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Abstract: Fundus diseases cause damage to any part of the retina. Untreated fundus diseases can
lead to severe vision loss and even blindness. Analyzing optical coherence tomography (OCT) images
using deep learning methods can provide early screening and diagnosis of fundus diseases. In this
paper, a deep learning model based on Swin Transformer V2 was proposed to diagnose fundus
diseases rapidly and accurately. In this method, calculating self-attention within local windows was
used to reduce computational complexity and improve its classification efficiency. Meanwhile, the
PolyLoss function was introduced to further improve the model’s accuracy, and heat maps were
generated to visualize the predictions of the model. Two independent public datasets, OCT 2017
and OCT-C8, were applied to train the model and evaluate its performance, respectively. The results
showed that the proposed model achieved an average accuracy of 99.9% on OCT 2017 and 99.5%
on OCT-C8, performing well in the automatic classification of multi-fundus diseases using retinal
OCT images.

Keywords: multi-fundus diseases classification; optical coherence tomography; Swin Transformer
V2; PolyLoss function; OCT2017 and OCT-C8

1. Introduction

Fundus diseases include conditions such as diabetic macular edema (DME), choroidal
neovascularization (CNV), and drusen, which significantly impact the quality of life [1].
With the continuous development of ophthalmic medicine, OCT technology has become
an important diagnostic tool, especially in the diagnosis of fundus diseases. OCT is
a non-invasive imaging technique that provides high-resolution retinal images to help
diagnose eye diseases, evaluate treatment outcomes, and monitor disease progression [2].
However, due to the large amount of data and complex structural and morphological
features of retinal OCT images, manual diagnosis requires a significant amount of time and
effort. Therefore, computer-aided diagnosis (CAD) techniques have significant value in the
automatic classification of retinal OCT images.

CAD refers to the use of computer technology to analyze and process medical images
to provide diagnostic assistance [3]. CAD is now widely used in the automatic analysis and
diagnosis of medical images, such as breast cancer, lung cancer, and colorectal cancer. CAD
systems can help doctors diagnose diseases quickly and accurately, improving diagnostic
accuracy and efficiency. Deep learning is a machine learning technique that has been
widely applied in the field of computer-aided diagnosis [4]. Convolutional neural networks
(CNNs) are a type of deep learning technique that has been continuously developed since
the 1980s. CNNs have achieved great success in the field of computer vision and are widely
used in tasks such as image classification, object detection, and semantic segmentation.
Some early CNN models include LeNet [5] and AlexNet [6]. As deep learning technology
has continued to develop, many new CNN models have emerged, including VGGNet [7],
GoogLeNet [8], ResNet [9], DenseNet [10], MobileNet [11], and EfficientNet [12]. Although
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the existing models have achieved great success, there is still room for improvement in the
classification of fundus diseases using OCT images.

Unlike RNNs, which require recursive processing to obtain global information, or
CNNs, which can only obtain local information, Transformer is a new neural network
architecture that can directly obtain global information. Transformer is essentially an
Attention structure that can perform parallel computations, and is therefore much faster
than RNNs. Transformer network architecture was proposed by Ashish Vaswani et al. in
their paper “Attention Is All You Need” and has been used for machine translation tasks.
Unlike previous network architectures, the encoder and decoder in this architecture do
not use RNN or CNN network architectures, but instead rely on an architecture that is
completely dependent on the attention mechanism [13].

The Swin Transformer is a novel Transformer model that has achieved excellent
performance in many computer vision tasks [14]. Compared to the traditional Vision
Transformer (ViT) [15], the Swin Transformer utilizes a multi-scale design and integrates the
multi-scale design into the Transformer. One of the main features of the Swin Transformer is
its pyramidal structure, i.e., the deeper the network is, the smaller the size of the feature map
is, and the more channels are available. This is different from the columnar structure of ViT,
where the feature map size remains constant. In addition, the Swin Transformer borrows
many techniques from CNNs, such as hierarchical feature extraction (FPN), Sliding Window
+ Attention Mask + Cyclic Shift. These techniques help the Swin Transformer to better
capture local information in the image and extract multi-scale features. In conclusion, by
adopting a multi-scale design and borrowing techniques from CNNs, the Swin Transformer
achieves better performance than traditional ViT models in several computer vision tasks.

1.1. The Proposed Model

In this paper, we propose a multi-foveal disease classification model based on Swin
Transformer V2 [16]. The dataset is first subjected to preprocessing operations such as
data enhancement, and then the network is trained. Based on the results of training,
the network parameters such as learning rate and batch size are fine-tuned to determine
the appropriate training parameters. By comparing different loss functions, we finally
adopted PolyLoss [17] as the loss function to obtain better performance in retinal OCT
image classification. In order to improve the interpretability of the model and understand
its decision-making process, visualization methods such as the confusion matrix and Grad-
CAM heatmap [18] were used in the testing phase. Finally, after continuous optimization of
network parameters and loss functions, the results were compared after multiple training
sessions to obtain the optimal network model for multiple fundus disease classification.

The contributions of this paper are as follows:

1. The proposed method will first use the Swin Transformer V2 model to classify multiple
diseases in retinal OCT images.

2. Based on the Swin Transformer V2 model, its loss function is improved by introducing
PolyLoss, which improves the model’s performance.

3. Experimental validation was performed with two datasets, OCT2017 and OCT-C8,
and using Grad-CAM visualization to help understand decision-making mechanisms
in network models.

