer approach is used for image harmonization
by either image-to-image translation or domain transformations [30] (Table 2), [74,75].
Although it can be achieved via Convolutional Neural Networks (CNNs) [76], there are
other choices for style transfer such as GANs, used for PET–CT translation and MRI mo-
tion correction [42]. Due to the aforementioned disadvantages of GANs, which (in the
case of vanishing gradients) can be unpredictable, the use of Style Transfer with CNNs
is recommended.

2.2.4. Discretization

Discretization, the last step of image preprocessing, aims to cluster the original signal
intensities of the pixels according to specific range intervals. These intervals are the bins
which compose the signal intensity histogram. The purpose of this step is to limit the
range of the intensities in order to calculate the radiomics features more efficiently [77].
Discretization depends on the following parameters: (i) the range of the discretized quantity,
and (ii) the number and the width of bins [2]. Fundamentally, the range equals the product
of the bin number times the bin width. Thus, the crucial parameter of the discretization
step is the proper choice of the number and the width of bins. However, optimal parameter
choice has not been defined yet [2].

Recent studies have shown the impact of discretization on the reproducibility of MRI-
based radiomics features [16,78–82]. Specifically, discretization had a direct impact on
stability (irrespective of observers), on software and on segmentation methods [78]. As
documented in related literature, the absolute discretization with fixed bin size/width (FBS)
method and the relative discretization with fixed bin number (FBN) method are commonly
used. According to the IBSI definition [54], the fixed bin size/width method consists of two
different resampling methods outlined below:

IBS(i) =
{

I(i)
BS

}
−
{

Imin
BS

}
+ 1 (8)

where the IBS(i) is the discretized gray-level of the i-th voxel, I(i) is the original i-th signal
intensity, Imin is the original minimum signal intensity of a particular ROI and BS is the bin
width. The term

{
Imin
BS

}
+ 1 ensures that the gray-level rebinning starts at 1. Alternatively,

the absolute resampling can be defined by:

IBS(i) =
[

I(i)
BS
− 1
]

(9)

The relative discretization with fixed bin number is applied to every signal intensity
from a pixel within the ROI to a fixed number of bins (BN) as defined by:

IBN(i) =

{
1, i f I(i) = Imin[

BN ∗ I(i)−Imin(i)
Imax(i)−Imin(i)

]
, otherwise

(10)

where IBN(i) is the discretized gray-level of the i-th pixel after FBN discretization, and BN
corresponds to the fixed number of bins between Imin and Imax, which are the minimum
and the maximum intensities of the ROI, respectively.

Gray-level discretization using FBS was suggested in the literature since it provides:
(i) more reproducible radiomics features compared to the FBN [78,80,82], and (ii) signifi-
cantly lower ICC values when altering the bin size instead of changing the bin number of
the FBN [78–81]. On this subject, Molina et al. reported variability issues in post-contrast
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T1-weighted MRI radiomics features of the brain using two different imaging protocols [79].
Specifically, their findings showed that texture features were highly sensitive to the bin
number choice, further resulting in significantly different model results. Indicatively, in
the case of lacrimal gland tumors and breast lesions, Duron et al. evaluated the inter- and
intra-observer radiomics reproducibility using a combination of ICC and CCC metrics
with 0.8 and 0.9 as thresholds, respectively [78]. When FBS and FBN were both applied
in two independent MRI cohorts, high numbers of reproducible features were obtained
using large bin numbers (i.e., 512, 1024) and small bin widths (i.e., 1, 5, 10, 20), respec-
tively [78]. Moreover, they found that: (i) the FBS method provided a higher number
of reproducible features than the FBN method; (ii) more consistent model results were
reported from bin size variations than from bin number variation in FBN; and (iii) the
FBS method is less sensitive to inter- and intra-observer segmentation variability. Two
recent studies also showed radiomics features dependency on the binning parameters,
stressing the importance for a careful optimal parameter selection in the discretization
process [16,82]. Gergo Veres et al. reported the effect of two different FBS versions and
of one FBN method in T1- and T2-weighted MRI from multiple sclerosis, ischemic stroke,
and cancer [82]. Both FBS versions were favored by the analysis and recommended for
discretization in brain MRI radiomics. Moreover, in brain MRI radiomics models, [16] also
proposed, on one hand, the FBS method when using first- and second-order features, and
on the other, the FBN when the models were constructed exclusively from second-order
features. In both cases, 32 bins were recommended. It should be noted that although the
FBN discretization is recommended for images with arbitrary units (e.g., T2 MRI) [54],
recent research suggests that IBSI should explore the possibility of updating its guidelines
to recommend the FBS discretization method in MRI studies [6,78]. For future multicenter
studies, one common practice to investigate the impact of gray-level discretization on MRI
could be the calculation of a scaling factor as shown in the equation below [16]:

FBS =
1

FBN
×meanRange (11)

where FBS and FBN correspond to the size and the number of bins, respectively; and
meanRange is the mean of the intensity intervals of the region of interest.

2.3. Image Segmentation

Image segmentation is a standard in the radiomics analysis workflow with a consider-
able influence on the quality of the extracted features [2]. It can be performed by commercial-
based and open-source tools, including among others the 3D Slicer [83] [slicer.org], MITK
[mitk.org], ITK-SNAP [itksnap.org], MevISLab [mevislab.de], LifEx [lifexsoft.org], Im-
ageJ [84] and in-house software [78]. Technically, image segmentation can be conducted
manually, semi-automatically or fully automatically. In manual segmentation, the expected
ROI is highly recommended to be drawn by domain experts since the observers’ expertise
directly affects the repeatability and reproducibility of the radiomics features [78,85–88].
However, potential variations in their experience can still influence the reproducibility
of the radiomics features. Semi-automatic segmentation is usually applied by region-
growing algorithms [89–91], gradient-based models [92–95] or intensity thresholding-based
methods [96], whereas deep learning algorithms nowadays achieve great performance in
automated image segmentation [97–100].

Manual and semi-automated segmentations often suffer from the intra- and inter-
observer segmentation variability, related to the degree of consistency between ROI de-
lineations taken, whether by the same or different observers. The assessment is usually
made by a feature stability analysis followed by selecting those particular features that are
reproducible across the different ROI delineations. Indicatively, a study by [85] reported
that shape features are more prone to inter-observer variability in MRI than in CT. While
fully automatic techniques seem to be the best choice to eliminate observer variability, lack
of generalizability limits their segmentation performance [2]. Loic Duron et al. conducted
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several experiments using manual (from three experts) and computer-aided annotations
from two independent datasets [78]. A combined cutoff of pairwise ICC values from the
manual annotations (>0.8) and CCC on the intra-observer pair (>0.9) was determined to
select the most reproducible features. However, in most of the studies, intra and inter-
observer segmentation variability is underestimated due to the specific number of readers
(i.e., two readers) who perform the annotations [85,86,88]. The literature suggests that
annotations should be delineated both from a fully automated segmentation tool and the
clinical experts, followed by a Dice coefficient similarity score to assess agreement on
the segmentations [78]. To this end, fully-automated segmentation using deep learning
is nowadays becoming mainstream in radiomics studies. This includes the use of U-net
on breast lesions [97], the DeepMedic and 3D CNNs on glioblastoma tumors [98,99] and
the V-Net on prostate cancer [100]. However, it should be taken into consideration that
generalizability in deep learning segmentation can only be achieved when a significant
amount of data is used for training [2]. The ROI segmentation effect on different feature
groups has been investigated extensively on PET/CT [101]. In the case of MRI, a radiomics
variability study on cervical cancer found that entropy was the feature which was most
reproducibly independent of observer effects (ICC > 0.9) [102], whereas Fiset et al. showed
that shape features were the most stable ones in three different cohorts (ICC ≥ 0.75) when
first-order, shape, texture, LoG and wavelet features were explored [103].