1.2. Related Work

The use of deep learning algorithms for identifying OCT images has been extensively
studied by many researchers. For example, Lee et al. used a deep neural network to
classify OCT images as normal or AMD, achieving an accuracy of 87.63% [19]. Lu et al.
and Bhadra et al. used a deep multi-layer CNN to categorize OCT images into healthy,
dry AMD, wet AMD, and DME [20]. Kermany et al. applied deep transfer learning to
automatically diagnose diabetic retinopathy in OCT images [21]. Rong et al. suggested a
different auxiliary classification method, based on CNNs, for the automatic categorization
of retinal OCT images [22]. Fang et al. proposed a novel lesion-aware convolutional neural
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network (LACNN) method for retinal OCT image classification, where retinal lesions in
OCT images were used to guide the CNN to achieve more accurate classification [23].
Singh et al. studied attribute-explained deep learning: application to ophthalmic diagnosis
and proposed a framework for explaining the classification decisions of a deep learning
network on retinal OCT images [24]. Wang et al. proposed classifying volumetric OCT
images via a recurrent neural network (VOCT-RNN), which can fully exploit temporal
information among B-scans. This choice may introduce unnecessary model complexity,
limiting the interpretation of such model results in clinical practice [25]. To investigate
this hypothesis, Arefin et al. developed a configurable deep convolutional neural net-
work (CNN) that classifies four types of macular diseases using retinal optical coherence
tomography (OCT) images [26]. V et al. proposed a method to improve the automatic
classification and detection of macular diseases using retinal optical coherence tomography
(OCT) images by fusing two pre-trained deep learning networks [27]. Identifying macular
diseases and segmenting lesion areas to assist ophthalmologists in clinical diagnosis is nec-
essary. Liu et al. studied joint disease classification and lesion segmentation in OCT images
via a one-stage attention-based convolutional neural network [28]. Deep-learning-based
methods have been proposed to address this problem. To evaluate the proposed method,
Esfahani et al. used publicly available data including 45 OCT volumes, 15 age-related
macular degeneration, 15 diabetic macular edema, and 15 normal volumes captured by
Heidelberg OCT imaging equipment [29]. He et al. proposed a method for classifying
retinal OCT images using an interpretable Swin-Poly Transformer network [30]. This is
a significant contribution to the field of retinal OCT image classification. At the same
time, our work has been inspired by this study, and we have improved upon it. Other
influential works include those by Lbrahim, Ai, Z, etc. [31,32]. However, to achieve fast
and accurate detection results, it is necessary to break out of the existing CNN framework,
which is challenging.

The Transformer is a type of model architecture in the field of natural language
processing (NLP). Its relatively mature theoretical support and technological development
in the field of natural language processing have brought it to the attention of researchers,
and it has been shown that Transformer methods can be applied to computer vision tasks,
outperforming existing CNN methods in some tasks [33]. The Vision Transformer (ViT)
is a model proposed by the Google team in 2020 that applies the Transformer to image
classification. Its model is “simple” and effective, with strong scalability (the larger the
model, the better the performance), and performs well in the field of computer vision. The
Swin Transformer is a new type of visual Transformer that can serve as a general backbone
network for computer vision. It adopts a hierarchical structure and shifted windows to
effectively extract multi-scale features. In addition, some researchers have attempted to
combine Transformers and CNNs to improve prediction performance. For example, when
performing object detection in drone images, a Transformer-based model can be fused
with a CNN-based model [34]. Swin Transformer V2 is a large model for computer vision
that addresses three main issues in training and applying large visual models, including
training instability, the resolution gap between pre-training and fine-tuning, and the need
for labeled data. Swin Transformer V2 can better handle complex image data and achieve
excellent performance in the automatic classification of retinal OCT images.

2. Materials and Methods

The overall framework of the proposed method is illustrated in Figure 1. The PolyLoss
loss function is employed during the experiment to enhance the training efficiency of the
model. Data augmentation methods are applied during the training phase to increase the
diversity of the training data and enhance the network’s ability to generalize. After training,
Grad-CAM is utilized to visualize and explain the results.
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Figure 1. The overall framework of the proposed method.

2.1. Architecture of Swin Transformer V2

Swin Transformer V2 is an upgraded version of Swin Transformer. It improves upon
version 1.0 by making the model larger and able to adapt to different image resolutions and
window sizes. The Swin Transformer V2 block incorporates two Swin Transformer modules,
the window multi-head self-attention (W-MSA) module and the shifted window multi-head
self-attention (SW-MSA) module, in place of the standard multi-head self-attention (MSA)
module found in ViT. In addition, when calculating Attention in the Transformer block
in ViT, the dot(Q,K) operation is used, which is replaced by cosine(Q,K)/τ in Swin V2,
where τ is a learnable parameter that is not shared between blocks. The cosine operation
inherently includes normalization, which further stabilizes the attention output values.

Figure 2 illustrates the overall structure of the Swin Transformer V2 model [14]. The
input image, with a size of 256 × 256, is first divided into non-overlapping 4 × 4 patches
by the patch partitioning module. These patches are then treated as ‘tokens’ and projected
into C dimensions using a linear embedding layer. Two consecutive Swin Transformer V2
blocks with self-attention computation are applied to these patch tokens, controlling their
number as shown in Figure 2b. A ‘stage’ consists of a linear embedding layer and Swin
Transformer V2 blocks. The design of Swin Transformer V2 resembles the layer structure
of CNNs, where the resolution is halved, and the number of channels is doubled at each
stage. To produce hierarchical representations, the Swin Transformer reduces the number of
tokens by merging patch layers, making the network deeper. Figure 3a shows an example
of a hierarchical representation. Differing from the 224 × 224 input resolution used by
He et al. [30], we employ Swin Transformer V2, which uses a higher resolution of
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256 × 256. The advantage of this is that the network has access to more features, and
increasing the feature extraction capability of the network improves the performance of
the model.

J. Imaging 2023, 9, x  5 of 19 
 

 

Transformer V2 blocks. The design of Swin Transformer V2 resembles the layer structure 
of CNNs, where the resolution is halved, and the number of channels is doubled at each 
stage. To produce hierarchical representations, the Swin Transformer reduces the number 
of tokens by merging patch layers, making the network deeper. Figure 3a shows an exam-
ple of a hierarchical representation. Differing from the 224 × 224 input resolution used by 
He et al. [30], we employ Swin Transformer V2, which uses a higher resolution of 256 × 
256. The advantage of this is that the network has access to more features, and increasing 
the feature extraction capability of the network improves the performance of the model. 

 
Figure 2. (a) he overall architecture of Swin Transformer V2. (b) Two successive Swin Transformer 
V2 blocks. 

 
Figure 3. (a) The hierarchical structure of Swin Transformer V2 for extracting multi-scale feature 
representation. (b) An illustration of the shifted window strategy for computing self-attention in the 
Swin Transformer V2 architecture. 

Each Swin Transformer V2 block comprises two units, with each unit containing two 
normalization layers (LayerNorm), a self-attention module, and a multi-layer perceptron 
(MLP) layer. The standard multi-head self-attention (MSA) module from ViT is replaced 
by two consecutive Swin Transformer V2 modules in the Swin Transformer V2 block: the 
window multi-head self-attention (W-MSA) module and the shifted window multi-head 
self-attention (SW-MSA) module, as shown in Figure 2b. The first unit utilizes the window 
MSA (W-MSA) module, while the second unit employs the shifted window MSA (SW-
MSA) module. In contrast to the Swin Transformer, Swin Transformer V2 incorporates a 
LayerNorm layer after each MSA module and MLP layer and implements residual con-
nections after each module. 

Figure 2. (a) he overall architecture of Swin Transformer V2. (b) Two successive Swin Transformer
V2 blocks.

J. Imaging 2023, 9, x  5 of 19 
 

 

Transformer V2 blocks. The design of Swin Transformer V2 resembles the layer structure 
of CNNs, where the resolution is halved, and the number of channels is doubled at each 
stage. To produce hierarchical representations, the Swin Transformer reduces the number 
of tokens by merging patch layers, making the network deeper. Figure 3a shows an exam-
ple of a hierarchical representation. Differing from the 224 × 224 input resolution used by 
He et al. [30], we employ Swin Transformer V2, which uses a higher resolution of 256 × 
256. The advantage of this is that the network has access to more features, and increasing 
the feature extraction capability of the network improves the performance of the model. 

 
Figure 2. (a) he overall architecture of Swin Transformer V2. (b) Two successive Swin Transformer 
V2 blocks. 

 
Figure 3. (a) The hierarchical structure of Swin Transformer V2 for extracting multi-scale feature 
representation. (b) An illustration of the shifted window strategy for computing self-attention in the 
Swin Transformer V2 architecture. 

Each Swin Transformer V2 block comprises two units, with each unit containing two 
normalization layers (LayerNorm), a self-attention module, and a multi-layer perceptron 
(MLP) layer. The standard multi-head self-attention (MSA) module from ViT is replaced 
by two consecutive Swin Transformer V2 modules in the Swin Transformer V2 block: the 
window multi-head self-attention (W-MSA) module and the shifted window multi-head 
self-attention (SW-MSA) module, as shown in Figure 2b. The first unit utilizes the window 
MSA (W-MSA) module, while the second unit employs the shifted window MSA (SW-
MSA) module. In contrast to the Swin Transformer, Swin Transformer V2 incorporates a 
LayerNorm layer after each MSA module and MLP layer and implements residual con-
nections after each module. 

Figure 3. (a) The hierarchical structure of Swin Transformer V2 for extracting multi-scale feature
representation. (b) An illustration of the shifted window strategy for computing self-attention in the
Swin Transformer V2 architecture.

Each Swin Transformer V2 block comprises two units, with each unit containing
two normalization layers (LayerNorm), a self-attention module, and a multi-layer per-
ceptron (MLP) layer. The standard multi-head self-attention (MSA) module from ViT is
replaced by two consecutive Swin Transformer V2 modules in the Swin Transformer V2
block: the window multi-head self-attention (W-MSA) module and the shifted window
multi-head self-attention (SW-MSA) module, as shown in Figure 2b. The first unit utilizes
the window MSA (W-MSA) module, while the second unit employs the shifted window
MSA (SW-MSA) module. In contrast to the Swin Transformer, Swin Transformer V2 in-
corporates a LayerNorm layer after each MSA module and MLP layer and implements
residual connections after each module.

2.2. Shifted-Window-Based Self-Attention

A method of calculating self-attention within local windows is used to reduce compu-
tational complexity and improve modeling efficiency. The moving window strategy used
to calculate self-attention in this experiment is shown in Figure 3a. In the ViT architecture,
the standard MSA module is used for global attention, resulting in an unbearable amount
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of computation and quadratic computational complexity. In W-MSA, this relationship is
linear, and the amount of computation is acceptable. Assuming that each window includes
M ×M patches, windows are organized in a non-overlapping manner to split the image in
an equal amount. On an image with hardware patches, the global MSA module’s computa-
tional complexity and the window-based MSA module’s computational complexity are,
respectively:

Ω(MSA) = 4hwC2 + 2(hw)2C (1)

Ω(W-MSA) = 4hwC2 + 2M2hwC (2)

where h×w is the total number of patches in the picture, and C denotes the patch channel’s
channel. When M is constant (the default value is 7), the complexity of Equation (2) is linear
as opposed to Equation (1), where the difficulty is quadratic with respect to the number of
patches h × w.