3. Feature-Based Harmonization Techniques
3.1. Batch Effect Reduction
3.1.1. Combining Batches (ComBat)

ComBat is a data driven post-processing method and a widely used harmonization
technique utilized to correct “batch-effects” in genomics studies [71]. Interestingly, it
shows promising results towards facilitating features harmonization and reproducibility in
radiomics studies [22,38,104]. From the technical perspective, it employs empirical Bayes
methods to estimate the differences in feature values due to a batch effect. Subsequently,
these estimates are used to adjust the data. ComBat performs location and scale adjustments
of the radiomics features within centers in order to remove the discrepancies introduced by
technical differences in the images [38]. Specifically, it assumes that feature values can be
standardized by the following equation:

Zijg =
Yijg − âg − X · β̂g

σ̂g
(12)

where Z corresponds to the standardized radiomics feature g for sample j and the center I;
Y refers to a raw radiomics feature g for sample j and center I; â and σ̂ are the features-wise
mean; β̂ is the standard deviation estimates; and X is a design matrix of non-center related
covariates and is the vector of regression coefficients corresponding to each covariate. The
standardized data is assumed to be normally distributed Zijg ∼ N

(
γig, δ2

ig

)
, where γ and

δ are the center effect parameters with Normal and Inverse Gamma prior distributions,
respectively. Then, ComBat performs a feature transformation based on the empirical Bayes
prior estimates for γ and δ of each center, respectively. The final center effect adjusted
values (referred as YComBat

ijg ) are given by:

YComBat
ijg =

σ̂g

δ̂ComBat
ig

·
(

Zijg − γ̂ComBat
ig

)
+ âg − X · β̂g (13)

where δ̂ComBat
ig and γ̂ComBat

ig are the Empirical Bayes estimates of δ̂2
ig and γ̂ig, respectively.

Recently, a comprehensive guide was provided on the proper use of Combat in multicenter
studies [105].

Combat harmonization has been an essential part in radiomics analysis, especially
in multicenter studies. In a recent study, ComBat contributed to facilitating radiomics
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harmonization when variability from cortical thickness measurements was evident in
images acquired from 11 different scanners [28]. In [47], ComBat was enabled to transform
MRI-based radiomics features derived from: (i) T1 phantom images and T1-weighted brain
tumors using 1.5 T and 3 T scanners, and (ii) publicly available prostate data acquired
in two centers. The statistical analysis (Friedman and Wilcoxon tests) demonstrated the
elimination of the scanner effect and an increased number of statistically significant features
to differentiate low- from intermediate/high-risk Gleason scores. In addition, a radiomics
model based on linear discriminant analysis was implemented in order to distinguish
low- from intermediate/high-risk Gleason scores. Before ComBat, the model yielded
a Youden Index of 0.12 (Sensitivity = 19%, Specificity = 93%) while after ComBat, the
Youden Index increased to 0.20 (Sensitivity = 27%, Specificity = 93%). Interestingly, when
the Gleason grade was used as covariate, in ComBat the Youden Index increased to 0.43
(Sensitivity = 58%, Specificity = 86%). Another study [34] harmonized radiomics features
from apparent diffusion coefficient (ADC) parametric maps and successfully predicted
disease free survival and locoregional locally advanced cervical cancer when validated
externally from two different cohorts (accuracy of 90%, 95% CI (79–98%), sensitivity 92–93%,
and specificity 87–89%) after ComBat and (82–85%) without harmonization.

3.1.2. M-ComBat

ComBat centers the radiomics features to an overall mean of all samples. Consequently,
the new adjusted data are shifted to an arbitrary location that no longer concurs with the
location of any of the original centers [38]. M-ComBat, a modified version of ComBat,
addresses this problem towards shifting data to the mean and variance of the chosen
reference center (r). This is achieved by changing the standardized mean and variance of
the estimates âi and σ̂i to center-wise estimates for ˆai=r,g and ˆσi=r,g [88,89].

3.1.3. B-ComBat, BM-ComBat

B-ComBat and BM-ComBat are two modifications of the initial models using bootstrap-
ping. Initial estimates, obtained in ComBat and M-ComBat, are resampled B times with
replacement. Resamples in both models are then fitted in order to obtain the B estimates of
the coefficients ( γ∗ig, a∗g, a∗i=r,g, δ∗ig). Finally, the estimates of the coefficients are computed
using the Monte Carlo method by getting the mean of B estimates. In the literature, a no-
table increase in the performance of the radiomics models was reported when images were
batch-effect corrected using either B-Combat or BM-Combat [38]. Specifically, Da-ano et al.
assessed the impact of four different ComBat versions (ComBat, M-ComBat, B-ComBat,
and BM-ComBat) when three radiomics models were deployed for locally advanced cervi-
cal cancer (LACC) and locally advanced laryngeal cancer (LALC) predictions. Although
all versions succeeded in removing the differences among the radiomics features, it was
M-ComBat and BM-ComBat that slightly outperformed other techniques in terms of model
performance. Utilizing M-ComBat, balanced accuracy was increased from 79% to 85% for
LACC and from 79% to 89% for LALC. An increase in the performance was also evident in
the case of BM-ComBat (i.e., balanced accuracy was increased from 82% to 89% for LACC
and from 82% to 86% for LALC).