The window-based self-attention module lacks cross-window connections, ignoring
the relationships between different windows and limiting modeling capabilities. This
approach switches between two partition configurations in succeeding Swin Transformer
V2 blocks to set up cross-window connections while retaining the computational efficiency
of non-overlapping windows. As identified in Figure 4 [14], the first module equally divides
the 8 × 8 feature map into 2 × 2 windows of size 4 × 4 (M = 4) using a standard window
partitioning approach starting from the top-left pixel. Then, the next module adopts a
window configuration that is offset from the previous layer’s window configuration by
shifting the window from the regular partitioned window by (

[
M
2

]
,
[

M
2

]
)pixels. In the

new window, the self-attention calculation also takes into account the boundary of the
previous window, thus considering the connection information between different windows.
Using the shifted window partitioning method, consecutive Swin Transformer V2 blocks
are calculated as:

Ẑl = W-MSA(LN(Zl−1))+Zl−1 (3)

Zl = MLP(LN( Ẑl))+Ẑl (4)

Ẑl+1 = SW-MSA(LN( Ẑl))+Ẑl (5)

Zl+1 = MLP(LN( Ẑl+1))+Ẑl+1 (6)

where W-MSA and SW-MSA indicate window-based multi-head self-attention utilizing
normal and shifted window partitioning configurations, respectively; and Ẑl and Zl denote
the output characteristics of the (S)W-MSA module and MLP in the l layer, respectively.

J. Imaging 2023, 9, x  6 of 19 
 

 

2.2. Shifted-Window-Based Self-Attention 
A method of calculating self-attention within local windows is used to reduce com-

putational complexity and improve modeling efficiency. The moving window strategy 
used to calculate self-attention in this experiment is shown in Figure 3a. In the ViT archi-
tecture, the standard MSA module is used for global attention, resulting in an unbearable 
amount of computation and quadratic computational complexity. In W-MSA, this rela-
tionship is linear, and the amount of computation is acceptable. Assuming that each win-
dow includes M × M patches, windows are organized in a non-overlapping manner to 
split the image in an equal amount. On an image with hardware patches, the global MSA 
module’s computational complexity and the window-based MSA module’s computa-
tional complexity are, respectively: 𝛺(MSA) = 4ℎ𝑤𝐶 + 2(ℎ𝑤) 𝐶  (1)𝛺(W-MSA) = 4ℎ𝑤𝐶 + 2𝑀 ℎ𝑤𝐶  (2)

where h × w is the total number of patches in the picture, and C denotes the patch chan-
nel’s channel. When M is constant (the default value is 7), the complexity of Equation (2) 
is linear as opposed to Equation (1), where the difficulty is quadratic with respect to the 
number of patches h × w. 

The window-based self-attention module lacks cross-window connections, ignoring 
the relationships between different windows and limiting modeling capabilities. This ap-
proach switches between two partition configurations in succeeding Swin Transformer V2 
blocks to set up cross-window connections while retaining the computational efficiency of 
non-overlapping windows. As identified in Figure 4 [14], the first module equally divides the 
8 × 8 feature map into 2 × 2 windows of size 4 × 4 (M = 4) using a standard window partitioning 
approach starting from the top-left pixel. Then, the next module adopts a window configura-
tion that is offset from the previous layer’s window configuration by shifting the window from 
the regular partitioned window by ( , )pixels. In the new window, the self-attention cal-
culation also takes into account the boundary of the previous window, thus considering the 
connection information between different windows. Using the shifted window partitioning 
method, consecutive Swin Transformer V2 blocks are calculated as: 𝑍 = W-MSA(LN(𝑍 ))+𝑍  (3)𝑍 = MLP(LN(𝑍 ))+𝑍  (4)𝑍 = SW-MSA(LN(𝑍 ))+𝑍  (5)𝑍 = MLP(LN(𝑍 ))+𝑍  (6)

where W-MSA and SW-MSA indicate window-based multi-head self-attention utilizing nor-
mal and shifted window partitioning configurations, respectively; and 𝑍  and 𝑍  denote the 
output characteristics of the (S)W-MSA module and MLP in the l layer, respectively. 

 
Figure 4. Illustration of an efficient batch computation approach for self-attention in shifted window 
partitioning. 

Figure 4. Illustration of an efficient batch computation approach for self-attention in shifted win-
dow partitioning.

A number of new windows are produced by the window partitioning technique,
some of which are smaller than M ×M. One typical method for calculating self-attention
is to flatten all windows to M × M. This method, however, results in more windows.
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For instance, in Figure 3b, the window transformation technique results in a large rise in
the computational cost of the model when the number of windows goes from 2 × 2 to
3× 3. As demonstrated in Figure 4, we apply an effective batch computation technique that
cyclically shifts to the top left to address this problem. The batch-calculated windows may
include a number of non-adjacent windows in the feature map after shifting. Therefore, to
confuse the self-attention calculation for each sub-window, we use a masking method. The
computational efficiency is increased for cyclic shifting since the number of batch windows
and regular window divisions stays constant.

2.3. PolyLoss

The PolyLoss function has been demonstrated to outperform cross-entropy loss and
focal loss in tasks such as 3D detection, 2D picture classification, instance segmentation,
and object identification. As a result, in this experiment, we adopted PolyLoss as the loss
function for our model to improve the OCT classification model’s classification accuracy.
The coefficients of the polynomial are represented by, and the PolyLoss formula is expressed
as follows:

LPoly = α1(1− Pt) + α2(1− Pt)
2 + · · ·+ αN(1− Pt)

N + · · · = ∑∞
j=1 αj(1− Pt)

j (7)

There are an endless number of polynomial coefficients that need to be changed in
this formula. Tuning multiple polynomial coefficients would still result in a dauntingly
large search space, which is not feasible. Additionally, cross-entropy loss does not perform
better than many coefficients being tuned simultaneously. This problem is solved by
perturbing the leading polynomial coefficient in the cross-entropy loss while leaving the
other coefficients constant. The loss formula is written as Poly-N, where N is the quantity
of leading coefficients that need to be changed.

LPoly−N = (ε1 + 1)(1− Pt) + · · ·+ (εN + 1/N)(1− Pt)
N︸ ︷︷ ︸

perturbed by ε j

+ 1/(N + 1)(1− Pt)
N+1 + · · ·︸ ︷︷ ︸

same as CrossEntropy

= −log(Pt) + ∑N
j=1 ε j(1− Pt)

j
(8)

In particular, we update the cross-entropy loss’s j polynomial coefficient from 1/j to
1/j + ε j, where ε j∈[−1⁄j,∞) is the perturbation term. Equation (8) demonstrates how the
first N polynomials may be precisely computed without having to worry about an endless
number of higher-order (j > N + 1) coefficients. The largest increase is possible for the first
polynomial term. The final PolyLoss formula is as follows with further simplification of the
Poly-N formula and concentration on Poly-1 evaluation, where only the first polynomial
coefficient in the cross-entropy loss is changed:

LPoly−1 = (1 + ε1)(1− Pt) + 1/2(1− Pt)
2 + · · · = − log(Pt) + ε1(1− Pt) (9)

In this experiment, we accomplish OCT image classification using the value of ε1 = 2.

2.4. Datasets

In this paper, two public datasets, OCT2017 [35] and OCT-C8 [36], were used to train
and test the network model. Dataset 1, as shown in Figure 5, depicts examples of three
fundus diseases and normal retina, while Dataset 2, as shown in Figure 6 [37], depicts OCT
images of seven diseases and one normal category of retinal OCT images. The OCT2017
dataset contains images of three diseases: choroidal neovascularization (CNV), diabetic
macular edema (DME), Drusen, and a class of normal fundus. The OCT2017 dataset
contains 84,452 retinal OCT images of 4 classes (as shown in Figure 5): 83,484 training
images and 968 test images. The training set includes 36,205 CNV images, 10,348 DME
images, 7616 DRUSEN images, and 25,315 NORMAL images for training and four classes
of 1000 images each for validation. Details of the two datasets have been shown in Table 1.
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Table 1. Classification and dataset setup for datasets OCT2017 and OCT-C8.

Dataset Class Number Train Validation Test

OCT2017

CNV 37,447 36,205 1000 242

DME 11,590 10,348 1000 242

DRUSEN 8858 7616 1000 242

NORMAL 26,557 25,315 1000 242

OCT-C8

AMD 3000 2300 350 350

CNV 3000 2300 350 350

CSR 3000 2300 350 350

DME 3000 2300 350 350

DR 3000 2300 350 350

DRUSEN 3000 2300 350 350

MH 3000 2300 350 350

NORMAL 3000 2300 350 350

The OCT-C8 dataset contains 24,000 images of eight categories (as shown in Figure 6),
including AMD, choroidal neovascularization (CNV), central serous retinopathy (CSR),
DME, diabetic retinopathy (DR), drusen, macular hole (MH), and one for healthy classes.
The training set consists of 2300 images per category for a total of 18,400 images for training
and 2800 images each for testing and validation containing 350 images per category for
the network model. Before training the model, we preprocessed and augmented the
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data. Obtaining a large number of labeled medical images is challenging due to the time-
consuming nature of the labeling process and the need for professional medical expertise,
which can be costly. To increase the diversity of the training data, data augmentation
methods such as random rotation, cropping, and mirroring were used. Additionally, the
images were resized to 256 × 256 and normalized to match the model’s input requirements.
In the final step, the data were converted into tensors and fed into the model for training.
This process helps to enhance the model’s ability to generalize and improve its stability.

2.5. Evaluation Metrics

To evaluate the performance of the model in classification, we use Accuracy, Precision,
and Recall as evaluation metrics. The formulas for these evaluation metrics are shown below.

Accuracy =
TP + TN

TP + TN + FP + FN
(10)

Precision =
TP

TP + FP
(11)

Recall =
TP

TP + FN
(12)

F1-score =
2TP

2TP + FP + FN
(13)

The numbers TP, TN, FP, and FN stand for the corresponding amounts of true positives,
true negatives, false positives, and false negatives. For OCT classification, TP is defined as
the proportion of cases that the model correctly classified as positive, TN as the proportion
of cases that the model correctly classified as negative, FP as the proportion of negative
samples that the model incorrectly classified as positive, and FN as the proportion of
positive cases that the model incorrectly classified as negative.

3. Results

In this research, the network was trained and evaluated on a Windows 10 operating
system with 64 GB of memory, an NVIDIA 4090 24 GB GPU, a 2 TB solid-state drive, Python
3.7, and PyTorch 1.10.1 + cu102. At the start of each experiment, we imported ImageNet-22K
pre-trained models through transfer learning. The input resolution for the EfficientNetV2
is set to 384 × 384, the VIT and Swin Transformer models are set to 224 × 224, and the V2
model supports higher resolution image input than the Swin Transformer, set to 256 × 256.
The batch size was set to 32 and each model was trained for 200 epochs. During training,
we saved the models with the highest accuracy and lowest loss function and selected the
model with the highest test accuracy as the optimal model through comparison.