3.1.4. Transfer Learning ComBat

One of the basic limitations of ComBat is its inability to harmonize new “unseen data”,
thus images, acquired from a center or a vendor never seen at the feature transformation
phase. In other words, once new data from a different source is added in the analysis,
ComBat needs to re-establish and apply from scratch the harmonization process to the
updated cohort in addition to the new images. To address this issue, a study in [44]
proposed a modified ComBat coupled with a transfer learning technique to permit the use
of previously learned harmonization transforms to the radiomics features of the “unseen
data”. This integration was performed on the original ComBat and all of its modifications
with satisfactory results.
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3.1.5. Nested ComBat, NestedD ComBat

Nested ComBat, differentiating from the original version where radiomics features
are harmonized by a single batch effect at a time, provides a sequential radiomics features
harmonization workflow to compensate for multicenter heterogeneity caused by the multi-
ple batch effects [72]. In addition, Horng et al. claimed that features may not only follow
a Gaussian distribution, as ComBat assumes, but a bimodal distribution as well [72]. To
handle this, the authors introduced NestedD, with the purpose of the evaluation of their
hypothesis that removing significantly different features in their distributions across the
batch effects could potentially improve harmonization performance. Although this process
is contrary to ComBat methodology which exploits all available information [38], NestedD
was recommended for high-dimensional datasets where there is room for improvement
towards reducing the information loss effect [72]. It is worth mentioning that the perfor-
mance of both alternatives is not yet evaluated in MRI studies. Both methods are publicly
available as referred to in Table 2.

3.1.6. GMM ComBat

The Gaussian Mixture Model (GMM) is another ComBat modification, relying on
the GMM split method to handle bimodality coming from the variation of unknown
factors [72]. It comes as an alternative to ComBat to confront potential issues arising from
the assumption that all imaging factors (batch effects and clinical covariates) become known
in light of the variation in results due to new factors and that cannot be corrected. To the
best of our knowledge, GMM ComBat has so far only been evaluated on CT studies.

3.1.7. Longitudinal ComBat

Although longitudinal (or temporal) data are important for the measurement of intra-
subject change, previous ComBat variants focus exclusively on radiomics harmonization
from cross-sectional data. To further expand ComBat applicability in the longitudinal
domain, authors from [29] used the following mixed linear:

yijv(tk ) = av + βv1(baseline age) + βv2 I(sex = male) + βv3 I(diagnosi = LMCI) + βv4 I(diagnosis)
(= AD) + βv5 · tk + βv6 I(diagnosis = LMCI) · tk + βv7 I(diagnosis = AD) · tk + βv8 I(scannerk )

(= 2) + · · ·+ βv(m+7) I(scannerk = m) + ηjv + εijv(tk )
(14)

where the extra insertions are the additive terms of the factor tk, the number of years that
are passed from baseline age, and I(.) is an indicator function equal to one if the argument
condition is true and zero otherwise. Hence, the longitudinally-oriented ComBat (source
code is available on GitHub, Table 2) achieves the removal of additive and multiplicative
scanner effects to such a sufficient extent that no scanner covariates are prerequisite in the
final implementation. Public implementation of the method is referenced in Table 2.