The performance of each category in the OCT2017 dataset was tested using pre-trained
EfficientNetV2 [38], Vision Transformer (VIT), Swin Transformer, and our improved Swin
Transformer V2 network. Table 2 shows the experimental results for the three retinal disease
and normal category diagnoses when the CrossEntropy loss function is used for the four
network models on the dataset OCT2017. Table 3 shows the experimental results obtained
for different network models on the same dataset when using the PolyLoss function.

To further validate our models, we also tested and analyzed the performance of the VIT,
Swin Transformer, and Swin Transformer V2 network models on the OCT-C8 dataset using
CrossEntropyLoss, with the results shown in Table 4, and the PolyLoss loss function, with
the results shown in Table 5, to categorize the performance of the VIT, Swin Transformer,
and Swin Transformer V2 network models.

In order to visualize the performance of each model more intuitively, we use the
confusion matrix to visualize the matching results between the model predictions and the
true categories. The results obtained by our models on the OCT2017 and OCT-C8 datasets
using different loss functions, respectively, are shown in Figure 7a,c are the results when
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CrossEntropy is applied, and Figure 7b,d represent the results obtained by the PolyLoss
function. The diagonal elements in the confusion matrix represent the correct classification,
and the remaining elements represent the misclassification.

Table 2. Classification results using OCT2017 with a CrossEntropy loss function. Significant values
are in [bold].

Dataset Method Class Accuracy Precision Recall Specificity F1-Score

OCT2017

EfficientNetV2

CNV 0.975 0.913 0.996 0.968 0.953
DME 0.986 0.996 0.946 0.968 0.970

DRUSEN 0.977 1.0 0.909 0.999 0.952
NORMAL 0.988 0.953 1.0 0.983 0.976

VIT

CNV 0.950 0.839 0.992 0.937 0.909
DME 0.975 0.987 0.913 0.996 0.949

DRUSEN 0.951 0.990 0.814 0.997 0.893
NORMAL 0.982 0.934 1.0 0.977 0.966

Swin
Transformer

CNV 0.995 0.980 1.0 0.993 0.990
DME 0.999 1.0 0.996 1.0 0.998

DRUSEN 0.996 1.0 0.983 1.0 0.991
NORMAL 1.0 1.0 1.0 1.0 1.0

Swin
Transformer

V2

CNV 0.996 0.984 1.0 0.994 0.992
DME 0.997 1.0 0.988 1.0 0.994

DRUSEN 0.999 1.0 0.996 1.0 0.998
NORMAL 1.0 1.0 1.0 1.0 1.0

Table 3. Classification results using OCT2017 with a PolyLoss function. Significant values are
in [bold].

Dataset Method Class Accuracy Precision Recall Specificity F1-Score

OCT2017

EfficientNetV2

CNV 0.971 0.896 1.0 0.961 0.945
DME 0.987 1.0 0.946 1.0 0.972

DRUSEN 0.976 1.0 0.905 1.0 0.950
NORMAL 0.992 0.968 1.0 0.980 0.984

VIT

CNV 0.952 0.845 0.992 0.939 0.913
DME 0.978 0.987 0.926 0.996 0.956

DRUSEN 0.950 0.985 0.814 0.996 0.891
NORMAL 0.985 0.942 1.0 0.979 0.970

Swin
Transformer

CNV 0.997 0.988 1.0 0.996 0.994
DME 0.999 1.0 0.996 1.0 0.998

DRUSEN 0.998 1.0 0.992 1.0 0.996
NORMAL 1.0 1.0 1.0 1.0 1.0

Ours

CNV 0.999 0.996 1.0 0.996 0.994
DME 0.999 1.0 1.0 1.0 0.998

DRUSEN 1.0 1.0 1.0 1.0 0.996
NORMAL 1.0 1.0 1.0 1.0 1.0
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Table 4. Classification results using OCT-C8 with a CrossEntropy loss function. Significant values are
in [bold].

Dataset Method Class Accuracy Precision Recall Specificity F1-Score

OCT-C8

VIT

AMD 1.0 1.0 1.0 1.0 1.0
CNV 0.965 0.873 0.846 0.982 0.859
CSR 0.993 0.958 0.986 0.994 0.972
DME 0.962 0.901 0.783 0.988 0.838
DR 0.989 0.954 0.954 0.993 0.954

DRUSEN 0.943 0.775 0.769 0.968 0.772
MH 0.991 0.977 0.951 0.997 0.964

NORMAL 0.959 0.787 0.920 0.964 0.848

Swin
Transformer

AMD 1.0 1.0 1.0 1.0 1.0
CNV 0.988 0.954 0.951 0.993 0.952
CSR 1.0 1.0 1.0 1.0 1.0
DME 0.990 0.968 0.957 0.996 0.962
DR 1.0 1.0 1.0 1.0 1.0

DRUSEN 0.985 0.956 0.937 0.992 0.946
MH 1.0 1.0 1.0 1.0 1.0

NORMAL 0.987 0.945 0.977 0.992 0.961

Swin
Transformer

V2

AMD 1.0 1.0 1.0 1.0 1.0
CNV 0.988 0.959 0.940 0.994 0.949
CSR 1.0 1.0 1.0 1.0 1.0
DME 0.992 0.974 0.963 0.996 0.968
DR 1.0 1.0 1.0 1.0 1.0

DRUSEN 0.985 0.938 0.946 0.991 0.942
MH 1.0 1.0 1.0 1.0 1.0

NORMAL 0.991 0.955 0.977 0.993 0.966

Table 5. Classification results using OCT-C8 with a PolyLoss loss function. Significant values are
in [bold].

Dataset Method Class Accuracy Precision Recall Specificity F1-Score

OCT-C8

VIT

AMD 1.0 1.0 1.0 1.0 1.0
CNV 0.967 0.893 0.834 0.986 0.862
CSR 0.994 0.961 0.991 0.994 0.976
DME 0.962 0.894 0.794 0.987 0.841
DR 0.989 0.957 0.957 0.994 0.957

DRUSEN 0.943 0.772 0.774 0.967 0.773
MH 0.992 0.985 0.954 0.998 0.969

NORMAL 0.958 0.781 0.917 0.963 0.844

Swin
Transformer

AMD 1.0 1.0 1.0 1.0 1.0
CNV 0.988 0.959 0.943 0.995 0.952
CSR 1.0 1.0 1.0 1.0 1.0
DME 0.991 0.974 0.957 0.996 0.965
DR 1.0 1.0 1.0 1.0 1.0

DRUSEN 0.988 0.954 0.940 0.993 0.947
MH 1.0 1.0 1.0 1.0 1.0

NORMAL 0.990 0.938 0.986 0.993 0.961

Ours

AMD 1.0 1.0 1.0 1.0 1.0
CNV 0.989 0.965 0.949 0.995 0.957
CSR 1.0 1.0 1.0 1.0 1.0
DME 0.992 0.963 0.977 0.995 0.970
DR 1.0 1.0 1.0 1.0 1.0

DRUSEN 0.988 0.965 0.934 0.995 0.949
MH 1.0 1.0 1.0 1.0 1.0

NORMAL 0.991 0.948 0.980 0.992 0.964
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4. Discussion

As can be seen from Table 2, EfficientNetV2 achieved an accuracy of 0.975 in the CNV
category, and the highest accuracy of 0.988 was obtained in the normal category, with an
F1-Score of 0.953 and 0.976 in the CNV and normal, respectively. The category accuracies of
0.986 and 0.977 were achieved in the DME and DRUSEN, respectively, while the VIT model
obtained an overall lower evaluation metric than EfficientNetV2 on all four categories. Both
Swin Transformer and our model achieved more than 99% accuracy on a single category,
and the evaluation metrics achieved a score of 1 on the normal category. Table 3 shows that
when using the PolyLoss function, EfficientNetV2 shows a slight decrease in diagnostic
performance on the CNV and DRUSEN categories and a slight increase on the DME
and NORMAL categories. The evaluation metrics for the three retinal disease diagnoses
improved on Swin Transformer and our model. Compared to the Swin Transformer, our
model obtained a higher performance evaluation with a category diagnostic accuracy of
0.999 for both CNV and DME. An accuracy score of 1 was obtained on DEUSEN and
normal fundus.

Table 6 is the average of the experimental results obtained using the CrossEntropy
and PolyLoss functions on the OCT2017 and OCT-C8 datasets, respectively. We observed
that the performance of the EfficientNetV2 network was better than that of VIT when using
CrossEntropy loss, with average accuracies of 98.2% and 96.5%, respectively. However,
the Swin Transformer model achieved a 3.3% average accuracy improvement over Effi-
cientNetV2 and performed better. We achieved an average accuracy of 99.8% using Swin
Transformer V2, which improved on Precision, Recall, Specificity, and F1-Score compared
to the Swin Transformer. When the loss function was changed from CrossEntropyLoss to
Polyloss, although the Swin Transformer network achieved the same accuracy, it improved
in several other evaluation metrics. It can be seen that when using PolyLoss, compared with
CrossEntropyLoss, Swin Transformer V2 showed an improvement in Performance, with a
0.3% increase in Precision, a 0.4% increase in Recall, and a 0.1% increase in F1-Score. Swin
Transformer V2 achieved 100% Precision, Recall, and Sensitivity in the DME, DRUSEN,
and NORMAL categories and achieved near 1.0 accuracy in the CNV, DME, DRUSEN, and
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NORMAL categories. This proves the excellent classification ability of Swin Transformer
V2 on the OCT dataset and that using the PolyLoss loss function can further improve the
performance of the network.

Table 6. Average of experimental results using CrossEntropy and PolyLoss functions on datasets
OCT2017 and OCT-C8, respectively. Significant values are in bold.

Dataset Method Loss Accuracy Precision Recall Specificity F1-Score

OCT2017

EfficientNetV2
CrossEntropy 0.982 0.966 0.963 0.980 0.963
PolyLoss 0.981 0.966 0.963 0.985 0.963

VIT
CrossEntropy 0.965 0.938 0.930 0.977 0.917
PolyLoss 0.966 0.940 0.933 0.978 0.933

Swin
Transformer CrossEntropy 0.998 0.995 0.995 0.998 0.995

Paper [30] PolyLoss 0.998 0.997 0.997 0.999 0.997

Swin
Transformer V2 CrossEntropy 0.998 0.996 0.996 0.999 0.996

Ours PolyLoss 0.999 0.999 1.0 0.999 0.997

OCT-C8

VIT
CrossEntropy 0.975 0.903 0.901 0.986 0.901
PolyLoss 0.976 0.905 0.903 0.986 0.903

Swin
Transformer CrossEntropy 0.994 0.978 0.978 0.997 0.978

Paper [30] PolyLoss 0.994 0.978 0.978 0.997 0.978

Swin
Transformer V2 CrossEntropy 0.995 0.978 0.978 0.997 0.978

Ours PolyLoss 0.995 0.980 0.980 0.997 0.980

On the OCT-C8 dataset, this method outperformed VIT and Swin Transformer, and
using the PolyLoss loss function further improved performance, resulting in the best
average performance. After using the PolyLoss loss function, Swin Transformer and our
Swin Transformer V2 achieved 100% accuracy in the ADM, CSR, DR, and MH categories. In
summary, in our experiments, Swin Transformer V2 demonstrated excellent classification
ability on the OCT dataset. In addition, we found that using the PolyLoss loss function can
further improve the performance of the network.