3.2. Deep Learning

Deep Learning is an alternative to the batch effect removal methods described above.
Specifically, Andrearczyk [106] proposed a deep-learning model that learns a non-linear
transformation for the normalization of radiomics features, both in handcrafted and deep
features. In [107] and [74]], a two-stream CNN architecture with unshared weights and the
DeepCORAL [108] were used in order to reduce divergence between source and target data
feature distributions (both use non-medical images) [19]. Although successful with non-
medical images, these methods tend to be less successful with medical imaging data. The
approach adopted in [46] was a Domain Adversarial Neural Network that constructed an
iterative update approach, aiming to generate scanner-invariant (i.e., harmonized features)
representations of MRI neuroimages. The method of [46], having been tested on a multi-
centric dataset, seems a more reasonable approach for feature harmonization.
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3.3. Feature Extraction and Reduction/Selection

When different software packages are used, it is evident that computational differences
in the radiomics extraction not only produce increased variability in the feature values
but also influence the reliability and the prognostication ability of the radiomics models.
Although this specific part of the analysis is far beyond the scope of this review, readers
should be aware of these challenges, investigated thoroughly in [109–111]. Discarding
or selecting radiomics features based on their reproducibility is another crucial step to
enable the construction of robust radiomics models [4]. The challenge here is to find the
ideal threshold that will eventually select the stable radiomics features with respect to the
variability issues prior to their reduction. Many studies have investigated the radiomics
features reproducibility across scanners and protocols, usually using the concordance
correlation coefficient (CCC) and the Intraclass Correlation Coefficient (ICC) [112–114].
However, these approaches do not guarantee their discriminative power [19].

4. Discussion

Variations derived from different scanner models, reconstruction algorithms, acqui-
sition protocols and image preprocessing, followed by feature extraction, are frequently
unavoidable phenomena in multicenter radiomics studies. Hence, radiomics harmonization
has become an integral part in all analysis steps, since only robust and stable features can
potentially enable reproducibility and generalizability in radiomics modeling. To address
these issues, several studies examined harmonization across different sites and scanners;
nevertheless, radiomics variability still remains under investigation [29,115]. Another effort
from the IBSI focused on the standardization of the image preprocessing and the radiomics
feature extraction phase; however, little attention has been paid to MRI, compared to CT
and PET studies [54]. Indicatively, in the imaging preprocessing phase, still no clear recom-
mendation can be made about the most effective interpolation technique or the appropriate
size of bin/width in the discretization step. Nevertheless, N4 Bias Field Correction and
isotropic interpolation are frequently used in MRI radiomics. In addition, there are different
opportunities and limitations related to choosing an intensity-based or a feature-based
harmonization technique in terms of restrictions on the number of samples collected for the
analysis. For instance, the ComBat method requires a minimum number of 20–30 patients
per batch [86] in contrast to the Z-score or White-Stripe normalization method.

To this end, harmonization strategies were utilized and guidelines were proposed to
reduce the unwanted “center-effect” variation, mostly focused on CT and PET studies [19].
Regarding MRI, UCHealth made an effort to reduce the number of MRI protocols from
168 to 66 across scanners and centers, aiming to provide a suitable clinical-driven protocol
and standardization approach [19]. In addition, the Prostate Imaging Reporting and Data
System (PIRADS) guidelines, currently still in progress, put efforts in the context of image
acquisition standardization and prostate MRI interpretation [6]. They stated that in order
to potentially compensate for the various combinations of the protocol parameters, there is
an urgent need to standardize MRI acquisition protocols according to specific guidelines.

The review highlights both the impact of image preprocessing and feature-based har-
monization methods in radiomics reproducibility among different scanners and protocols.
However, very little can be found in the literature concerning comparisons between inten-
sity and feature-based harmonization techniques. Recently, Li et al. investigated potential
reductions in MRI scanner effects and increased reproducibility when image preprocessing
(N4 bias field correction and image resampling) and harmonization (intensity normaliza-
tion and ComBat) where applied to: (i) homogeneous and heterogeneous phantom data,
and (ii) brain images from a healthy population and from patients with tumor [22]. On
the one hand, ComBat succeeded in removing scanner effects (“DiffFeatureRatio” tended
to zero in all cases). On the other hand, none of the Z-score, WhiteStripe, FCM, GMM,
KDE and histogram-matching succeeded in improving crucial radiomics reproducibility,
further indicating that intensity normalization might not suffice for radiomics harmoniza-
tion. This was also mentioned in other studies where both intensity-normalization and
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feature-based harmonization were used in conjunction (e.g., using intensity normaliza-
tion and ComBat) [22,35,45]. In other recent work [24], a cohort comprising T2-weighted
MR images from patients with sarcoma was used to assess the influence of four different
intensity-normalization techniques and ComBat on metastatic relapse at 2-years prediction.
It was documented that each method had a different impact on model predictions. Overall,
however, ComBat supplied the most realistic and concise results from both the training and
the testing phase of the models. Although far beyond the scope of this review study, it is
worth mentioning that publicly available machine learning (ML) based harmonization tools
are currently distributed online. NeuroHarmony (Table 2) [73] is an indicative example,
capable of providing harmonization for a single image despite having no knowledge of the
image acquisition specifications.

Since deep learning has long been used for imaging, it is not surprising that it found
its way in to radiomics harmonization. The key to its success is the ability to detect
nonlinear patterns between features [116]. In [40], cycle-consistent GANs used 2 generator-
discriminator pairs to achieve harmonization of breast dynamic contrast enhanced (DCE)-
MRI. Moreover, a dual-GAN outperformed more conventional approaches such as voxel-
wise scaling and ComBat when applied to diffusion tensor imaging (DTI) data [41]. Last but
not least, in [39] and [31], auto-encoding methods and cycle-consistent adversarial networks
(DUNCAN) were developed respectively to compensate for intersite and intersubjective
variability effects. The most well-known application of DL in image-based harmonization is
DeepHarmony [117], an enhanced version of NeuroHarmony, which uses a full-CNN based
on U-Net for contrast harmonization. Compared to other methods, it improved volume
correspondence and stability in longitudinal segmentation. Specifically, longitudinal MRI
data of patients with multiple sclerosis were used to evaluate the effect of a protocol change
on atrophy calculations in a clinical research setting [117]. Compared to the results obtained
from other state-of-the-art techniques, the DeepHarmony images were less affected by the
protocol change.

Other important issues that also need to be taken into account are the various ethical
and legal constraints as well as organizational and technical obstacles that make sharing
data between institutions a difficult process [118]. In [118], the Joint Imaging Platform (JIP)
of the German Cancer Consortium (DKTK) addresses these issues by providing federated
data analysis technology in a secure and compliant way. Via JIP, medical image data remain
in the originator institutions, but analysis and AI algorithms are distributed and jointly
used across the stakeholders. Radiomics can change the daily clinical practice, especially
when combined with genomic and clinical information, since it provides clinicians with
a predictive/prognostic non-invasive method [119]. Furthermore, medical data can be
investigated rapidly [119]. However, as noted in this review, radiomics features yield a high
rate of redundancy, i.e., from a large number of extracted features only a small number are
truly useful, making even more challenging the decision over which radiomics are useful
for clinicians to make an accurate diagnosis [54,120,121].

5. Conclusions

Radiomics provides great promise in digital diagnostics for more precise diagnosis,
therapy planning, and disease monitoring as long as it is accompanied by a properly
selected harmonization strategy to account for its inherent variability. This review finds that
harmonization is not a black-box solution and has to be considered as a “hyperparameter” of
the radiomics analysis pipeline, since dependencies on unstable parameters emanate from
all radiomics analysis steps described above. To this end, the review gives an overview of
several harmonization methods that are applicable to every single radiomics analysis phase,
and highlights that all techniques should be considered and investigated both in terms of
increasing radiomics reproducibility and optimizing model performance. This is especially
recommended in MRI, which is characterized by an absence of a standard intensity scale
and well-defined units. Indeed, a lot of work is still required to define comprehensive and
MRI specific guidelines for radiomics harmonization in multicenter studies. We strongly
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support the formulation of a standardized acquisition protocol which still remains the
cornerstone for improving the reproducibility of radiomics features, and the definition of a
very specific reporting guideline (e.g., IBSI) in radiomics analysis. However, standardized
guidelines should be constantly updated to keep pace with the rapid development of
radiomics modeling techniques. The message that this review seeks to convey is that
unstable and non-reproducible radiomics features along with inadequate harmonization
techniques can potentially limit the discovery of novel image biomarkers from multicenter
radiomics studies, subsequently hampering the trustworthiness and adoption of such
approaches in the real clinical setting.
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