In addition, we compared our results with other studies. Table 7 shows the results of
our comparison. Through comparison, we found that our Swin Transformer V2 improved
with PolyLoss, achieving better accuracy and sensitivity performance. This demonstrates
the reliability of our method in OCT image classification. These results indicate that
our method has high reliability and accuracy in OCT image classification. Our Swin
Transformer V2 improved with PolyLoss not only performs well in terms of accuracy,
but also achieves good results in terms of sensitivity. These achievements provide strong
support for our research in the field of OCT image classification and lay a solid foundation
for future research.

Figure 7a,b are the confusion matrices of Swin Transformer V2 using CrossEntropyLoss
and PolyLoss when tested with 968 images in the OCT2017 dataset, respectively. Figure 8b
represents that the model judged a DME image as CNV disease, while it made zero
errors in other categories, thus proving the excellent classification ability of the network.
Figure 7c,d are the confusion matrices using two loss functions on 2800 test images in
OCT-C8, respectively. As can be seen, the network has successfully classified AMD, CSR,
DR, and MH data.
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Table 7. Experimental results using different models on the OCT2017 and OCT-C8 datasets, respec-
tively. Significant values are indicated in bold.

Dataset Model Accuracy Sensitivity

OCT2017

InceptionV3 [39] 0.934 0.978
MobileNet-v2 [40] 0.985 0.994

ResNet50-v1 [9] 0.993 0.993
Joint-Attention-Network ResNet-v1 [41] 0.924

Xception [42] 0.997 0.997
OpticNet-71 [43] 0.998 0.998

Swin Transformer V1 [30] 0.998 0.998
Ours 0.999 0.999

OCT-C8

VIT 0.975 0.986
GAN [44] 0.939

Swin Transformer 0.994 0.997
Deep CNN [45] 0.938
CenterNet [46] 0.981

Ours 0.995 0.997J. Imaging 2023, 9, x  15 of 19 
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For the trained OCT model, we use Grad-CAM to visualize the decision-making
mechanism of the prediction. Grad-CAM is a gradient-based deep network visualization
method that explains the classification basis of deep neural network models in the form of
heat maps, making category judgments through the pixels of the image. Figures 8 and 9
show heatmaps of the prediction results for the OCT2017 and OCT-C8 datasets, respectively.
The colors of the heatmap represent regions of interest, with red indicating high correlation
with the target category and blue indicating less attention to the region. The purple area is
the result of filling the blank area after data enhancement of the image. Meanwhile, lesion
regions show up as a darker red color in disease OCT images. As shown in Figure 8, the
second row of images shows the Grad-CAM of the DME image, and from the third image,
it can be observed that the region of susceptibility contains the macular edema lesion. The
image in the third row and fourth column of Figure 8 shows the region of interest for
Drusen and also the region where the lesion occurred. Figure 9 is a partial image of the
heat maps of the eight disease categories on the OCT-C8 dataset, showing the prediction of
the heat maps of the lesion regions of each disease by our trained model. Grad-CAM helps
us to see the regions of interest that the model focuses on when making a prediction, and
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thus to understand the decision-making process of the prediction. It is worth noting that
this focus on the region of interest is also consistent with the ophthalmologist’s observation
and diagnostic process.
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5. Conclusions

In this paper, a multi-fundus disease classification model based on Swin Transformer
V2 and the PolyLoss loss function was proposed. By comparing two different loss functions,
it has been demonstrated that the PolyLoss function can enhance the model’s functionality.
In the final experiment, an evaluation index close to 1 was achieved on the OCT2017 dataset,
proving the good performance of the model in classifying OCT images. To validate the
generalization ability of the network, it was trained and evaluated on OCT-C8, attaining a
score of 1 for accuracy and other assessment metrics in half of the OCT illness categories
and an average accuracy of 99.5% on the OCT-C8 dataset, proving the effectiveness of our
designed model in classifying fundus diseases on OCT images.

The basic Swin Transformer V2 demonstrated strong performance on the publicly
available OCT2017 dataset, making further improvements challenging. In clinical practice,
misdiagnosis and missed diagnosis can lead to serious medical accidents and cause great
pain to patients. The aim of our work is to improve the accuracy of model automatic
diagnosis as much as possible to reduce the occurrence of misdiagnosis and missed diag-
nosis. However, by using polynomial loss and optimizing the network parameters, we
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were able to achieve a comprehensive improvement in performance metrics at a high-
performance level of 99.7%, achieving a score close to 1. This indicates that our modified
network model exhibits superior diagnostic capabilities. Although the magnitude of im-
provement is relatively small, it has positive implications for reducing misdiagnosis and
improving diagnosis.

However, despite the good progress made by deep learning models in identifying
abnormalities on retinal OCT images, due to the limited dataset, it is not possible to verify
how well they perform on other retinal OCT data. In the future, more retinal OCT data
will be sought to validate and improve the network. In addition, turning a network model
into a powerful tool in the hands of clinical ophthalmologists in real life is also a major
challenge, requiring more professionals to work together to turn theoretical methods into
products that improve ophthalmic diagnosis.
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